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Abstract

This paper describes our efforts of transferring feature extraction and statistical modeling techniques from the fields of speaker and
language identification to the related field of emotion recognition. We give detailed insight to our acoustic and prosodic feature extrac-
tion and show how to apply Gaussian Mixture Modeling techniques on top of it. We focus on different flavors of Gaussian Mixture
Models (GMMs), including more sophisticated approaches like discriminative training using Maximum-Mutual-Information (MMI) cri-
terion and InterSession Variability (ISV) compensation. Both techniques show superior performance in language and speaker identifi-
cation. Furthermore, we combine multiple system outputs by score-level fusion to exploit the complementary information in diverse
systems. Our proposal is evaluated with several experiments on the FAU Aibo Emotion Corpus containing non-acted spontaneous emo-
tional speech. Within the Interspeech 2009 Emotion Challenge we could achieve the best results for the 5-class task of the Open Perfor-
mance Sub-Challenge with an unweighted average recall of 41.7%. Further additional experiments on the acted Berlin Database of

Emotional Speech show the capability of intersession variability compensation for emotion recognition.
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1. Introduction

Spoken emotion recognition is the problem of automat-
ically recognizing the emotional state of a person from
their speech. Different moods may change the attributes
of the human voice, such as pitch, speaking-rate, and
intonation.

In automatic speech processing these properties are usu-
ally represented using the appropriate parametrization of
speech, so called features. Pattern recognition and machine
learning algorithms can then be used to model certain char-
acteristics of emotionally colored speech and recognize
emotions in speech utterances. Typically, classifiers like
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Hidden-Markov-Models (HMMs), Gaussian Mixture
Models (GMMs), Support Vector Machines (SVMs) or
Neural Networks (NNs) (Bishop, 2006) are used.

While sensing the emotions of an individual from their
speech is a relatively new research field in speech process-
ing, a research community has formed in recent years
and several methods have been applied successfully (Steidl,
2009; Vlasenko et al., 2007; Seppi et al., 2008; Batliner
et al., 2006) and evaluated on special databases containing
emotional speech (Ververidis and Kotropoulos, 2003).

Recently the usage of SVMs to directly model large-
scale feature vectors has become the standard for emotion
recognition (Schuller et al., 2007, 2009). These feature vec-
tors contain diverse kinds of speech parametrization
extracted on a per-utterance basis including acoustic, pro-
sodic and voice quality features. Frame based features
are usually modeled by HMMs to capture the temporal
dynamics of the signal (Schuller et al., 2009).

Using these state-of-the-art techniques, accuracies of
over 80% have been reported for emotion classification
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tasks on acted non-spontaneous data (Schuller et al., 2006).
However, on real life non-acted spontaneous emotionally
colored data these accuracies drop drastically (below
40%) (Schuller et al., 2009).

Besides emotion recognition there are many diverse
research fields with the goal of extracting certain attributes
from speech. These include:

e What is spoken: Automatic Speech Recognition (ASR).

e Who is speaking: Speaker Identification (SID).

e Which language is used: Language Identification (LID).

e Which gender is the speaker: Gender identification
(GID).

e What is the age of the speaker: Age Identification
(AID).

In many of these fields (like SID, LID and GID) the use
of Gaussian Mixture Models has established itself as the
standard (Reynolds et al., 2000). HMMs, as used in
ASR, are usually outperformed by GMM:s (which are actu-
ally a HMM containing a single state) on text-independent
tasks. Also, best results in all these fields are often obtained
using more or less standard acoustic features extracted on a
frame-based level, as used in ASR. This is somewhat illog-
ical as features for ASR are optimized to blind out proper-
ties like speaker characteristics. Still, these tools seem to
provide a good framework for diverse kinds of speech
characterization.

As mentioned above, the state-of-the-art for emotion
recognition has moved in a different direction. Gaussian
mixture modeling of short-time acoustic features has been
mostly replaced by Support Vector Machine classification.
A similar trend was observed in the field of Speaker Verifi-
cation as well. However, recent advances in Gaussian Mix-
ture Modeling, like discriminative training or intersession
variability compensation, has significantly raised the per-
formance of GMM based systems and currently defines
the state-of-the-art (Kinnunen and Li, 2010). This is the
main motivation for our work. Our aim is to take basic
and newly evolved features and modeling techniques, as
used in current LID and SID systems and to apply them
to the task of emotion recognition. By doing so we want
to provide another view to the problem of emotion recog-
nition. Further enhancement can then be expected by com-
bining both approaches.

Through this paper, we will investigate standard spectral
features based on Mel-Frequency-Cepstral-Coefficients
(MFCC) (Davis and Mermelstein, 1980) as they are usually
used in ASR. There have been many modifications of stan-
dard MFCC features to better fit the needs of SID and
LID, like longer temporal context and speaker normaliza-
tion. We will evaluate below some of these techniques for
emotion recognition.

Furthermore, prosodic features (incorporating duration,
pitch and energy) are often used to enhance the perfor-
mance of MFCC based systems. Different from spectral
features, prosodic features are usually extracted over a

longer time span, like on a syllable basis. We examined a
prosodic feature extraction method successfully used for
GMM based speaker recognition (Kockmann and Burget,
2008).

All these features will be modeled using different flavors
of Gaussian Mixture Models. It should be noted, that in all
cases we model frame or syllable based features using mod-
els without any temporal dependencies. This statistical
method of creating a “footprint” has been very successful.
We will investigate in detail basic GMM approaches used
in speaker and language identification. Furthermore, more
sophisticated techniques evolved in the last few years are
examined for their applicability in emotion recognition.
These include discriminative training of GMMs and inter-
session variability compensation. Intersession variability
for emotion recognition may refer to different acoustic con-
ditions, different speakers or simply the spoken content of
the utterance. All these attributes are a nuisance for the
task of emotion recognition and we want to “ignore” them
during modeling.

To evaluate the performance of the proposed techniques
we provide experiments on two independent emotional dat-
abases, one containing non-acted spontaneous speech and
the other acted non-spontaneous speech. Results on the
first database include our submission to the Interspeech
2009 Emotion Challenge (Kockmann et al., 2009) where
we could achieve very good results using the techniques
described above.

The paper is organized as follows: Section 2 describes
the acoustic features we used in our experiments while Sec-
tion 3 explains the prosodic features used. Section 4 gives
detailed information on the Gaussian Mixture Models we
used and their training and evaluation procedures. In Sec-
tions 5, 6 we present results to evaluate the proposed
approaches for emotion recognition. In Section 7 we draw
conclusions to our approaches and consider future
research.

2. Spectral features

This section will introduce the used MFCC features and
the additional techniques applied to make them more suit-
able for the given task.

2.1. Basic acoustic features

The most widely used features in speech processing are
MFCCs (Davis and Mermelstein, 1980). They have been
applied successfully for speech recognition as well as for
speaker recognition and language identification. We will
use them as our basic features for the emotion recognition
task. MFCC vectors are generated every 10 ms on a 20 ms
frame of speech weighted by a Hamming window. Fast-
Fourier-Transform (FFT) output of each speech window
is processed by a Mel filter bank with 25 bands. The output
is transformed by Discrete Cosine Transform (DCT) and
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13 cepstral coefficients including CO are generated. CO rep-
resents an energy measure of the speech window.

2.2. Channel normalization

The temporal trajectories of individual cepstral coeffi-
cients are filtered using a standard RelAtive SpecTrAl
(RASTA) filter (Hermansky and Morgan, 1994) to remove
slow and very fast spectral changes which do not appear to
be characteristic for natural speech. We use the standard
IIR filter:

24z bz 0 (1)
z4(1 —0.982z°1) °

H(z) =0.1

Furthermore, cepstral mean subtraction (CMS) is applied
on each coefficient per utterance for simple channel
normalization.

2.3. Speaker normalization

We do not want to model the characteristics of the indi-
vidual speaker by the position of the formants based on the
length of the vocal tract. We use Vocal Tract Length Nor-
malization (VTLN) (Cohen et al., 1995) for simple speaker
normalization. The spectrum (during FFT) is either com-
pressed (usually for females) or expanded (for male speak-
ers) based on a warping factor estimate for each utterance.

Warping factors for training and test data are estimated
using a rather small GMM trained on all unnormalized
training data to represent average characteristics of the tar-
get population. Warped MFCCs are then created for all
files with warping factors in a range from 0.88-1.12 with
a step-size of 0.02. This results in 13 feature sets: 6 com-
pressed, 1 neutral and 6 expanded. The optimal warping
factor per utterance is obtained by evaluating the likeli-
hood of all warped instances against the unnormalized
GMM and selecting the maximum. This way we select
the factor that best fits the average speaker. The warped
utterances are then used for standard model training. Refer
to Section 4.1 for implementation details for GMM train-
ing and likelihood scoring. For spectrum manipulation
we use a linear piecewise warping function with a warping
cutoff of 0.875 x Nj where Nris the Nyquist frequency.

2.4. Temporal context

Simple MFCCs do not model any temporal charac-
teristics which are most likely informative for emotion
recognition. As our classifier also does not model feature
sequences, we generate delta, double and triple delta
regression coefficients of the static features to model co-
articulations in speech. We use a standard formula (Young
et al., 20006):

d, = EV@)@(CH@ _2 Cr—@) (2)
ZZV@@

with d; being the regression coefficient of static coefficient ¢,
and the shift vector @ = [2] for delta, ® = [2,4] for double
delta and @ =[2,4,6] for triple deltas. This results in 26, 39
and 52 dimensional feature vectors containing information
spanning a context of 5, 9 and 13 frames, respectively.

2.5. Shifted delta cepstra

The importance of an even broader temporal informa-
tion has been shown for LID (Torres-Carrasquillo et al.,
2002). The so-called Shifted Delta Cepstra (SDC) is created
by stacking delta coefficients computed across multiple
speech frames, as depicted in Fig. 1. Multiple delta coeffi-
cients with a shift of +1 are computed for a context of
410 frames, without overlap and concatenated in one fea-
ture vector.

For static features ¢, shifted deltas are defined:

Ac; = C(iyipra) — Ciip—d) (3)

fori=[—3...0...3]with shift P = 3 and the window shift
d =1 over which deltas are computed.

The basic features in our system are 7 static MFCC coef-
ficients (including coefficient C0) concatenated with delta
cepstra which totals 56 SDC coefficients per frame, span-
ning a context of 21 frames. This configuration has been
successfully used in our language identification systems
(Matejka et al., 2008, 2006).

2.6. Post processing: voice activity detection

For all our frame based spectral features, non-speech
frames are discarded and only speech frames are consid-
ered in the following stages of training models and verifica-
tion. Speech/non-speech segmentation is performed by our
Hungarian phone recognizer (Schwarz et al., 2006). This
step is performed based on the final feature vectors ensur-
ing that RASTA and regression coefficients are correctly
estimated.

3. Prosodic features

Prosodic information based on the lexical context
might be useful for this task and is complementary to the
acoustic short time features. For this purpose, we use our
detector of syllable-based feature contours as presented in
(Kockmann and Burget, 2008). It processes classical pro-
sodic features like duration, pitch and energy in a sylla-
ble-like temporal context. The trajectories of each feature
are continuously modeled over the time span of a syllable
and are represented by discrete cosine transformation
(DCT) coefficients, as depicted in Fig. 2. The pseudo-
syllable segmentation is based on a phone recognizer
where vowels are considered as nuclei for the syllables.
The segments are non-overlapping and undefined frames
are discarded prior to DCT approximation. Additionally,
we also capture the temporal contours of MFCCs and form
a single feature vector out of duration, pitch, energy and
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MFCC coefficients

——» Frames

SDC corresponding to
one MFCC coefficient

Fig. 1. Computation of SDC features for a single static feature stream, incorporating 21 consecutive static MFCCs, results in 7-dimensional SDC vector

for each frame.
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Fig. 2. Example of a pitch contour over a syllable consisting of three phones. Top: Original pitch values with phone and pseudo-syllable boundaries
(horizontal lines). Bottom: Original (points) and DCT approximated curve (solid line).

the MFCC contours. Frame-based pitch and energy are
generated first and are mean subtracted over the voiced
part of the utterance before approximating the temporal
trajectory. We use the syllable duration (number of frames)
and 6 DCT coefficients per feature contour which results in
13-dimensional vectors for the prosodic and 85-dimen-
sional vectors for the combined prosodic and MFCC
contours.

4. Classifier

In this section, we introduce four statistical models that
are used in our experimental part. The first two are flavors
of Universal Background Model (UBM)-GMM models as
used in speaker verification, with and without session var-
iability compensation. The third and fourth are classical
GMMs trained in generative and discriminative manner
as often used in language identification. We provide most
of the needed formulas to easily allow the reader to repro-
duce our results.

4.1. UBM based models

Our first two GMM systems are based on a standard
Universal Background Model-Gaussian Mixture Modeling
(UBM-GMM) paradigm (Reynolds et al., 2000). All
GMMs used are multivariate with dimension D and using
diagonal co-variances.

Prior to any class-dependent model training a class-
independent model is trained on the pooled feature vectors
o of all development data of all classes. Following speaker
recognition terminology we call this a Universal Back-
ground Model. Weights 7, means p and variances X of
the UBM are trained in a maximum-likelihood way with
an Expectation-Maximization (EM) algorithm (Bishop,
2006).

EM is an iterative algorithm that alternates between
estimating the responsibilities y.(n) (E-Step, alignment of
frame n=1... N to Gaussian components k=1...K)
and re-estimation of the parameters using the current
responsibilities (M-Step):
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E-Step:
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for feature vector o, with feature dimension D.
Data log-likelihood for the whole GMM and all data o
Zannk./\/ 0, i) (10)

Inp(o|u, X, m)

is checked for convergence after each iteration.

For UBM training we initialize a single Gaussian com-
ponent with a global mean and variance of all background
data and keep splitting the components in two (after sev-
eral iterations when convergence of data log-likelihood is
achieved) until the final size is reached. For this purpose,
the copied weights 7 are halved, variances X are kept and
copied means p are shifted by +0.2v/X.

Following UBM training, the individual emotion-class
models are obtained by relevance Maximum-A-Posteriori
(MAP) adaptation (Reynolds et al., 2000) of the mean
parameters using class specific feature vectors only.
Weights and variances are kept fix. The UBM mean serves
as a prior for posterior distribution of class model means
and the relevance factor further restricts their movement.
The point estimate of the posterior mean distribution can
be seen as a compromise between the prior (UBM) mean
and the maximum likelihood solution (using feature vec-
tors for emotion class e only):

p" = o+ (1= )™ (11)
with adaptation coefficients
N
1Y\
oy = %:nfl/k( ) (12)
Zrlzlyk (}’l) +1

and relevance factor t = 16. If some components are not
occupied at all by the training data, the parameters keep
their prior values; while for unlimited amount of data the
MAP estimate would equal the ML estimate.

During testing the models are evaluated using the log-
likelihood ratio (LLR) between the class model- and the
UBM log-likelihood for the test data, evaluating Eq. (10)
for both the class model and UBM. For computational effi-
ciency, only top scoring Gaussians (determined based on
the UBM) are evaluated for the class models per frame.
We will call this model simply GMM-UBM model.

The described GMM-UBM framework can be expanded
to cope with intersession variability (e.g. different channel,
language, gender, etc. between training and test utter-
ances). This technique allows us to adapt the supervector
of means (concatenated mean parameters of all Gaussian
components) in directions of large intersession variability
during verification to better match the test utterance.

In Fig. 3 we try to visualize the meaning of this tech-
nique for emotion recognition on a simple toy example.
We assume GMMs containing a single mixture component
each in a two dimensional feature space. The figure shows
only the mean parameters of the GMMs. We should
assume two utterances for each of the three emotion classes
Anger (black star), Neutral (cyan diamond) and Joy
(magenta x-mark).

After the training of the UBM (blue cross) on all utter-
ances we do one additional ML iteration using data from
each utterance only. The new mean parameter ML esti-
mates for each utterance are depicted in the figure, same
colors belong to same emotion classes. It can be observed
that most of the variability between different utterances
belonging to the same emotion classes can be projected
on a one-dimensional latent space (Intersession variability
direction, dash-dotted line). This subspace can be robustly
estimated on many diverse utterances belonging to different
emotion classes (after UBM training, prior to class model
training). Emotion class models are then derived by

GMM mean space
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Fig. 3. Toy example of intersession variability compensation in a 2D
mean parameter space. 1D subspace is estimated based on differences
between utterances belonging to the same class. Model parameters can be
moved along this space during verification to adapt to the test
environment.



M. Kockmann et al. | Speech Communication 53 (2011) 1172-1185 1177

standard MAP adaptation as for the GMM-UBM model
(shown for Neutral and Joy in plot).

During verification, the MAP adapted means of the
model to be tested can be moved along the intersession var-
iability subspace to adapt to the condition in the test utter-
ance (acoustic condition, gender, linguistic content, etc.).
This is illustrated for two utterances tested against class
models for Joy and Neutral by the dashed lines drawn from
the top of the solid lines (MAP estimate).

In a real application the subspace usually maps out from
a very high dimensional supervector space (up to 100,000
dimensions) down to a low dimensional latent space (e.g.
50 dimensions) allowing it to robustly adapt model param-
eters on small amounts of data.

The adapted mean supervector can be represented as

m, + Ux, (13)

and is distributed with a mean of m, and a co-variance of
UU". m, is the class (emotion) dependent supervector of
MAP adapted means (from standard GMM-UBM model).
U defines the low-dimensional subspace matrix (size
DK x S with subspace size S < DK) of the full GMM
space with high intersession variability. The utterance
dependent factors x,, define the shift of the model parame-
ters within the subspace. These factors are assumed to be
normally distributed random variables making the whole
thing a probabilistic model.

The subspace is usually estimated for on a large amount
of data (similar to UBM), either using Principle Compo-
nent Analysis (PCA) (Burget et al., 2007) or by an EM
algorithm (Kenny et al., 2008). Please refer to these cita-
tions for detailed descriptions.

Once the subspace is estimated, emotion models (or
UBM) can be adapted by shifting its mean supervector in
the directions given by an intersession variability subspace
to better fit the test utterance data. Mathematically, this
can be expressed as finding the factors x,, that maximize
the following MAP criterion:

p(o,|m, + Ux,)N (x,;0,1), (14)

where p(o,|m, + Ux,) is the likelihood of the test conversa-
tion r given the adapted supervector (model) and A/(+;0,1)
denotes a normally distributed vector. Assuming a fixed
occupation of Gaussian mixture components (responsibili-
ties) by test conversation frames, o,, n =1,..., N, it can be
shown (Briimmer, 2004) that x, maximizing criterion (14) is
given by:

K N,
— 0, — 17
x, =AY UL ) =, (15)
k=1 n=1

Ok

where Uy is the D x S part of matrix U corresponding
to kth mixture component; yi(n) is the probability of
occupation mixture component k at time n, w; and o) are
the mixture component’s mean and standard deviation
vectors and

K N,
A=T+> UUD y(n). (16)
k=1 n=1

In our implementation, occupation probabilities, y,(n), are
computed using UBM and assumed to be fixed for a given
test conversation. This allows one to pre-compute matrix
A~" only once for each test conversation.

Note, that both model and UBM means are adapted to
the test utterance and afterwards scoring is done exactly as
for the UBM-GMM model (LLR).

We will call this model incorporating intersession vari-
ability compensation ISV model.

4.2. Generative and discriminative GMMs

Emotion recognition is a closed-set identification task
(similar to Language identification) and usually large
amounts of data are available to train the separate class
models. In this section we propose to train each class model
using an EM algorithm as described in the previous section
for the UBM. Our assumption is that we have enough data
to robustly estimate weight, mean and variance parameters
for each emotion class individually.

Furthermore, we propose to re-estimate the model
parameters using a discriminative training technique suc-
cessfully applied to language identification (Matejka
et al., 2000).

As depicted in Fig. 4 discriminative techniques aim to
precisely model the boundary between the competing mod-
els in such a way that the correct estimation of class affili-
ation is improved rather than maximizing the likelihood of
the training data. This way model parameters are mostly
used to estimate precisely the boundaries between separa-
ble regions in the features space. Highly overlapping areas
are neglected.

Our first set of models is trained per class under the con-
ventional Maximum Likelihood (ML) framework, as used
for the UBM (see Section 4.1, Egs. (4)—(10)), but only using
class specific data. Note, that we re-estimate not only
means, but also weights and variances per emotion class.
We will call these models simply ML models.

Easily recognizable~ - N

No need to precisely
model the distributions

| Necesery to precisely .
model the boundary.

Highly overlaped classes,
low discriminative power
L L

1 1 L

Fig. 4. Effect of discriminative training for two classes in 2D feature
space. The model parameters are used to precisely model the boundary
between separable data while highly overlapping areas are neglected.
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These serve as a starting point for further discriminative
re-estimations of means and variances using the Maximum
Mutual Information (MMI) criterion.

Unlike in the case of ML training, which aims to maxi-
mize the overall likelihood of training data given the tran-
scriptions, the MMI objective is to maximize the posterior
probability of correctly recognizing all training segments
(utterances):

Zl

where the numerator is the likelihood of r-th training seg-
ment o,; given the correct emotion class model of the seg-
ment, ¢"; R is the number of training segments and the
denominator represents the overall probability density,
plo,) (likelihood given any emotion class). So, the MMI
parameter re-estimates aim to maximize the ration between
true class likelihood and overall likelihood of each
segment.

It can be shown (Povey, 2003) that the MMI objective
function (17) is increased by re-estimating model parame-
ters using extended Baum-Welch algorithm (similar to
standard EM training) with the following formula for
updating mean and variances:

0r|”e+7 ety TE,_+)

e ]p 0;«‘”672(_7”(_)

(17)

F MMI —

(rum o Hden 24 den
u:lew — ek (0) — ( d)e’j_ /k :u, (18)
Vek +VLk
new HZZ’”(O ) B 9‘1'9"( ) + 2VZIL:”( okt 'uc%k) new?
Zek = num den — Mg - (19)
Vek + Vek
The terms:
R N,
05" (0) =D > v (moy(n), (20)
r=1 n=1
R N,
um 7 2
0" (0%) =D D vy (mon(n)’,
r=1 n=1

are mixture component specific first and second order sta-
tistics and occupation counts corresponding to the numer-
ator of the objective function (17). Denominator statistics
can be expressed by similar equations, where all super-
scripts num are merely replaced by den. Note that the
numerator statistic are ordinary ML statistics. Therefore,
the numerator posterior probability of occupying mixture
component ek by n-th frame of training segment r,

ety = { e

0 otherwise

for e = e™, 1)

is non-zero only for mixture components corresponding to
the correct emotion class. To estimate the posterior proba-
bilities for the denominator:

len p(07‘|”e725’>n3)
Vel (1) = Vet ()

Zj:lp(or“‘qv Eqv th) .

(22)

Note, that the fraction on the right-hand side is the poster-
ior probability of the current emotion class given the whole
segment that n belongs to.

Finally,

nekN(or‘(n) |:uek7 Zek)
> TN (0 ()|, Ze)

where 7. is mixture component weight and K is the num-
ber of mixture components in model e.

Starting from the ML models of final size, the mean and
variance parameters are re-estimated using MMI for sev-
eral iterations.

For both models, verification is done frame-by-frame
for the test utterance with full log-likelihood computation
according to Eq. (10). Note, that we always evaluate all
Gaussian components for these two model types.

Vekr () = (23)

5. Experiments on the FAU Aibo emotion corpus

In this section we present experimental results to evalu-
ate the techniques presented in Sections 2-4. All used
feature configurations and classifiers are summarized in
Table 1. Experiments on feature types and modeling tech-
niques are performed on the FAU Aibo corpus.

5.1. Database

The FAU AIBO database is a corpus with recordings of
children of age 10 to 13 interacting with a pet robot called
Aibo. The emotionally colored speech is non-rehearsed, as
the children believed that the robot was following their
commands, so their reactions evoke emotions due to
behavior or misbehavior. Actually, the actions of the robot
were in a fixed order, controlled by an operator and similar
for all participants.

The whole corpus consists of 9.2 hours of high quality
speech which was annotated by human labelers and
assigned to emotional classes by majority voting. All ses-
sions are split on a chunk level to achieve homogeneity
of emotional state within a unit and results in about
18,000 chunks.

The database was recorded at two different schools, con-
sisting in a total number of recordings of 51 children. The
first portion consists of 13 male and 13 female speakers.
Within the Emotion Challenge 2009, the first part was pro-
vided as a combined training and development set, while
the second part was defined to be the test set. The emotion
labels for the second part were not provided and results
could only be evaluated within the Interspeech 2009 Emo-
tion Challenge. As a consequence, we will provide two dif-
ferent results in this chapter. First, we will describe
progress in system development on our own defined devel-
opment set and afterwards, we will give the official results
obtained in the challenge with our final systems.

All annotated emotion labels of each chunk were
mapped to two broader sets of emotions: A S-class set
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Table 1
Summary of feature sets and model types used in experimental part.
Feature type Description Dimension
MFCC C0+12 MFCCs with CMS, VAD 13
RASTA CO0+12 MFCCs with RASTA and CMS, VAD 13
RASTA-A C0+12 MFCCs with RASTA and deltas, CMS, VAD 26
RASTA-AA C0+12 MFCCs with RASTA, deltas and double deltas, CMS, VAD 39
RASTA-AAA CO0+12 MFCCs with RASTA, deltas, double and triple deltas, CMS, VAD 52
SDC CO0+6 MFCCs+delta cepstra over 21 frames, CMS, VAD 56
DPE Duration+syllable contours (6 DCT coefficients each) for pitch and energy 13
DPEC Duration-+tsyllable contours (6 DCT coefficients each) for pitch, energy and MFCCs 85
Model type Description Components
GMM-UBM GMM with MAP adapted means from UBM 8-128
ISV GMM with MAP adapted means from UBM and intersession variability compensation 8-128
ML ML-trained GMM (weights, means, variances) 16-128
MMI ML-trained GMM (weights, means, variances) with further MMI training (means, variances) 16-128

containing Anger, Emphatic, Neutral, Positive and Rest,
and a 2-class set comprising NEGative and IDLe. Detailed
information on the database and its design is given in
(Steidl, 2009). To keep our experimental part clear for
the reader we present only results on the 5-class task
(obviously the more difficult task).

The total number of chunks available for training/devel-
opment of the 5-class models are in Table 2. Note that the
numbers differ from Schuller et al. (2009), as our voice
activity detection did not identify any speech frames for
several chunks.

5.2. Development set

We use subsets of the training data for system develop-
ment. We use a full jackknifing approach for the whole
training set. Thirteen splits are created out of the training
set, each excluding 1 male and 1 female (so speaker in train-
ing and test are always distinct), resulting in circa 700
chunks for the testing of each split. We train a separate sys-
tem for each split on the remaining chunks. This is a very
expensive procedure, but this way we can use all available
data for training and testing, while the training and test
portions are always distinct. Results are presented in terms
of two accuracies: The Weighted Accuracy (WA) means
the percentage of correctly recognized chunks, in the total
for all chunks over all classes of the development data. The
Unweighted Accuracy (UA) means the percentage of cor-
rectly recognized chunks per class, which are then averaged
over all classes. As the class affiliation is highly unbalanced
(see Table 2), we will use the unweighted accuracy as our
primary measure for system development.

Table 2
Number of chunks in the AIBO corpus development set to train each
classifier for 5 classes.

Anger Neutral Positive

830 1890

Emphatic Rest >

5024 616 642 9002

Table 3
Results for static MFCCs features with longer temporal context using
GMM-UBM with 64 components [%].

Static Longer context

Feature UA WA Feature UA WA

MFCC 36.4 40.4 RASTA-A 41.8 41.3

RASTA 37.4 40.9 RASTA-AA 43.5 42.9
RASTA-AAA 42.6 40.7
SDC 41.9 41.0

5.3. Spectral features

We start with investigations of spectral features using a
fixed classifier to compare the performance of the different
feature sets. We use a GMM-UBM system for this purpose.
Preliminary experiments indicate that 64 Gaussians work
well for the first GMM-UBM system.

As we are using an adaptation from the background to
class model it is important to define a balanced set for the
UBM training due to the unbalanced amount of class affil-
iation in the training data (see Table 2). Otherwise, the
background model would be biased to the more dominant
classes (Neutral and Emphatic) and adapted models for the
under-represented classes might be poor. For this purpose,
we select 500 chunks from each of the 5 classes to train a
model that serves as the UBM. Emotion class models are
then obtained by relevance MAP adaptation of the mean
parameters.

Results are presented in the left column of Table 3. With
36.4%, the unweighted accuracy is very low for the simple
MFCC features. Still, these results correspond with the
results reported in a similar test set of the AIBO corpus
for a frame based HMM system (Schuller et al., 2009). A
significant! improvement is achieved through the use of a
simple RASTA filter.

The use of Vocal Tract Length Normalization did not
give conclusive results and no significant gains could be

! At a significance level of « =0.1.
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Table 4
Results for syllable based feature contours modeled
by 64 component GMM-UBM [%)].

Feature UA WA
DPE 323 39.6
DPEC 36.0 38.3

achieved. The ineffectiveness of VTLN might be explained
by an analysis of the observed distribution of the warping
factors. Generally, for data of adults a separation of males
and females in the form of a bimodal distribution can be
observed. In our experiments there was no separation of
warping factors for male and female speech at all which
might be caused by the fact that we handle children’s
speech. Probably a more adjusted grid search than using
warping factors 0.88-1.12 (which is somehow optimized
for adult speech) can be more effective. As a consequence,
we use only RASTA processed features for the following
experiments.

As a next step we apply techniques to cover a broader
temporal context. Up to now features only model a
quasi-static period of approximately 30 ms. We augment
the RASTA features with their delta (RASTA-A), dou-
ble-delta (RASTA AA) and triple-delta (RASTA-AAA)
regression coefficients.

Results are presented in the column on the right of
Table 3. Significant improvements are obtained through
all examined configurations and the task clearly benefits
from broadening the temporal context. The best results
are achieved with RASTA-AA features which significantly
outperform the single delta and SDC features.

One interpretation might be that enlarging the context
keeps improving the accuracy but triple delta and SDC fea-
ture dimensions are already too high for this scenario.
Keep in mind that a higher feature dimension also raises
the free parameters in the model dramatically.

Following these experiments, we will use the RASTA-
AA coefficients as our primary spectral feature set.

5.4. Prosodic features

The following experiments are performed to evaluate the
prosodic features proposed in Section 3.

We use the same GM M-UBM model type as for our pre-
vious experiments with features containing the following
feature subsets: duration and temporal contours of pitch
and energy (DPE) and duration, pitch, energy and MFCC
temporal contours (DPEC, see also Table 1).

Results are presented in Table 4. The best results of 36%
UA are achieved with the DPEC features. These features
show a similar performance as the simple MFCC features
without any temporal context. However, the spectral
frame-based features incorporating an equal temporal con-
text still perform significantly better. This is a result we also
observe in speaker or language identification. High-level fea-
tures like these usually perform worse on their own but add

complementary information. This is then exploited by score-
level fusion of the diverse recognition systems.

Another reason for the huge degradation might be the fact
that we use statistical classifiers with very little data. As these
features are based on syllable regions spanning a context of
up to several hundred milliseconds, often only a few or no
feature vectors can be extracted per utterance. Clearly, the
performance of this feature type suffers greatly from the fact
that the test utterances are very short in the AIBO corpus.

5.5 GMM-UBM models

Now we start evaluating the modeling techniques pro-
posed in Section 4. For this purpose, we will use the spec-
tral RASTA-AA features that performed best in the
previous section.

After selecting 64 Gaussians somehow ad-hoc for the
initial feature experiments, additional experiments are car-
ried out to find optimal sizes for GMM-UBM as well as for
ML systems for this task.

The use of up to 2048 Gaussian components is typical in
high-performing speaker and language identification sys-
tems, where much more data is available for each class or
for the background model (Burget et al., 2007; Matejka
et al., 2006). The used databases of emotional speech are
rather small, so (1) we have little data to train the back-
ground model and the class model; and (2) the test utter-
ances are also quite short (only up to several seconds).
For this reason, we expect the optimum GMM size to be
much smaller than for SID/LID systems.

As we use an EM training algorithm that splits Gaussian
components after some iterations, we evaluate GMM sizes
from 8 to 128, doubling the size after each step. It should
be noted that we will also provide class-specific accuracies
in this section to show the relation of the GMM size and
the amount of available training data.

Results in Table 5 for a GMM-UBM system indicate
that a size of 64-128 components is optimal for this task.
Using a larger number of mixture components did not
increase UA. WA usually kept rising as the major classes
(like Neutral) benefit from larger amount of model param-
eters while the others get overtrained.

5.6. ML models

Furthermore, for the proposed model types in Section
4.2 an independent GMM is trained for each class on the

Table 5
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for GMM-UBM.

GMM size UA WA A E N P R
8 40.8 37.8 62.3 335 359 69.0 3.1
16 41.7 41.3 62.1 333 42.5 67.1 3.6
32 42.4 43.6 59.6 37.1 45.8 66.1 34
64 43.5 42.9 60.8 36.5 43.6 71.4 5.3
128 43.6 43.7 61.2 35.8 453 70.8 5.0
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available target training data only, without any adaptation
from a background model. According to Table 2 we only
have several hundred chunks available for some classes.
For this purpose and to further confirm the GMM size,
we proceed with experiments using a different number of
Gaussian components for simple ML trained models with-
out any background model adaptation.

We evaluate sizes of 16 to 128 Gaussians. The results are
presented in Table 6.

Interestingly, for these models we see a similar trend as
for the MAP adapted models. We obtain the best results of
about 44% UA with 32 and 64 Gaussians. Again, 64 Gaus-
sians seem to be a good choice. Also the models for which
only small amount of data is available, such as A, P or R,
already seem to get overtrained with 128 Gaussians.

If we compare the results for the GMM-UBM system
and the ML system in Tables 5 and 6 we observe a similar
overall performance. Comparing same sized models, we see
that the ML models are significantly better for the smaller
models. This seems reasonable as the small ML models
might have more discriminative power due to their individ-
ual weight and variance parameters. However, for the lar-
ger models the amount of training data might still be too
small to estimate all these parameters robustly.

5.7. MMI models

After evaluating the two basic GMM models we move
on with experiments using more sophisticated modeling
approaches.

First, we use the MMI criterion to retrain all generative
class GMMs (ML models) to discriminative models. This is
done in addition to 10 iterations, always increasing the
MMI objective function in (17). Comparing the numbers
in Table 7 for MMI models with previous ML experiments
(see Table 6) gives somewhat disappointing results.

Except for the small GMM with 16 Gaussians (not sig-
nificant), all other recognition rates even decrease due to
MMI training. This loss of performance is also not signif-
icant but seems to show a trend. Only when looking at very
small number of Gaussians (e.g. 2) we could spot a signif-
icant gain due to MMI, but these models obviously per-
form much worse than the larger ones.

It should be mentioned here that the proposed technique
of discriminative re-training of models leads to huge
improvements on NIST evaluation sets for language iden-
tification (Matejka et al., 2006) with similar number of clas-

Table 6
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for the ML model.

GMM size UA WA A E N P R
16 42.7 46.2 54.0 40.2 47.5 46.4 16.2
32 44.3 48.2 559 45.5 51.5 46.3 22.1
64 44.0 49.2 51.5 45.0 54.1 46.3 23.1

128 42.8 51.3 48.6 43.6 59.6 429 19.2

Table 7
Unweighted, weighted and class specific accuracies for different GMM
sizes with RASTA-AA features for the MMI model.

GMM size UA WA A E N P R
16 42.9 46.9 53.6 49.1 48.8 44.5 18.5
32 4.2 48.5 534 45.7 523 44.5 25.0
64 43.7 49.5 49.5 45.1 55.0 44.0 24.8

128 422 51.4 47.1 43.4 60.5 39.9 20.2

ses. More than 50% improvement can be achieved on 30 s
long test utterances. Interestingly, on 3 s long utterances
(which is more similar to our scenario here) the gain also
reduces to less than 10% relative. Another difference is
the amount of data to train the class models, which is much
higher (hundreds of hours per class) in the case of the NIST
LID task (NIST, 2005).

5.8. ISV models

In the following experiments we want to evaluate the
intersession variability compensation approach as pro-
posed in Section 4.1. The system is mainly a GMM-UBM
system as used in the initial feature experiments with addi-
tional intersession variability compensation during testing.

As a first step the low dimensional subspace defining the
directions of intersession variability has to be estimated on
the training data. The usage of the available training data is
crucial during this step and defines what kinds of interses-
sion variability can be compensated for.

The AIBO database comprises many chunks for the
same class and the same speaker. So we can learn differ-
ences according to acoustic environment, speaker or lin-
guistic content. Our main assumption is that we do not
have many channel effects caused by different microphones
or transmission channels. As all recordings are done using
the same equipment in the same room, the within-class-
covariance will mainly cover speaker and intrinsic varia-
tions (Shriberg et al., 2009). Still, acoustic channel compen-
sation might be an issue for the test set as this is recorded in
a different school under different acoustic conditions.

As the segments are rather short in this database we use
a method to learn more reliable subspace directions. We
concatenate all segments belonging to the same speaker
and class and estimate U as to describe the difference
between speakers. This way our intersession variability
compensation serves more as a speaker compensation than
an acoustic channel compensation.

Before starting the subspace training, we initialize U by
PCA (Burget et al., 2007) to ensure a good starting point
and faster convergence. Then we iteratively re-train U in
10 iterations.

Once the subspace is estimated, emotion class models
are trained by relevance MAP adaptation exactly as for
the GMM-UBM models. Also, the scoring part itself
(LLR) is the same. The only difference is that we adapt
the obtained MAP means towards the test utterance along
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the low-dimensional subspace U. This is done by estimat-
ing the “channel” factors x for each test utterance using
Egs. (15), (16).

We perform several experiments to determine the opti-
mal number S of intersession variability directions (size
of the subspace). Fig. 5 shows unweighted accuracies for
up to 5 subspace directions. We can observe that using
more than 1 eigenchannel always decreases the perfor-
mance. We get non-significant improvement over the rele-
vance MAP model with 44.2% for 1 eigenchannel (dashed
line), but it drops consistently when increasing the number
of subspace directions, which significantly decreases the
performance.

One explanation might be that the test utterances in this
corpus are simply to short (often below one second of
speech) to reliably estimate the x factors that control the
adaptation of the model mean parameters. Similar degra-
dation of intersession compensation techniques due to
small amount of test data has been observed for speaker
(Dehak et al., 2009) as well as language identification
(Hubeika et al., 2008) tasks incorporating only a few sec-
onds of speech. Also, the subspace U is usually trained
on hundreds of hours of speech.

5.9. System calibrationl Fusion

It is advisable to calibrate the system outputs as the
obtained scores for our systems do not represent proper
posterior probabilities for the classes. A certain GMM
may generally produce higher scores than the others in
the set. Furthermore, a consequent step is to fuse several
of the systems that incorporate partly complementary
information, as we have created many different systems
based on diverse features and modeling techniques. We
have observed huge gains in performance using this tech-
nique (Briimmer et al., 2007) even for system configura-
tions that differ only slightly (e.g. only different feature
sets).

45
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Fig. 5. Effect of eigenchannel subspace size on AIBO corpus. UA for
RASTA-AA features and ISV model with 64 components.

For these purposes we use multi-class linear logistic
regression (MLLR) (Briimmer and du Preez, 2006) to per-
form calibrated fusion of our system outputs. Posterior
probabilities of class C, given the score vector ¢ are then
given by:

exp(a.)
PCel|p) = = — (24)
Z]E:l exp(a;)
with activations
a,=w'¢ (25)

and ¢ containing the concatenated scores from all systems
to be fused. The fusion parameters w, are trained on each
split of the development set and are then averaged to en-
sure fair circumstances.

First we perform fusions of two systems that are using
the same features but four different modeling techniques.
Fusion results for all combinations are presented in Table
8 and are mostly better than the best single ISV system with
44.2%. Significant gains are achieved due to fusion of two
heterogeneous systems, like one background model based
(GMM-UBM or ISV system) and one standard GMM
model (ML or MMI system). Fusion of systems where
one is derived from the other, like ML and MMI, results
only in a small improvement. Fusion of all 4 systems does
not result in further improvement.

Furthermore, we evaluate the effect of fusing systems
using different feature sets while keeping the modeling
approach fixed (ISV). For this purpose we have selected
4 different feature sets that should be most complementary.
We select the RASTA MFCCs without further temporal
context (37.4%); the SDC features (41.9%); the simple pro-
sodic DPE features (32%); and our standard RASTA-AA
features (44.2%). Results in Table 9 show the same trend
as our previous fusion experiments. All combinations are
better than the best incorporated single system. Significant
gains can be achieved and the best result of 45.9% is
obtained for a fusion of RASTA-AA and SDC features.
Again, we fuse all 4 systems without any further
improvement.

To conclude these experiments we change both variables
(features and modeling techniques) at once. We fuse differ-
ent combinations but without any further improvement.

5.10. Emotion challenge 2009

This section shows the results for the systems we have
selected to submit for the official Open Performance

Table 8
Results (UA) for fusion of 2 systems with same features (RASTA-AA) and
different modeling approaches [%0].

GMM-UBM ISV ML MMI
GMM-UBM — 44.1 45.5 45.3
ISV - 45.5 45.1
ML - 44.3
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Table 9
Results (UA) for fusion of 2 systems with same modeling technique (ZSV)
but different feature sets [%o].

SDC RASTA-AA DPE
RASTA 43.9 44.5 39.3
SDC - 459 44.5
RASTA-AA - 44.2

Sub-Challenge (Schuller et al., 2009) of the Interspeech
Emotion Challenge 2009. Results are presented with the
official metric on 5-class tasks, similar to our results on
the development set. As classes are highly unbalanced,
the rules stipulated the use of the unweighted average recall
(UA) as the primary measure and the weighted average
recall (WA) as the secondary measure.

We have selected the four different modeling approaches
(ML, MMI, GMM-UBM, ISV) we used in the system
development for the best performing features on the test
set. They are based on MFCCs generated with RASTA fil-
ter, double-deltas, CMS and VAD (RASTA-AA). Note,
that the scores computed on the test set could only be
uploaded up to 25 times. So we had to select the most
promising configurations. In Schuller et al. (2009) baseline
recognition results on the test set are provided for two dif-
ferent baseline systems. A dynamic modeling approach
using frame-based features and a Hidden-Markov-Model
(HMM) as a classifier; and the second static approach uses
high-dimensional chunk based features fed to a Support
Vector Machine classifier. The best baseline results on the
proposed primary measure are 35.9% for the HMM base-
line and 38.2% for the SVM baseline.

Table 10 shows the results for the 5-class task for the 4
submitted models. We achieve the best results for the ISV
system with 41.3%. Surprisingly, the ML and the MMI sys-
tem perform significantly worse with only about 38.5%,
unlike than on the development set. This might indicate
that even the ML trained model is already over-adapted
to the training data and does not generalize well. The sim-
ple GMM-UBM system performs significantly better than
the ML/MMI approaches. We get improvement (not sig-
nificant) from the intersession variability compensation.
On the UA we achieve a 15%/8% relative improvement
to the HMM and SVM modeling, respectively, which was
provided as a baseline.

As proposed in the last section, we want to combine sev-
eral complementary systems to achieve the best results. We
select the most promising fusion of two systems as evalu-
ated in Table 9. We fuse 2 systems using the same ISV

Table 10
Submitted systems for the 5-class task [%]. All using
RASTA-AA features.

Feature UA WA
GMM-UBM 40.8 41.0
JFA 41.3 43.9
ML 38.5 45.4

MMI 38.7 46.0

model with 64 Gaussians, one with RASTA-AA features
and one with SDC features. The fusion parameters are
the same as used in our system development.

We get another improvement and achieve an unweighted
average recall of 41.7%. This is the highest recognition rate
achieved in the Interspeech 2009 Emotion Challenge for
the 5-class task. Still, our result was not significantly better
than that of some other participants. The organizers
(Schuller et al., 2009) could show that further fusion of
the (completely independent) participating systems could
significantly increase the recognition rate to over 44%.

6. Berlin database of emotional speech

In this section we will present some additional experi-
ments mainly to further investigate the effect of intersession
compensation for emotion recognition. As test utterances
are extremely short on the FAU Aibo corpus we selected
a database with longer test utterances. The Berlin Database
of Emotional Speech (Burkhardt et al., 2005) consists
entirely of whole sentences that are several seconds long.

6.1. Database

This database contains acted emotional speech. Ten
actors (5 male and 5 female) simulated seven different emo-
tions on ten German utterances (5 short and 5 long). Emo-
tion classes are Anger, Fear, Neutral, Joy, Sadness, Disgust
and Boredom. The recordings are studio-quality and the
whole database contains 535 sentences. It should be noted,
that although the single utterances are longer than for the
AIBO corpus, the overall amount of speech data is much
smaller (less than one hour).

6.2. Development set

Similar to the AIBO database we use a full jackknifing
approach for the whole training set. Ten splits are created
out of the training set, each excluding one speaker. The
actual number of sentences available to train the classifiers
are depicted in Table 11. Similar to Section 5.2, results are
presented in terms of unweighted accuracy (UA). It should
be noted, as the amount of speech data for class D is extre-
mely low and preliminary testing fails completely in this
class, we discard class D from our development set and
take only 6-classes into account.

6.3. ISV model

We perform experiments on a similar system as used for
the Interspeech Emotion Challenge. We create MFCC
Table 11

Number of utterances in the Berlin Database of Emotional Speech to train
each classifier.

A B D F J S N b
127 81 46 69 71 62 79 535
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features, apply the RASTA filter and CMS and augment
the features with delta and double-deltas. Afterwards,
speech frames are selected using voice activity detection
(RASTA-AA).

These spectral features are first used to train a UBM
with 64 Gaussians. We again use a class-balanced data
set for background model training. A single UBM for each
split consists of approximately 300 sentences, 50 for each
class. After UBM training we train the intersession vari-
ability subspace U. We use the same recipe for subspace
estimation as in the previous experiments: PCA initializa-
tion of U with successive ML-training. We again concate-
nate all utterances per speaker to train the intersession
variability subspace. The whole database was recorded in
an anechoic chamber using high-quality equipment so
channel effects are minimal. Effects of speaker normaliza-
tion might be even more meaningful than for the AIBO
corpus as the database consists of adult speech.

Experiments are carried out to investigate the effect of
intersession compensation for this database. For this pur-
pose we train and evaluate GMM-UBM and ISV models
as described in the previous sections. In Fig. 6 an interest-
ing trend can be observed which is different from the exper-
iments on the AIBO corpus. While we reach an unweighted
accuracy of 57% using relevance MAP, we achieve a signif-
icant improvement by using the same system incorporating
intersession variability compensation. As depicted by the
dashed line in Fig. 6 we reach a recognition rate of 63%
with the use of one subspace direction. The use of a larger
subspace further increases the performance and the best
unweighted accuracy of 67% is achieved with a subspace
size of 5. This is a significant improvement of an absolute
10% UA over the GMM-UBM baseline.

We are aware that better recognition rates have been
reported on this database. In (Schuller etal., 2006) accuracies
of over 80% are reached but only by using much more com-
plex large-scale feature sets. For these studio-quality record-
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Fig. 6. Effect of eigenchannel subspace size on Berlin Database of
Emotional Speech corpus. UA for RASTA-AA features and ISV model
with 64 components.

ings, features like pitch and voice quality will be of high
accuracy and might explain the huge difference in recogni-
tion performance. In (Gaurav, 2008), frame-based MFCCs
using GMMs are also evaluated and performed in a similar
way to our baseline system. Furthermore, GMMs are out-
performed by SVM approaches in that work. Our conclusion
for the performance gap to the state-of-the art SVM systems
is that SVMs might be better suitable to handle the general
small amount of training data in this database.

Nevertheless, our experiments show the capability
of intersession compensation techniques for emotion
recognition.

7. Conclusions

We show that feature extraction and statistical modeling
methods that are usually used in speaker and language rec-
ognition can be successfully used for emotion recognition
as well.

We could achieve the best results for the 5-class task in
the Interspeech Emotion Challenge 2009 and significantly
outperformed the provided state-of-the-art baseline
systems.

The submitted system incorporated quite simple acous-
tic features. We did not make use of excessive spectral, pro-
sodic or lexical features. Eventually, we used two different
feature sets both derivatives of MFCC features. Several
experiments on our development set indicated that MFCC
features using RASTA filter and augmented with first and
second order derivatives performed the best for this task. It
should be noted, that this feature set is very close to those
used in automatic speech recognition. As a complementary
feature set we use Shifted Delta Cepstra with an even
broader temporal context.

Our prosodic feature set showed bad performance com-
pared to the spectral features. While this is a common effect
also observed in other fields of speech based pattern recog-
nition tasks, we can conclude that in this case the given test
utterances are really too short to exploit a syllable based
long-temporal span feature extraction. Future work should
consider exploiting a simpler prosodic feature set like frame
based pitch values or functionals computed on shorter
fixed size windows.

The proposed GMM based modeling approaches gener-
ally perform very well. However, the more sophisticated
approaches, namely discriminative training and interses-
sion variability compensation, were not convincing on the
FAU AIBO corpus. While both approaches have proven
their potential in terms of language identification we could
only reach marginal improvements. Our conclusion is that
this effect is mainly due to the short test utterances and the
general small amount of training data per class. In the men-
tioned NIST evaluations for language identification the
core condition consists of test utterances with durations
of 30 s. In this task MMI as well as intersession variability
compensation has shown up to 50% relative improvement,
while on a 3 s task the gain degrades to approximately 10%
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relative improvement, both for MMI and intersession var-
iability compensation.

That there is indeed a capability for intersession vari-
ability compensation for emotion recognition is shown in
the Berlin Database of Emotional Speech. Here we can
obtain significant gains through the use of the ISV model.
Still, it should be mentioned that in both cases we used ISV
mainly to reduce the effects of intersession variability repre-
senting speaker characteristics instead of channel charac-
teristics as is usually done.

Large-scale feature SVM modeling still seems to be
superior on acted non-spontaneous studio-quality record-
ings, unlike that on real-world data. Our impression is that
prosodic and voice-quality features are very accurate on
this type of recordings and yield the high accuracies. Still,
SVMs seem to be a good choice to handle very small
amounts of training data while generative statistical models
like GMMs get simply overtrained.

Furthermore, we could show that system combinations
by score level fusion can significantly enhance perfor-
mance. In conclusion, in this way diverse modeling tech-
niques (like SVM or GMMs) and feature sets (acoustic,
prosodic, chunk or frame based, etc.) can be exploited
for high accuracy in emotion recognition tasks.
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