FULL-COVARIANCE UBM AND HEAVY-TAILED PLDA IN I-VECTOR SPEAKER VERIFICATION

Pavel Matejka ${ }^{1}$, Ondrej Glembek ${ }^{1}$, Fabio Castaldo ${ }^{2}$, M.J. Alam ${ }^{3,4}$, Oldrich Plchot ${ }^{1}$, Patrick Kenny ${ }^{3}$,Lukas Burget ${ }^{1}$, Jan Cernocky ${ }^{1}$ ${ }^{1}$ Brno University of Technology, Czech Republic, ${ }^{3}$ Centre de Recherche Informatique de Montreal (CRIM), Montreal, Canada,
${ }^{2}$ Loquendo, Italy, ${ }^{4}$ INRS-EMT, Montreal, Canada

- Single best system in post-analysis of ABC (Agnitio+BUT+CRIM) NIST SRE 2010 submission was Full covariance UBM with the state-of-the-art scheme iVector + PLDA
- Do we really need full-covariance matrices?
- Let us take a look at some analysis

iVector + PLDA

- iVector extractor - model similar to JFA, where GMM mean supervector

$$
\boldsymbol{\mu}=\mathbf{m}+\mathbf{T i}
$$

is constrained to leave in single subspace \mathbf{T} spanning both speaker and channel variability \rightarrow no need for speaker labels to train \mathbf{T}
iVector - point estimate of \mathbf{i} - can now be extracted for every recording as its low-dimensional, fixed-length representation (typically 400 dimensions)

- contains information about both speaker and channel
- are assumed to be normal distributed
- Natural choice is simplified JFA model with only single Gaussian. Such model is known as PLDA and is described by familiar equation.

$$
\mathbf{i}=\mathbf{m}+\mathbf{V} \mathbf{y}+\mathbf{U} \mathbf{x}+\epsilon
$$

- PLDA has nice interpretation in face verification where it was introduced by Simon J.D. Prince
- Each face image i can be constructed by adding
- mean face \mathbf{m}
- linear combination of basis V corresponding to between-individual variability (moving from \mathbf{m} in these directions gives us images that look like different people)
inear combination of basis \mathbf{U} corresponding to within-individual variability (moving from \mathbf{m} in these directions gives us images that looks like differen pictures of the same person)
- residual noise vector ϵ

- Gausian PLDA - assume standard normal prior for iVectors
- Heavy tailed PLDA - assume student's-t distribution prior for iVectors

Motivations for full covariance GMM:
Better description of feature space while preserving reasonable size of GMM mean supervector
Higher computational complexity \rightarrow investigation into possible simplifications
Full covariance Gaussians are more sensitive to very low values of off diagonal elements -> variance flooring:

Function: $\tilde{S}=$ floor (\mathbf{S}, \mathbf{F})
. $\left.\mathrm{T} \leftarrow \mathrm{L}^{-1} \mathbf{S} \mathrm{~S}^{-1}\right)^{T}$ Tecomposition)
3. $\mathrm{T}=\mathrm{UDU}^{T}$ (Eigenvalue Decompotitee matrix)
3. $\mathrm{T}=\mathrm{UDU}^{T}$ (Eizenvalue Decomposition - diagonal-
4. Set diagonal matrix $\overline{\mathrm{D}}$ to D floored to 1 , i.e. $\tilde{d}_{i i}=$
5. $\tilde{\mathbf{T}} \leftarrow \mathrm{UDU}^{T}$ (making the matrix full again)
6. $\tilde{\mathrm{S}} \leftharpoondown \mathbf{L I ̃ L ^ { T }}$ (de-normalization)

Experimental Setup

Features: MFCC 19+E, Delta + double delta

Short time cepstral mean and variance normalization over 300frames, Dataset: NIST SRE 2010, Extended core condition 5 - tel-tel, Female only

Different statistic normalization

Zero order statistics: $N_{\mathcal{X}}^{(c)}=\sum \gamma_{t}^{(c)} \quad{ }^{60}[$
First order statistics: $\mathbf{f}_{\mathcal{X}}^{(c)}=\sum \gamma_{t}^{(c)} \mathbf{o}_{t}$ Centering around UBM:

$$
\begin{aligned}
& \text { und UBM: } \\
& \mathbf{f}_{\mathcal{X}}^{(c)} \leftarrow \mathbf{f}_{\mathcal{X}}^{(c)}-N_{\mathcal{X}}^{(c)} \mathbf{m}^{(c)} \\
& \mathbf{m}^{(c)} \leftarrow \mathbf{0}
\end{aligned}
$$

Normalization:

$$
\mathbf{m}^{(c)} \leftarrow \mathbf{0} .
$$

$\mathbf{f}_{\mathcal{X}}^{(c)}$	$\leftarrow \boldsymbol{\Sigma}^{(c)-\frac{1}{2}} \mathbf{f}_{\mathcal{X}}^{(c)}$
$\mathbf{T}^{(c)}$	$\leftarrow \boldsymbol{\Sigma}^{(c)-\frac{1}{2}} \mathbf{T}^{(c)}$
$\boldsymbol{\Sigma}^{(c)}$	$\leftarrow \mathbf{I}$,

Amount of training data

- Full covariance | Diagonal cov. | Diagonal cov + HLDA
iVector 400, LDA 150, Norm2, Gaussian PLDA
big = NIST SRE $2004+2005=310$ hours
sml $=3$ hours subset of big se

CONLUSION

- Full covariance UBM gives the best results
- With unity length normalization of iVector you can use Gauss PLDA - Diagonal covariance UBM with MLLT/HLDA goes very close and have benefit of fast evaluation of Gaussians

