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Abstract
Phonotactic language identification (LID) by means of n-gram
statistics and discriminative classifiers is a popular approach
for the LID problem. Low-dimensional representation of the
n-gram statistics leads to the use of more diverse and efficient
machine learning techniques in the LID. Recently, we proposed
phototactic iVector as a low-dimensional representation of the
n-gram statistics. In this work, an enhanced modeling of the
n-gram probabilities along with regularized parameter estima-
tion is proposed. The proposed model consistently improves the
LID system performance over all conditions up to 15% relative
to the previous state of the art system. The new model also alle-
viates memory requirement of the iVector extraction and helps
to speed up subspace training. Results are presented in terms of
Cavg over NIST LRE2009 evaluation set.
Index Terms: Language identification, Subspace modeling,
Subspace multinomial model

1. Introduction
State–of–the–art approaches to language identification (LID)
can be mainly divided into two main categories: phonotactic
LID and acoustic LID [1]. The phonotactic approach comprises
techniques that use linguistic abstraction in speech modeling,
while acoustic models try to infer the language of an utterance
by directly modeling the spectral content of the utterance. This
paper focuses on the phonotactic approach.

A successful representation of the phonetic content of ut-
terances are n-gram statistics, which are often used as features
for different language classifiers. However, the huge size of
n-gram statistics poses some serious limitations on the choice
of the LID backend classifier. Many solutions have been pro-
posed to deal with the problem of n-gram vectors dimension-
ality. In [2], discriminative selection of the n-grams was pro-
posed to discard less relevant n-grams. Many other phono-
tactic LID systems use principal component analysis (PCA)
to reduce the dimensionality of the n-gram vectors [3, 4, 5].
We recently proposed a feature extraction technique based on
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subspace modeling of multinomial distribution parameters [6],
where we showed that our approach outperforms former state of
the art techniques based on n-gram statistics. This technique is
inspired by the idea of iVector in acoustic speaker identification
(SID) [7], where a low–dimensional vector is used to represent
an utterance–dependent GMM supervector. In our context, we
use a low–dimensional vector to represent the parameters of an
utterance–dependent n-gram model.

The iVector extraction procedure presented in our previous
work [6] was based on simpler Subspace Multinominal Model
(SMM), where we assumed that n-grams are independent events
generated from a single multinomial distribution and iVectors
were computed as to maximize the likelihood of the observed
n-grams. While this approach allows to obtain good results,
the corresponding objective function is not directly related to
the likelihood of the observed phoneme sequences. This is be-
cause the n-grams observed in a phoneme sequence are not in-
dependent. Using an n-gram model, likelihood of a phoneme
sequence can be calculated as a product of the conditional prob-
abilities of the individual phonemes given their histories. Such
likelihood function is maximized in order to extract phonotactic
iVectors using the Subspace n-Gram Model (SnGM) proposed
in this work.

We found SnGM to be prone to over-fitting especially for
short sequences, where only few different n-grams were ob-
served. This was also one of the reasons for the former use
of SMM, which is more robust to over-fitting. We show that
this problem can be mitigated using regularization applied for
both the subspace training and iVector extraction, which results
in the superior performance of the newly proposed SnGM tech-
nique.

The paper is organized as follows: Section 2 describes the
multinomial subspace model and details the subspace training
and iVector extraction procedure. Section 3 describes our exper-
imental setup. and compares the proposed method with PCA–
based techniques and the multinomial model in [6]. An analy-
sis of the model parameters is given in Section 4. Experimental
results are reported in Section 5 and conclusions are drawn in
Section 6.

2. Subspace multinomial model
In phonotactic LID, every speech utterance is tokenized to a
sequence of phoneme labels. The n-gram model assumes that
the probability of observing a phoneme is dependent only on
the n − 1 previous observed tokens. The log–likelihood of a
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sequence of phonemes l1 . . . lM can therefore be computed as

logP (l1l2l3...lM ) =
∑
i

logP (li|li−n+1li−n+2 . . . li−1)

(1)

In order to model the phoneme generation process, we as-
sume that the conditional distribution of a phoneme l given a
history h is a multinomial distribution with parameters φhl, i.e.

logP (l|h) = log φhl, (2)

with φhl > 0 and
∑

l φhl = 1. The joint log–likelihood of a
sequence of phonemes l1 . . . lM can then be computed as

logP (l1l2l3...lM ) =
∑
i

logP (li|hi) =
∑
i

log φhili , (3)

where hi = (li−n+1li−n+2 . . . li−1) denotes the history for
the observed phoneme li. The νhl denotes number of times
the n-gram hl (i.e. phoneme l with history h) appears in the
phoneme sequence, we can rewrite (3) as

logP (l1l2l3...lM ) =
∑
h

∑
l

νhl log φhl. (4)

It is worth noting the difference between (3) and the objec-
tive that was maximized to obtain iVectors in [6] as:

M∑
i=1

logP (hi, li) =
∑
h

∑
l

νhl log φ̂hl, (5)

where n-grams were assumed to be generated independently
from a single multinomial distribution (i.e.

∑
h

∑
l φ̂hl = 1).

This objective allows to obtain good performance. However,
the corresponding iVectors do not maximize the likelihood of
the observed phoneme sequence. In the following, we show
how to build a phonotactic iVector extractor where iVectors are
estimated in order to maximize the likelihood of the observed
phoneme sequences under the n-gram model assumptions.

Our first step towards the phonotactic iVector extractor is
to make assumption that, phoneme sequence from each utter-
ance s was generated from an utterance–specific n-gram distri-
bution. Next, we assume that, the parameters of the correspond-
ing multinomial distributions φhl(s) can be represented as

φhl(s) =
exp(mhl + thlw(s))∑
i exp(mhi + thiw(s))

, (6)

where mhl is the log-probability of n-gram hl calculated over
all the training data, thl is a row of a low–rank rectangular ma-
trix T and w(s) is utterance–specific low–dimensional vector,
which can be seen as low–dimensional representation of the
utterance–specific n-gram model. The parameters {mhl} and
the matrix T are the parameters of the proposed SnGM. Given
these parameters, w(s) maximizing log-likelihood in (3) can be
taken as the phonotactic iVector representing the an utterance s.
Before iVectors can be extracted, however, the SnGM parame-
ters have to be trained on a set of training utterances. This is
done in an iterative EM-like process alternating between max-
imum likelihood (ML) updates of vectors w(s) (one for each
training utterance s) and ML updates of SnGM parameters.

In the case of standard GMM based iVectors, the utterance–
dependent parameters similar to w(s) are treated as latent ran-
dom variables with standard normal priors. The subspace pa-
rameters are then trained using standard EM algorithm, where

the M-step integrates over the latent variable posterior distribu-
tions from the E-step. Unfortunately, calculation of posterior
distribution for w(s) is intractable in the case of SnGM. In-
stead, SnGM parameters are updated using only w(s) point es-
timates, which can negatively affect the robustness of SnGM
parameter estimation. To mitigate this problem, we propose
to regularize the ML objective function using L2 regulariza-
tion terms for both the subspace matrix T and the vectors
w(s). This corresponds to imposing an isotropic Gaussian prior
on both the SnGM parameters and w(s), and obtaining MAP
rather than ML point estimates. This is in contrast to our pre-
vious work [6], where only ordinary ML estimates of SnGm
parameters and iVectors were used. In order to train our model,
we maximize the regularized likelihood function

S∑
s=1

∑
h

∑
l

νhl(s) log φhl(s)−
1

2
λ ‖thl‖2 −

1

2
λ‖w(s)‖2),

(7)

where the sum extends over all S training utterances. The term
λ is the regularization coefficient for both the model parameters
T and for w(s). Notice that we should regularize both T and
w since limiting magnitude of T without regularizing w would
be compensated by a dynamic range increase in w.

2.1. Parameter estimation

The model parametersmhl are shared for all utterances and can
be initialized as the logarithm of the conditional probability of a
phoneme given its history computed over all training utterances:

mhl = log

( ∑
s νhl(s)∑

s

∑
i νhi(s)

)
. (8)

In the following, we assume that the terms mhl do not require
retraining. In order to alternately maximize the objective func-
tion (7) with respect to T and w, we adapt the approach pro-
posed in [8]. For a fixed T, Newton Raphson-like update of
w(s) is given by:

w(s)new = w(s) +H−1
w(s)∇w(s), (9)

where the ∇w(s) is the gradient of the objective function (7)
with respect to w(s)

∇w(s) =
∑
h

∑
l

tThl(νhl(s)− φold
hl (s)

∑
i

νhi(s))− λw(s),

(10)
where the terms φold

hl (s) are the model parameters computed
from the current estimate of w(s). Hw(s) is an approximation
to the Hessian matrix proposed in [8] as

H(w(s)) =∑
h

∑
l

tThlthl max(νhl(s), φ
old
hl (s)

∑
i

νhi(s))− λI. (11)

Similarly, to update the T matrix, we keep all w(s) fixed and
update each row of T as

tnew
hl = thl +∇thlH

−1
hl , (12)

where ∇thl is the gradient of the objective function (7) with
respect to the row thl of T

∇thl =
∑
s

(νhl(s)−φold
hl (s)

∑
i

νhi(s))w(s)T−λthl, (13)
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and

Hthl =
∑
s

max(νhl(s), φ
old
hl (s)

∑
i

νhi(s))w(s)w(s)T−λI.

(14)
Notice that in (13), since we only need the n-gram statistics

corresponding to n-gram history h, there is no need to load the
whole vector of n-gram statistics. This reduces memory over-
head of the T matrix update. Moreover, update of T rows be-
longing to different histories are completely independent, which
simplifies parallel estimation of T.

In our experiments Matrix T is initialized with small ran-
dom numbers. Update of T or w(s) may fail to increase the
objective function in (7). In that case, we keep backtracking
by halving the update step. In case the objective function did
not improve after certain number of backtracking, we retain the
value of thl or w(s) from the previous iteration. The iterative
parameter estimation continues until the change in the objective
function becomes negligible. Once the SnGM is trained and
fixed, it can be used to extract iVectors from new utterances by
iteratively applying w(s) update formulas (9)-(11).

3. Experimental setup
To keep the results comparable to previously reported ones in
[6], we report performance of the system over NIST LRE2009.
We briefly explain the system description and the tuning. Inter-
ested readers are referred to the corresponding detailed system
description [9].

3.1. Data

The LRE09 task comprises 23 languages. The EVAL set con-
tains telephone data and narrowband broadcast data. The train-
ing data is divided into two sets denoted as TRAIN and DEV,
both of which comprises data from 23 languages correspond-
ing to the target list of the NIST LRE09 task [10]. The TRAIN
set is filtered in order to keep at most 500 utterances per lan-
guage as proposed in [9], resulting in 9763 segments (345 hours
of recording). This allows to have almost balanced amounts
of training data per language, thus avoiding biasing the clas-
sifiers toward languages with lots of training data. The DEV
set contains 38469 segments mainly from the previous NIST
LRE tasks plus some extra longer segments from the standard
conversational telephone speech (CTS) databases (CallFriend,
Switchboard, etc.) and voice of America (VOA). The TRAIN
and the DEV sets contain disjoint sets of speakers. The DEV set
is used to tune parameters and score calibration in the backend.
A full description of the used data is given in [9].

3.2. Vector of n-gram counts

The n-gram counts were extracted using the Brno university of
technology (BUT) Hungarian phone recognizer, which is an
ANN/HMM hybrid [11]. The Hungarian phoneme list con-
tains 51 phonemes. We map short and long variations of simi-
lar phonemes to the same token, obtaining 33 phonemes. This
results in 333 = 35937 3-grams. Since neither 2-grams nor
1-grams improved the system performance we use only 3-gram
counts. The 3-gram expected counts are extracted from phone
lattices generated by the Hungarian phone recognizer.

3.3. Back end

We showed in [12] that iVector normalization is necessary to
good LID performance using phonotactic iVectors. For this

Table 1: Cavg × 100 for different systems on NIST LRE09
Evaluation task over 30s, 10s and 3s conditions.

System Reg. Coef. 30s 10s 3s

PCA - 2.93 8.29 22.60
SMM - 2.81 8.33 21.39
SnGM - 2.68 8.63 23.15
RSnGM 0.01 2.52 7.06 19.11

work, after mean removal, length normalized iVectors are used
to train 23 logistic regression (LR) classifiers in one-vs-all con-
figuration using LIBLINEAR1. The scores generated by 23 LR
classifiers are calibrated on DEV data by means of a linear gen-
erative model followed by a multi-class LR as described in [13].

4. Analysis of the model parameters
Optimizing the objective function in (7) with L2 regularizer can
be seen as obtaining MAP point estimate of the model parame-
ters T and w with Gaussian priors. In Figure 2, the histogram
of 10 random dimensions of w over TRAIN set and histogram
of 10 random rows of the matrix T are depicted. The y axis
in both cases is the frequency of the bin. It can be seen from
Figure 2 that the values in case of w are Gaussian distributed,
which confirms assumption of the Gaussian priors over w vec-
tors is appropriate. On the other hand, in the case of T rows,
values seem to be Laplace distributed. This is mainly because
the subspace matrix T is expanding the iVector space to the
sparse original space of n-gram log-probabilities. Intuitively,
this suggests use of an L1 regularizer that corresponds to the
assumption of Laplace prior over estimation of the T matrix.

5. System evaluation & analysis
We showed in [12] that 600 is a reasonable choice for the sub-
space dimension over LRE2009 task. A 600 dimensional sub-
space and 5 iterations of parameter estimation is used since the
value of the objective function over TRAIN set seems to con-
verge after 4 iterations.

In Table 1, performance of the proposed SnGM (without
regularization) is compared with subspace multinomial model
(SMM) [6] and PCA-based feature extraction that is developed
according to the recipe from [4]. The PCA system was widely
used by the participants of NIST LRE11 as a phonotactic state
of the art system. Aside from marginal degradation for 10s
condition, the SMM outperforms PCA.

The SnGM system shows notable improvement over the
baseline for the 30s condition. However, it also shows perfor-
mance degradation over shorter conditions. We also noticed big
dynamic range for the iVectors corresponding to the short utter-
ances. Intuitively, for utterances with only few n-grams, there
can be subspace basis (columns of T) that do not (significantly)
affect multinomial distributions corresponding to the seen his-
tories. When estimating iVectors, its coefficients corresponding
to such basis can take ”arbitrary” values without affecting the
likelihood of the observed n-grams. Note that SMM with single
multinomial distribution does not suffer from this problem, and
as such can be more robust to over-fitting.

To address the problem with over-fitting, we proposed
SnGM with regularized parameter estimation (RSnGM). We

1http://www.csie.ntu.edu.tw/ cjlin/liblinear
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Figure 1: Effect of λ on Cavg × 100 over DEV and EVL set for 30s, 10s and 3s conditions on NIST LRE09
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Figure 2: Distribution of the values in the model parameters T and w

use a grid search with logarithmic scale to tune the regularizer
coefficient λ. This is depicted in Figure 1. The λ value is tuned
over the DEV set. Figure 1 shows that the best LID performance
in terms of the Cavg over DEV set is obtained with λ = 0.01.
We also depicted the system performance on the held out EVAL
set to study generalization of the λ tuning to other unseen data.
Interestingly, Figure 1 shows that the tuning of λ over the DEV
set generalizes well to the LRE09 EVAL set since the best per-
formance on the NIST LRE09 EVAL set over all conditions are
also obtained with λ = 0.01.

Table 1 shows effect of the regularized parameter estima-
tion on the overall system performance. Results show that the
RSnGM system shows significant improvement over the other
state of the art systems.

6. Conclusion & future works
We proposed an enhanced phonotactic iVector extraction model
over the n-gram counts. In the first step, a subspace n-gram
model is proposed to model conditional n-gram probabilities.
Modeling different 3-gram histories with separated multino-
mial distributions shows promising results for the long condi-
tion however, we observed model over-fitting for the short du-
ration conditions.

Dealing with the model over-fitting problem, a regularized

parameter estimation is proposed. Comparing the effect of the
regularized and non-regularized parameter estimation on the
overall system performance shows that the regularized parame-
ter estimation is necessary to avoid over fitting of the subspace
to the TRAIN set particularly for the short utterances. The pro-
posed regularized subspace n-gram model shows consistent and
significant improvement compared to the state of the art phono-
tactic systems as our baseline over all conditions. To the very
best knowledge of the author, this is the best result reported on
this task.

The Subspace n-gram model also reduces memory require-
ment for the parameter estimation and simplifies parallel param-
eter estimation that leads to a faster model training.

Our experiment with the proposed model shows importance
of the numerical optimization during the parameter estimation.
Since the T matrix is expanding iVector to a huge sparse space
of the n-gram log-probabilities, use of an L1 regularizer for es-
timating the T matrix may give us a better subspace model and
will be explored in future.
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chot, and A. Strasheim. But-agnitio system description for
nist language recognition evaluation 2009. [Online]. Avail-
able: http://www.fit.vutbr.cz/research/groups/speech/publi/2009/
brummer BUT AGNITIO LRE09 SYSD.pdf

[10] “The 2009 NIST Language Recognition Evaluation Plan
(LRE09),” http://www.itl.nist.gov/iad/mig/tests/lre/2009/
LRE09 EvalPlan v6.pdf.

[11] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical struc-
tures of neural networks for phoneme recognition,” Proceedings
of ICASSP 2006, Toulouse, pp. 325–328, Mar 2006.

[12] M. Soufifar, S. Cumani, L. Burget, and J. Černocký, “Discrimi-
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