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Abstract

This paper presents a set of techniques that we used to improve
our keyword search system for the third phase of the DARPA
RATS (Robust Automatic Transcription of Speech) program,
which seeks to advance state of the art detection capabilities
on audio from highly degraded radio communication channels.
The results for both Levantine and Farsi, which are the two
target languages for the keyword search (KWS) task, are re-
ported. About 13% absolute reduction in word error rate (from
70.2% to 57.6%) is achieved by using acoustic features derived
from stacked Multi-Layer Perceptrons (MLP) and Deep Neural
Network (DNN) acoustic models. In addition to score normal-
ization and score/system combination for keyword search, we
showed that the false alarm rate at the target false reject rate
(15%) was reduced by about 1% (from 5.39% to 4.45%) by re-
ducing the deletion errors of the speech-to-text system.

Index Terms: speech recognition, KWS, MLP, DNN

1. Introduction

Based on our previous work [1], this paper presents a set
of techniques that we used to improve our Keyword Search
(KWS) system for the DARPA RATS (Robust Automatic
Transcription of Speech) program. This program seeks to
advance state of the art detection capabilities on audio from
highly degraded radio communication channels. We showed
in [1] that the KWS performance highly correlates with the
quality of the undelying Speech-to-Text (STT) system. During
the past years, STT performance has been greatly improved
by using Deep Neural Network (DNN). There are two usages
of DNN: (i) use Multi-Layer Perceptrons (MLP) for acoustic
feature extraction [2, 3]; (ii) replace Guassian Mixture Model
(GMM) by DNN in likelihood estimation for acoustic modeling
using Hidden Markov Model (HMM) [4, 5, 6]. In this work,
we showed that our STT systems were significanly improved
by both techniques; we obtained about 13% absolute in Word
Error Rate (WER) reduction (from 70.2% to 57.6%). Extra
reduction in both word error rates and KWS errors can be
achieved through the combinations at different levels of the two
techniques.

Although KWS performance highly correlates with the
quality of the underlying STT system, it may not be optimal
for KWS if the STT system is tuned for the lowest WER when
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WER is high (at around 60% in this case). To obtain the lowest
WER, one would prefer deletion to insetion as it becomes
riskier to hypothesize a word when WER is high. Intuitively,
a high STT deletion rate may result in a low recall for a KWS
system, and degrade the KWS performance. In this paper, we
propose a method to optimize the STT system for the KWS
task using a weighted WER. By using the proposed method,
we observed about 2% absolute improvement in recall and
17.4% to 43.5% relative reduction in false alarm rate (pFA) at
the target miss rate (pMiss). The target pMiss is 15% for the
Phase 3 DARPA RATS program. In this paper, all of the KWS
systems are compared in pFA at this target pMiss.
The rest of the paper is organized as follows. In section
2, we describe the train and development data. In section
3, we report our progress in MLP feature extraction. The
development of our DNN-HMM STT systems is described in
section 4. The proposed method of optimizing a STT system
for KWS is presented in section 5. In section 6, we report the
system combination results for our evaluation system for the
Phase 3 RATS program. The paper is concluded in section 7.

2. Train and Development Data

The Levantine systems used in this paper were trained from
the official training corpora released by Linguistic Data
Consortium (LDC) for the RATS program: LDC2011E%4,
LDC2011E114 and LDC2011E114. The training set consists
of 484 hours of audio data. The official Dev2 corpus, which
consists of 14 hours of audio data and 200 keywords, is
used as the development set for Levantine in this work. The
Farsi systems were trained from the official training corpora:
LDC2011E94, LDC2012E133 and LDC2013E04. The training
set consists of 347 hours of audio data. The Farsi development
set consists of the audio data from the development portion
of the official corpora: LDC2011E94, LDC2012E133 and
LDC2013E04. The audio data for the RATS program was
created by retransmitting an existing corpus through eight
different communication channels. Instead of using all of the
development audio data for Farsi, we randomly selected one of
the eight audio signals for each of the source utterance. The
resulting development set consists of 13 hours of audio data
and 215 keywords.
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The rank-normalization technique described in [7] is ap-
plied on all of the KWS systems in this work. The development
sets for both Levantine and Farsi are divided into DEV and
TEST partition for score normalization. The DEV partition
consists of two third of the development set while the TEST
partition consists of one third of the development set.

3. MLP Features
3.1. MLP Feature Extraction

Frequency domain linear prediction (FDLP) is an efficient
technique to obtain a smooth parametric model of temporal
envelope [8, 9]. Long segments of input speech (of the order
of 100 ms — 1000 ms) are transformed into frequency domain
using Discrete Cosine Transform (DCT). The DCT samples are
decomposed into subband DCT coefficients by applying critical
band windowing. The sub-band temporal envelopes are then
computed by applying FDLP on the subband DCT samples.
The sub-band temporal envelopes are then compressed using
a static compression scheme, which is a logarithmic function
and dynamic compression scheme [10]. The logarithmic
compression is to model the overall non-linear compression
in the auditory system. The transitions are enhanced by the
dynamic compression. Figure 1 shows the proposed feature
extraction technique. The compressed envelopes are divided
into 200 ms segments with a shift of 10 ms. DCT is applied
both on static and dynamic compressed envelopes to obtain
modulation spectrum representation. We use 14 modulation
frequency components from each cosine transform, to cover
modulation range of 0-35 Hz.

-
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Figure 1: Blockdiagram for Frequency Domain Linear Predic-
tion feature extraction

In this work, we use a long-term window of 10 seconds
in the FDLP feature extraction. Although it is in 16KHz
sampling rate, the RATS audio data is originally from the tele-
phone corpora. Configurations for narrow-band data in signal
processing are used. The low and high cut-off frequencies
are set to 125Hz and 3800Hz, respectively. Seventeen critical
filter banks are derived from this frequency bandwidth. After
applying the two versions of compression schemes, there are
476 parameters/dimensions in the resulting FDLP feature.

In addition to the 476-dimensional FDLP features, a pitch
value is estimated for each frame using the RAPT algorithm
[11], followed by a speaker-based mean and variance normal-
ization. We expand the pitch feature context with an 11-frame
concatenation. These 11 pitch values are then appended to the
476 FDLP features and the resulting 487 features are input to
the MLP.

For the MLP training, we borrow the stacking strategy
described in [2]. Instead of using context-independent HMM
phone states as targets, the cross-word State Cluster Tied Mix-
ture (SCTM) [12] codebooks are used in this work. The config-
uration for the first MLP is 487 x 1500 x 1500 x 80 x 1500 x N,
where IV is the number of SCTM codebooks. N is 3707 for
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Levantine while 5306 for Farsi. The 80 bottle-neck outputs
from the first MLP are sampled at times ¢, ¢ — 10,¢t — 5,t + 5
and t 4+ 10. Where ¢ is the index of the current frame. The
resulting 400-dimensional features are input to the second MLP
with a configuration of 400 x 1500 x 1500 x 80 x 1500 x N.
Instead of using the 80 outputs from the bottle-neck layer from
the second MLP, the 1500 outputs from the hidden layer from
the bottle-neck layer are extracted. These 1500 outputs are
denoted as BBN MLP features.

The similar approach as described in [13] is employed to
integrate the MLP features into our STT system. In the Speaker
Independent (SI) training, the 1500-dimensional features are
augmented with the 135-dimensional long span features which
is 9-frame concatenation of 15-dimensional PLP. Region
Dependent Transform (RDT) is applied on the resulting
1635-dimensional features to reduce the dimensionality to 46.
The similar procedure is used in the Speaker Adaptive Training
(SAT) training. Prior to be combined with the MLP features,
a CMLLR transform is applied on the 15-dimensional PLP
features. Another CMLLR is applied on the 46-dimensional
features output from RDT.

As shown in Table 1, by incorporating the BBN MLP
features into the GMM-HMM STT systems, about 11% and
8% absolute reduction in WER are obtained for Levantine and
Farsi, respectively.

L i PLP only 72.27
CVantiie | pDT(PLP + BBN MLP) | 61.53
Farsi PLP only 70.23
ars RDT(PLP + BBN MLP) | 62.08

Table 1: Reduction in word error rate for using MLP Features
with RDT for GMM-HMM system

3.2. MLP Feature Combination

In addition to the BBN MLP features, we also have MLP
features from Brno University of Technology (BUT), who
is one of our collaborators for the RATS program. The
BUT MLP features have 69 dimensions. They are derived
from the MLPs trained from the Mel-filter bank energies
[3]. Since RDT directly reduces the speech recognition
errors and is flexible for input feature dimensionality, the two
sets of MLP features can be integrated into a single STT system.

As shown in Table 2, the BBN Byblos GMM-HMM STT
system is used in all of the experiments. The BUT MLP
features are first combined with our PLP features using the
same procedure as described in Section 3.1. The STT system
with BUT MLP features is about 2.3% and 1.0% better in
terms of STT WER as compared to the system with BBN MLP
features. By combining the two sets of MLP features, we
obtained 1.6% and 2.3% reduction in WER for Levantine and
Farsi, respectively.

4. Deep Neural Network

Our deep neural network (DNN) systems are trained in three
steps. The first step is the pre-training for initialization purpose.
The second phase is the cross entropy training and the last step
is the sequence training [4].



Levantine | RDT(PLP + BBN MLP) 69.07
RDT(PLP + BUT MLP) 67.77
RDT(PLP + BBN MLP + BUT MLP) | 66.15
Farsi RDT(PLP + BBN MLP) 62.08
RDT(PLP + BUT MLP) 61.15
RDT(PLP + BBN MLP + BUT_MLP) | 58.74

Table 2: Reduction in word error rate for using MLP features
with RDT for GMM-HMM system

For pre-training, we start with a randomly initialized
shallow network. We randomly select 20% of the available
training data and train the network for one epoch. After
that, we add one more layer with randomized weights,
and re-train with another set of randomly selected data. This
procedure continues until the target number of layers is reached.

After pre-training, we perform cross entropy training us-
ing the entire training set. In which, 5% of the data is held
out for cross validation purpose. This cross validation set is
used to monitor the progress of the training by computing
the frame accuracy.The learning rate starts with 0.002. If the
improvement of the frame accuracy falls below 0.25% absolute,
the learning rate is reduced by half for each epoch. This scheme
has shown to be effective in DNN training [5].

After cross entropy training, we perform one iteration of
sequence training which optimizes for minimum phone error
(MPE). The training is smoothed by a technique called frame
smoothing (f-smoothing) proposed in [6] where the discrimi-
native objective function is interpolated with the cross entropy
function.

For Levantine, we trained three DNN systems. The first
one uses the final features from RDT combining PLP and BBN
MLP features. The second one is similar but it uses BUT MLP
features for combination. The last one is using RDT to combine
PLP, BBN MLP and BUT MLP features. For Farsi, we built
the same DNN systems as well. All DNNs have 4 layers and
each layer contains 1024 hidden units. Sequence training is
applied to the DNN systems using BUT MLP features only due
to the time constraint. Table 3 summarizes the performance of
our DNN systems in WER.

Levantine | RDT(PLP + BBN MLP) 69.84
RDT(PLP + BUT MLP) 67.02
RDT(PLP + BBN MLP + BUT MLP) | 66.39
Farsi RDT(PLP + BBN MLP) 61.07
RDT(PLP + BUT MLP) 59.87
RDT(PLP + BBN MLP + BUT MLP) | 57.55

Table 3: Word error rate for DNNs using MLP features with
RDT

5. Optimizing Speech-to-Text System for
Keyword Search

To optimize our STT system for WER, Powell’s method [14]
is employed to estimate the weights used in the decoder to
combine scores linearly for Viterbi search by reducing the WER
of a set of N-best lists. The scores are acoustic model score,
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language model score, pronunciation score, phone insertion
penalty, silence insertion penalty and word insertion penalty.
However, reducing WER does not necessarily improves KWS
performance. When WER is high, the optimization would
prefer deletions to insertions as it takes more risk to hypothesize
a word. Deletions may degrade KWS performance because of
worse recall. In this work, we propose to optimize weighted
WER instead. W ERyeighted = W, where S, D and
I are number of substitutions, number of deletions and number
of insertions, respectively. « is a constant which is greater than
1 to emphasize deletions in the objective function, and 5 a
constant less than 1 to deemphasize insertions. N is the total
number of tokens in the reference. Due to time constraint, the
technique is only applied on the GMM-HMM Levantine KWS
systems.

As shown in Table 4, by using « = 1.3 and 8 = 0.3,
when compared to the baseline system, recall is increased from
86.87% to 89.14% for the DEV partition and from 92.56% to
94.42% for the TEST partition while the WER increases from
69.07% to 72.35%. In addition to the improvement in recall,
false alarm rate reduces from 5.39% to 4.45% for the DEV

partition and 1.54% to 0.87% for the TEST partition. The
baseline system is optimized to reduce WER.
DEV TEST
System WER Recall | pFA | Recall | pFA
baseline 69.07 | 86.87 | 539 | 92.56 | 1.54
a=13,0=03 | 7235 | 89.14 | 445 | 9442 | 0.87

Table 4: Keyword search results for Levantine by optimizing
decoding weights on weighted word error rate

6. System Combination

In addition to the various systems developed at BBN, BUT also
sent us their KWS outputs. Due to the fact that the systems
are different in terms of acoustic features, acoustic models,
and keyword search approaches, system combination should be
beneficial. The procedure we followed for system combination
was almost identical to that reported in [7], except that the
order of the systems and the initial weights in Powell’s method
were determined based on the performance measure (pFA at
15% pMiss) instead of Actual Term-Weighted Value (ATWYV).

The KWS systems used in the system combination for
Levantine are shown in Table 5. The systems developed at
BBN are listed in the first block of the table. There are 4
GMM-HMM and 4 DNN-HMM systems from BBN with dif-
ferent MLP features. The GMM-HMM systems are optimized
on weighted WER for KWS. The outputs from BUT are in
the second block of the table. Two different STT systems
were developed at BUT: STK and Kaldi. The STK system
is a GMM-HMM system using BUT MLP features while
DNN-HMM is used in the Kaldi system which was trained on
the PLP features only. Two sets of hits (one from whole-word
decoding and another from sub-word decoding) were generated
by the STK system. In addition to the hit list, BUT also sent
us the lattices output from the Kaldi system. KWS are done
on these lattices at BBN after converting them to consensus
networks. The results show that the hit lists from BUT cannot
reach the target pMiss because of low recall.



The systems are combined hierachically. = As shown in
the third block of the table, the systems are first combined
among their own category. As compared to the best single
system in the category, significant reductions in pFA are
obtained from the first level system combination. For the
BBN GMM-HMM systems, 67% relative reduction in pFA is
achieved, 39% relative for BBN DNN-HMM systems and 3%
for BUT Kaldi outputs. The final combination gives about extra
44% relative reduction in pFA.

Similarly, the systems for Farsi are shown in Table 6.
There are 3 GMM-HMM systems and 4 DNN-HMM systems
from BBN and they are listed in the first block of the table.
Because of time constraint, no optimization on weighted WER
is done on these BBN systems. The outputs from BUT are
shown in the second block of the table. In addition to the 3 hit
lists from the STK system, BUT also sent us the whole-word
lattices from the STK system. Two DNN-HMM Kaldi systems
were developed at BUT for Farsi. The Kaldi-1 system was
trained on the conventional PLP features while Kaldi-2 on
the enhanced PLP features. The systems are also combined
hierarchically. The similar improvements are obtained from the
system combination.

System DEV TEST
Recall pFA Recall pFA
GMM BBN MLP 93.29 | 0.2807 | 9291 | 0.2799
GMM BUT MLP 91.88 | 0.2586 | 91.55 | 0.2604
GMM BBN+BUT MLP | 9142 | 0.2161 | 91.36 | 0.2298
DNN SEQ BBN MLP 91.94 | 0.2729 | 91.81 | 0.2704
DNN BUT MLP 91.49 | 0.2699 | 91.36 | 0.2694
DNN SEQ BUT MLP 91.55 | 0.3069 | 91.42 | 0.3470
DNN BBN + BUT MLP | 92.26 | 0.2444 | 92.07 | 0.2436
BUT STK Subword Hit 80.85 - 80.79 -
BUT STK-CN Hit 91.04 | 0.3493 | 90.52 | 0.3493
BUT STK Hit 88.33 | 0.1687 | 88.33 | 0.1687
BUT STK Lattices 94.78 | 0.1858 | 94.00 | 0.1835
BUT KALDI-1 Hit 83.56 - 83.56 -
BUT KALDI-1 Lattices 91.94 | 0.3498 | 91.81 | 0.3462
BUT KALDI-2 Hit 83.37 - 83.37 -
BUT KALDI-2 Lattices 93.10 | 0.2760 | 93.10 | 0.2794
SYSCOM BBN-GMM 96.65 | 0.0853 | 95.42 | 0.0853
SYSCOM BBN-DNN 96.00 | 0.1148 | 94.84 | 0.1146
SYSCOM STK 95.16 | 0.1168 | 95.04 | 0.1166
SYSCOM KALDI 95.42 | 0.1412 | 9491 | 0.1401
[ SYSCOM ALL | 98.07 ] 0.0566 | 0.9658 | 0.0564

System DEV TEST
Recall pFA Recall pFA
GMM BBN MLP 89.03 | 1.4937 | 88.38 | 1.4144
GMM BUT MLP 89.20 | 1.0962 | 88.87 | 1.1576
GMM GRAP BUT MLP | 87.89 | 1.4401 | 87.72 | 1.4351
GMM BBN +BUT MLP | 90.51 | 0.8216 | 90.02 | 0.8047
DNN BBN MLP 88.05 | 1.7973 | 87.56 | 1.7758
DNN BUT MLP 88.87 | 1.0769 | 88.71 | 1.0749
DNN SEQ BUT MLP 89.20 | 1.0289 | 89.20 | 1.0093
DNN BBN + BUT MLP 88.71 | 1.2372 | 88.54 | 1.2660
BUT STK Hit 76.92 - 76.92
BUT STK Subword Hit 69.07 - 69.07 -
BUT KALDI Lattices 86.91 | 1.5425 | 86.91 | 1.5362
BUT KALDI Hit 67.76 - 67.76 -
SYSCOM BBN-GMM 96.07 | 0.2707 | 93.45 | 0.2692
SYSCOM BBN-DNN 94.44 | 0.6295 | 93.45 | 0.6246
SYSCOM BUT-STK 78.56 - 78.56 -
SYSCOM BUT-KALDI 86.91 | 1.4956 | 86.91 | 1.5801
[ SYSCOM ALL | 97.05 ] 0.1200 | 95.25 [ 0.1183 ]

Table 5: Hierarchical System Combination for Levantine

7. Conclusion

The paper presents the techniques that we used to develop
our keyword search system for the evaluation of the Phase 3
DARPA RATS program. We showed that about 13% abso-
lute reduction in word error rate can be achived by employing
Multi-Layer Perceptron for feature extraction and Deep Neu-
ral Network for acoustic model likelihood estimation. We also
proposed a method to optimize a Speech-to-Text system to im-
prove the keyword search performance, and significant reduc-
tion in keyword search errors is reported. Finally, we showed
that tremendous reduction in keyword search errors is achived
through system combination.
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Table 6: Hierarchical System Combination for Farsi
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