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Abstract

This paper studies the scenario of migrating from one i-

vector-based speaker recognition system (SRE) to another, i.e.

comparing the i-vectors produced by one system with those pro-

duced by another system. System migration would typically be

motivated by deploying a system with improved recognition ac-

curacy, e.g. because of technological upgrade, or because of the

necessity of processing new kind of data, etc. Unfortunately,

such migration is very likely to result in the incompatibility

between the new and the original i-vectors and, therefore, in

the inability of comparing the two. This work studies various

topologies of Regression Neural Networks for transforming i-

vectors from three different systems so that—with slight loss in

the accuracy—they are compatible with the reference system.

We present the results on the NIST SRE 2010 telephone condi-

tion.

Index Terms: speaker recognition, i-vector transformation, Re-

gression Neural Networks, system migration

1. Introduction

Ever since their introduction in Speaker Recognition, i-vectors

have been widely used in multiple fields of speech processing,

such as Language Recognition [1], Age Estimation [2, 3], Emo-

tion Detection [4], and even in Speech Recognition [5, 6]. The

so-called i-vector is an information-rich low-dimensional fixed-

length vector extracted from the feature sequence representing

a speech segment (see Section 2 for details on i-vector extrac-

tion).

Due to these properties, the i-vectors are often referred to as

audio voice-prints. Let us note that the term voice-print should

be taken with care—as has been thoroughly discussed in [7]

and [8]—and is only used in this work to denote a possible rep-

resentation of an utterance. As such, the i-vectors can be used

for audio indexing purposes, information exchange (e.g. foren-

sic or intelligence agencies), speaker search, etc. Such usage,

however, assumes that the i-vector extraction method (including

the parameters of the method) is kept fixed, so that all i-vectors

are compatible, and that their direct comparison is feasible.

I-vector extraction is a complex process which depends on

many sub-tasks, each of which is a subject to continuous re-

search aiming at increasing recognition performance. It is very

likely, that with every such improvement or change, the i-vector

interpretation changes, therefore making it impossible to per-

form any direct i-vector comparison. Using a deployed i-vector

extraction system—let us refer to it as the reference system—

for comparing scoring i-vectors from an alternative or alien sys-

tem would therefore require re-extracting the i-vectors for every

utterance from the source audio.

Let us study an example scenario of a company having a

database of i-vectors. For legal, capacity, or other reasons, the

company cannot store the corresponding audio files. At a cer-

tain point, the company decides to upgrade its i-vector extrac-

tion to a newer system (now the “reference”) but would still

like to be able to use its existing database of i-vectors (now the

“alien-system” generated i-vectors). Another example could be

the need of inter-agency “voice-print” exchange; if two agencies

use different i-vector extraction methods and want to exchange

their i-vectors, there has to be a technique of mapping the alien

i-vectors to the reference i-vectors.

In this work, we present a technique of computing the mi-

gration transformation of the alien i-vectors to the reference i-

vectors, provided that, there is a training set of i-vectors gen-

erated by both the reference and the alien systems. We study

several topologies of Artificial Regression Neural Networks

(NN)—with one and two hidden layers, as well as with no hid-

den layer, downgrading it to mere linear regression—to trans-

form the i-vectors produced by an alien system to be compatible

with the reference system.

2. Theoretical Background

Let us first take a look at the anatomy of our system. We will

then describe the techniques used to transform the i-vectors to

fit the reference system.

2.1. Feature extraction

In our systems, we used two different core feature extraction—

the MFCCs and the Perseus features [9], both described below.

Both techniques produce a 20-dimensional feature vector cal-

culated every 10ms. This 20-dimensional feature vector was

subjected to short time mean- and variance-normalization us-

ing a 3 s sliding window. Delta and double delta coefficients

were then calculated using a five-frame window giving a 60-

dimensional feature vector.

Speech/silence segmentation was performed by the BUT

Czech phoneme recognizer [10], where all phoneme classes are

linked to the speech class. The recognizer was trained on the

Czech CTS data, but we have added noise with varying SNR to

the 30% of the database.

2.1.1. MFCC

In our experiments, we used cepstral features, extracted using

a 25 ms Hamming window. We used 24 Mel-filter banks and

we limited the bandwidth to the 125–3800Hz range. 19 Mel

frequency cepstral coefficients together with zero-th coefficient

were calculated every 10 ms.
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Variants of these features are de-facto standard in the SRE

community and our reference system is based on these features.

2.1.2. Perseus Features

In [11], MMeDuSa features were proposed as noise robust fea-

tures for speaker identification. On channel and noise degraded

RATS corpus [12, 13], the MMedusa features were shown to

provide performance superior to conventional MFCC features.

The disadvantage of MMeDuSa features is their high computa-

tion complexity of their extraction, which can be the most com-

putationally demanding step of the whole processing chain in

a speaker recognition system. Therefore, Perseus features [9]

were designed to mimic the MMeDuSa features by modifying

MFCC extraction in the following way:

With frame rate 10 ms, power spectrum is calculated for

50 ms speech frames weighted by Hamming window. Like for

MFCCs, filter bank output is calculated by integrating regions

of spectra using weighting functions. However, magnitude of

frequency responses of filters from Gammatone filter bank are

used as the weighting functions instead of MFCC-like triangu-

lar windows. The 15th root compression is applied to the filter

bank output instead of MFCC-like log compression. The re-

sulting coefficients are de-correlated using DCT as in the case

of MFCCs. The resulting feature vector is augmented with 3

additional coefficients encoding evolution of energy inside of

each frame. These 3 coefficients are calculated as follows: 1)

absolute value of frame samples is taken, 2) the resulting signal

is projected into 11 DCT bases (skipping the zero-th constant

basis), 3) power and 15th-root of these coefficients is taken, 4)

the resulting vector is projected into 3 DCT bases.

We have observed that our Perseus features were indeed

very similar to our implementation of MMeDuSa in terms of

both similarity of feature vectors and the speaker recognition

performance.

2.2. i-vectors

The i-vectors provide an elegant way of reducing large-

dimensional input data to a small-dimensional feature vector

while retaining most of the relevant information. The technique

was originally inspired by Joint Factor Analysis (JFA) frame-

work introduced in [14, 15].

The main idea is that the utterance-dependent Gaussian

Mixture Model (GMM) supervector of concatenated GMM

mean vectors s can be modeled as:

s = m + Tw (1)

where m is the Universal Background Model (UBM) GMM

mean supervector, T is a low-rank matrix representing M bases

spanning subspace with important variability in the mean super-

vector space, and w is a latent variable of size M with standard

normal distribution.

For each observation X , the aim is to compute the parame-

ters of the posterior probability of w:

p(w|X ) = N (w;wX ,L
−1

X
) (2)

The i-vector φ is the Maximum a Posteriori (MAP) point esti-

mate of the variablew, i.e., the meanwX of the posterior distri-

bution p(w|X ). It maps most of the relevant information from

a variable-length observation X to a fixed- (small-) dimensional

vector. LX is the precision of the posterior distribution.

2.3. Scoring

The comparison of i-vectors is facilitated via Probabilistic Lin-

ear Discriminant Analysis (PLDA) model [16, 17]. Given a pair

of i-vectors, i.e. the trial, PLDA allows to compute the log-

likelihood for the same-speaker hypothesis and for the different-

speaker hypothesis.

The pre-processing of i-vectors consists of applying LDA

to reduce the dimensionality to 200. Such processed i-vectors

are then followed by global mean and variance normalization,

followed by length-normalization [18, 19].

2.4. i-vector Transformation

As discussed in the introduction section, in order to allow for

PLDA to meaningfully compute a score for a trial, both i-

vectors of the trial must be generated using the same i-vector

extractor. However, if one or both sides of the trial are based on

an i-vector generated by an alien system, PLDA miss-interprets

the i-vectors and the comparison fails, as will be demonstrated

in the experimental section.

In this work we used Regression Artificial Neural Networks

to map the alien i-vectors to the reference. The objective was to

minimize the Mean Square Error and we used Stochastic Gra-

dient Descent (SGD) method to train the parameters of the NN.

We used random initialization of the NN parameters and sig-

moid activation function on the hidden layers.

We experimented with zero-, one-, and two-hidden-layers

topologies. Note that the zero-hidden-layer is formally a linear

regression, however, we used a cross-validation set and SGD to

estimate its parameters.

3. Experiments

3.1. Datasets and Test Protocol

Unless otherwise stated, we used the PRISM [20] training

dataset definition to train all parts of our models, including the

i-vector transformation. This set comprises the Fisher 1 and 2,

Switchboard phase 2 and 3 and Switchboard cellphone phases 1

and 2, along with a set of Mixer speakers. This includes the 66

held out speakers from SRE10 (see Section III-B5), and 965,

980, 485 and 310 speakers from SRE08, SRE06, SRE05 and

SRE04, respectively. A total of 13,916 speakers are available in

Fisher data and 1,991 in Switchboard data.

We evaluated our experiments on the female portion of the

NIST SRE 2010 telephone condition [21]. The recognition per-

formance is evaluated in terms of the equal error rate (EER), the

normalized minimum detection cost functions (DCF) as defined

in both the NIST 2010 SRE task (DCFmin

new) and the previous

SRE 2005, 2006, 2008 evaluations (DCFmin

old ), and their actual

variants DCFact

newand DCFact

old, respectively.

3.2. System Setup and Test Protocol

There were four systems involved in our set of experiments—

one reference and three alien systems:

reference — This is the reference system to which all follow-

ing alien systems are adapted. It is based on the MFCC

features, 2048-component GMM, 600-dimensional i-

vectors.

512/400 — this system is derived from the reference, but the

size of the UBM has been limited to 512 Gaussian com-

ponents, and the dimensionality of the i-vector is set to

400.
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Table 1: Comparing different NN topologies on the Perseus system. The numbers show the size of the NN layers. The “600-600”

indicates no hidden layer in the topology. The asterisk (∗) denotes the hybrid test.

System DCFmin

new DCFact

new DCFmin

old DCFact

old eer

reference 0.3834 0.3940 0.1089 0.2124 2.13

Perseus on reference 1.0000 102.6261 0.7834 1.7379 23.12

Perseus baseline 0.4924 0.6876 0.1494 0.2078 2.86

600-600 0.4662 0.4836 0.1522 0.2949 2.85

600-600∗ 0.4490 0.4650 0.1360 0.3207 2.64

600-600-600 0.5596 0.5853 0.1799 0.3463 3.48

600-600-600∗ 0.5039 0.5108 0.1526 0.3517 2.96

600-1200-600 0.5794 0.6727 0.1732 0.3131 3.56

600-1200-600∗ 0.4834 0.4962 0.1467 0.3166 2.93

600-600-600-600 0.5845 0.6136 0.1898 0.3642 3.66

600-600-600-600∗ 0.5045 0.5295 0.1587 0.3549 3.09

Table 2: Results of linear regression for all systems. The ”baseline” numbers show the results of the evaluation carried out on the

corresponding systems. The asterisk (∗) denotes the hybrid test.

System DCFmin

new DCFact

new DCFmin

old DCFact

old eer

reference baseline 0.3834 0.3940 0.1089 0.2124 2.13

512/400 baseline 0.5711 1.0846 0.1742 0.2192 3.78

400-600 0.5011 0.5160 0.1548 0.3151 3.12

400-600∗ 0.4555 0.4685 0.1387 0.3012 2.76

Red-Ref baseline 0.4475 0.4581 0.1283 0.2372 2.64

600-600 0.4392 0.4595 0.1299 0.2580 2.73

600-600∗ 0.4224 0.4363 0.1213 0.2514 2.53

Perseus baseline 0.4924 0.6876 0.1494 0.2078 2.86

600-600 0.4662 0.4836 0.1522 0.2949 2.85

600-600∗ 0.4490 0.4650 0.1360 0.3207 2.64

Red-Ref — this system is essentially the same as the reference

system, except the training portion of the training data

was reduced by excluding the Fisher and Switchboard

portion. However, both of these data-sets were kept for

training the i-vector transformation.

Perseus - this system differs from the reference system by

substituting the features by the Perseus, as described in

Sec. 2.1.2. We have included a system based on these

features as they provide complementary information to

the MFCC’s and—although they are outperformed by

the MFCC on the NIST task—they proved to outperform

cepstral features on the RATS task [13], which deals with

heavily distorted radio recordings.

For each case, we built the whole recognition system to test how

each system performs on its own. We mark these as the “base-

line” systems in the results section. We have included these

numbers to show, how well we would perform the recognition

using such system.

Then, for each alien system, we trained the i-vector map-

ping NN using the PRISM dataset and forwarded the test i-

vectors through this transform. These i-vectors were then

scored using the reference system PLDA in two scenarios: i)

thematched test—both the enroll and the test i-vectors are trans-

formed alien i-vectors, and ii) the hybrid test, where the enroll

i-vectors were the original reference i-vectors, and the test i-

vectors were the transformed alien i-vectors. Since the enroll

and test sets are disjoint, we repeated this test with the two sides

swapped and we averaged the results.

3.3. Results

Tab. 1 shows the performance of the various modifications of

the Neural Networks on the Perseus system. The “reference”

refers to the case, when reference system i-vectors were eval-

uated natively using the reference backend. “Perseus on ref-

erence” only demonstrates that evaluating Perseus i-vectors us-

ing the reference backend without transforming them breaks the

performance. “Perseus baseline” shows the performance of the

Perseus i-vectors evaluated natively using the Perseus backend,

i.e. what the best performance that the Perseus i-vectors can

produce is. The non-asterisk labels denote a matched test, and
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the asterisk (*) marks a hybrid test. The numbers in the descrip-

tion denote the dimensionality of each layer.

First thing to note is that the hybrid test always does bet-

ter than the matched test. This suggests that the loss of speaker

information is happening not at the stage of i-vector transfor-

mation, but rather at the stage of i-vector extraction.

The second thing to note is that overall, the linear regression

generally performs better than the hidden-layer NNs. We tried

to expand the hidden layer to 1200 and to even add another hid-

den layer, but in general, the more parameters we use, the worse

result. Larger systems probably get over-trained. We performed

these experiments using the other alien systems, seeing similar

trends.

The third thing to note is that—on most operating points—

the alien vectors perform better in their linear regression trans-

formed version than in the baseline experiment. Our hypothesis

for this is that PLDA was trained robustly using the reference

system, where the i-vectors’ speaker- and channel- subspaces

have cleaner definition.

Tab. 2 shows the results of linear regression for all alien

systems. The “reference baseline” is the target system as de-

scribed above. Not only the systems are comparable to the

alien baseline versions, but—as was discussed in the previous

paragraph—on many operating points, the transformed alien i-

vectors outperform the alien baseline results.

4. Conclusions

We have shown that a linear transformation can be used to trans-

form alien i-vectors to the reference i-vectors as the input to the

reference PLDA system. Not only the performance of the trans-

formed i-vectors is comparable to the pure alien-system, but in

many cases, the transformed i-vectors outperform the original

alien system. It was also shown that the reference PLDA per-

forms better if one side of the trial comes from the reference

system. These facts indicate that the loss of information is hap-

pening at the level of i-vector extraction rather than at the level

of i-vector transformation.
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