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BUT QbE system that achieved the best accuracy in MediaEE\}S'a]s\(P)T:Eian ?ﬁ;‘g?;ﬁ 182&18514%%}8%3%%;?8 par”;?ggmaw
ESSR014 evaluations. This evaluation was challenging becahse =

QUESSDO14 evaluations, This evaluation was challenging becarsesare=r=rrror 560(307/190/155) mixed

of severe mismatch between queries and utterances, anduotion | sumeval || 1385/12491 555(307/179,/156) mixed

of new types of queries. The paper provides an analysis of DTW

sub-system’s in mismatched conditions (especially taxgeDTW  Table 1 Set of6 European languages. The first column: amounts of
metrics) and discusses approaches investigated for QUEBST  data per language. The second column: the numbers of develup
generation of calibration side-information by a languadgniifica-  (dev) and evaluation (eval) queries (all(Tr2/T3)). The last column
tion system, and handling2Tand T3 queries relaxing the constraints s type of speech.

of an exact match. All results are provided on QUESSMH devel-

opment and evaluation data. 2. DATA AND SCORING
Index Terms— query-by-example spoken term detection, spo-

ken document retrieval, acoustic keyword spotting, dymatime The QUESST2014 organizers brought the evaluations closerdal

warping, fusion, m-norm, logistic regression scenario — voice search over a set of audios. The databasistson
of only one set of utterances — used both for development wald e
uation — and two sets of queries: one for development andttier o

1. MOTIVATION for evaluation. The overall length of utterance data3sours, in6
. languages (table 1).
As shown in a rece_nt summary paper _[1]' the QbE approa_ches €an “ytterances in the search repository were shuffled and no side
be roughly divided into two categories: the pattern-maiglones ., mation was provided to participants regarding thekspolan-

look for 5|m[lar|F|es at thg feature level and are mostlyremented guage, acoustic conditions, or query type. Therefore, daptation
by a Dynamic Time Warping (DTW)-style comparison of querdan hoqqs 16 rely on unsupervised algorithms. QUESET brings two
utterance segments. The second category is representeghby s interesting research areas:

bolic systems (based on Weighted Finite State Transduedrsje )
the queries and utterances are represented by a sequenwpbr g ® Cross-channel problem in query — utterance. All of the

of discrete symbols (phones for example). Our Acoustic Kaywv queries were dictated and recorded by mobile telephone. The
Spotting (AKWS) builds a model of query and processes ther-utt utterances were from different sources and speaking style
ances by looking at log-likelihood ratio of the keyword mbelad (read, conversational, lecture, broadcast).
a background model. The AKWS can be considered in between the 4 3 ifferent types of queries: Type (T1) queries seek the
DTW and symbolic systems. exact match (the same way as in SW$3, SW012). If

The QUESS?014 dataset was challenging because of mixed the query iswhi t e hor se, an utterances such as . ny
language, acoustic conditions, ahidypes of queries (exact match, white horse is nice... should be found. Type
variation, and reordering). We wanted to thoroughly corepend (T2) queries are queries with variations (for example in-
combine the DTW and the AKWS approaches. In our previous re- flections). Utterances such as . ny whiten horses
search aiming at SWH12 evaluations [2], we found bottleneck fea- are nice... are expected. Typ& (T3) queries are
tures superior to standard posteriors, so our goal was tpampos- queries with reordering, for example . ny hor ses are
terior and bottleneck features in mismatched-channelsseeand ni ce and white. ... Eachword in query has at least
also to compare different distance metrics for DTW. phonemes, no other information was provided. As the queries
o Sllyns tc;gsp?nn;c;r: ;ﬁe?tgrlgsttj g:gr bsgftflt:r:g([:i] . ;v; Llj;i_d I%vnf\rgr;t;mbe were randomized, each participant should find a way how to

: detect Tl/T2/T3 and search them. One query could appear in

to further investigate the sensitivity of particular apgebes to the all forms (TL/T2/T3) in the data. auer PP
language / channel mismatch in the query and utterance Absa, ) .
coping with different types of queries was challenging rgar [4]. The gvaluatlon goal was changed from keyworq spotting task
Similarly to SWR013, we used systems already available at BUT (Where is the occurrence of Queny?) to detection task (Is
(socalled Atomic Systems). Queny05 in Utteranc®156?). Normalized cross-entropy cost

(Cnze) Was chosen as primary metric by the organizers [4]. Well
* |gor Szoke was supported by Grant Agency of Czech Repyiist- ~ Known Term Weighted Value (TWV) defined by NIST [5] was the
doctoral project No. GP202/12/P567. secondary metric. Actual TWV (ATWV) score is calculated ac-
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cording to a hard YES/NO decision for each detection giveraby
system. Maximum TWV (MTWV) is then calculated by searching
for a global threshold (to set YES/NO decision) with respechax-
imization of ATWV. ATWV = 1 means100% accurate system
(no false alarms (FA) and no misses), and low&@rWV represents
worse system. System with no output EWV = 0. ATWV can

be negative (no hits, lots of FAS).

On the other hand(),,. is based on system scores. It mea-
sures the fraction of information, with regard to the groundh,
that is not provided by system scores, assuming that theybean
interpreted as log-likelihood ratios (LLR). A perfect sst would
getCrze = 0 and a non-informative system would gét. = 1,
whereas’,,.. > 1 would indicate severe miscalibration of the log-
likelihood ratio scores. More details on both evaluationrios used
for QUESS™R014 can be found in [1].

As Chz Was the primary metric, we did not optimize on TWV.
We just found the best global threshold (maximizing the TWV b
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Fig. 1. Query-by-Example system schema: Q means Queries as the

hard YES/NO decision). The QUESST2014 dataset is availablmput, U means Utterances as the input' SD means Speechj@ai[at

heré.

3. SYSTEM OVERVIEW

We followed our system architecture from S@(83 [3]. Only brief
system description is provided with emphasis on differeraael new
things in this paper. The reader is kindly asked to read also o
previous paper [6].

Our Query-by-Example (QbE) system (figure 1) is based on
phoneme-state posterior extractors and bottleneck festextrac-
tors. Each extractor (denoted asAtomic system) is an artificial
neural network taking raw audio file as the input (either guex-
ample or test utterance) producing phoneme state postéRQST)
or bottleneck features (BN) as the output. We ugeitomic Sys-
tems —3x phoneme state posterior$x bottleneck features. See
section 3.1 for details.

Phoneme state posteriors were then processed@yeay-by-

systems where the output are phoneme posteriors. GP meahs Gl
alPhone atomic systems where the output are bottleneakrésat

The ANNs were trained as acoustic models for phoneme recog-
nizers in several past BUT projects. Altogether, we endedth 7
Atomic systems with the following architectures and trdima the
following datasets:

e 3x SpeechDat (Czech, Hungarian and Russian; monolin-
gual LCRC systems [7], trained &t hours of read speech
per language) for estimations of phoneme state posteriors.
Denoted asSD Post The Hungarian system was also used
as Speech Activity Detector (SAD).

e 4x GlobalPhone (Czech, Portuguese, Russian, Spanish;
monolingual stacked-bottleneck systems [8, 9] for BN fea-
tures, trained or20 hours of read speech per language).

Denoted a&GP BN

Example SubsystemsWe have two types of subsystems, one based ) .
on the AKWS (section 3.2) and the other based on the DTW (sec3-2- Acoustic Keyword Spotting based QbE

tion 3.3). The input of each subsystem is the matrix of phanem
state posteriors or bottleneck features for query exampdeudter-
ance. The output is a set of detections of given query examphe
utterance.

The next step is acore normalization and calibration. It takes
the set of detections and normalizes the scores. Next, olgoore
per query-utterance pair is generated. Finally, the scaresal-
ibrated with respect to the normalized cross entrop¥,z. (sec-
tion 4).

In AKWS [6], we build an HMM for each query and then calcu-
late log likelihood ratio between the query model and a bemlkgd
model (free phone loop). In QbE task, however, we need torgeme
the phoneme sequence for each of the acoustic examplgserg
to-text step. This is achieved by decoding each example using free
phoneme loop. We remove all silence labels (if present) coded
gueries. The AKWS works on top of phoneme posteriors.

Fusionis the final stage of the QbE system. It takes calibrated®-3- Dynamic Time Warping based QbE

outputs of all subsystems and fuses them into one outpuinAga
optimize the fusion parameters with respect to the norredltzoss
entropy —Ch. (Section 5).

3.1. Atomic Systems

All our Atomic systems use Artificial Neural Network classifs
(ANN) to estimate per-frame phoneme state posterior piitibed
(posteriorgrams) or bottle-neck features (outputs of éidthyer).
Our motivation was to re-use already trained ANNs availabBrno
University of Technology (BUT).

Lhttp://speech.fit.vutbr.cz/software/quesst-2014-iimgual-database-
query-by-example-keyword-spotting
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In our implementation, we follow the standard QbE recipe bssu
quence DTW [10]. A single DTW is run for each combination of
guery and utterance and the query is allowed to start at @mefr
of the utterance. When selecting the locally optimal pathhie
standard DTW algorithm, transition from the smallest acelated
distance is chosen. In our implementation, we compare the-ac
mulated distances (including the current local distancejnalized
by the corresponding path lengths on-the-fly. Note that énsttan-
dard subsequence DTW, no on-the-fly path length normabizati
performed, which results in the inappropriate preferencesiorter
(recently started) paths. We applied SAD and removed ahsg

2http://speech.fit.vutbr.cz/software/phoneme-recogrimased-long-
temporal-context



Features corr cos euc logcos logdot
SD CZPOST 0.687(0.534) 0.768(0.633) 0.852(0.806) 0.649(0.453) 0.658(0.460)
SD HU POST 0.646(0.505) | 0.712(0.584) | 0.805(0.731) | 0.679(0.510) | 0.691(0.523)
SD RU POST 0.653(0.509) | 0.706(0.557) | 0.789(0.712) | 0.652(0.495) | 0.662(0.510)
GP CZBN 0.593(0.435) 0.585(0.425) | 0.777(0.672) 0.722(0.601) -

GP PO BN 0.659(0.536) 0.650(0.522) | 0.882(0.830) 0.819(0.750)

GP RUBN 0.668(0.533) 0.658(0.516) | 0.862(0.800) 0.814(0.726)

GP SP BN 0.673(0.558) | 0.663(0.540) | 0.849(0.773) | 0.822(0.741)

GP CZ+PO+RU+SP BNfusion || 0.586(0.432) | 0.579(0.418) | 0.761(0.671) | 0.713(0.601)

Table 2. Comparison of distance metrics scoredtynC..... Number for T1 queries only are shown in parenthesis. SD P@8ibtes
3-state posterior features from some of SpeechDat-Eagtieges, GP BN denotes bottle-neck features from some oélBlodne languages.

The last line is a fusion.
ffgtem sideinfo p 92‘3(‘3’?1' 5 5 92‘198("2 % frames, average log-posterior of speech frames taken frém S
bestsingle B 0.556(42.4) 0.586(42.7) and optionally the language indentification (LID) i-vectseore.
Eesi!”gle Sg 8»5315((:11;1)) 8?3?((;1242)) The side-info is generated for queries and utterances sdi-the
estsingle .55 . . . “ ” . . . . .
bestsingle || QU+LID | 0.528(41.9) | 0.533(41.2) nal “feature vector for callbra'tlon. consists of: detgcthn score
bigfusion B 0.464(49.7) | 0.486(49.8) (query—utterance pair}, query side-infojs utterance side-info. The
E!g]{us!gz Sg gigggggg gigéggég logistic regression parameters are trained on develops&ntWe
igfusi AT¢ . . . : . .
biglusion || QUALID | 0.470(46.7) | 0.466(46.2) denote this queryutterance side-info parameters@¥.

Another set of experiments was performed with a language ide

Table 3. Comparison of different calibration side-info. The scorestification (LID) system. The motivation to use LID was simptae
are minCh.. With MTWV in parenthesis. The besihgle is single
QbE subsystem based on DTW on GP Czech bottlenecks. The byCzech query should not be searched in Basque utterance®/est
fusion system is fusion @il subsystems. LID is a subsystem basedused a state-of-the-art system based on i-vectors [11]. cAssa
only on LID sideinfo used as scores. Notice the differenetsden
dev and eval accuracy for single subsystem and system fusion

frames from queries. We experimented with different distamet-
rics and input features in DTW.
We used different metrics for measuring distances betweeasLID), and we also scored LID as separate subsystem as the LID
query-utterance vectord?earson product moment correlatiatis-
tance (corr)cosinedistance (cos)Euclideandistance (euc)loga-
rithm of the cosinelistance (logcos) arldgarithm of the dot product
(logdot) — see table 2. The Euclidean distance gave us thet wesr
sults for both posteriors and BNs. For posteriors, the itlyar of
the cosine provided us the best results and we also obtained aimprovement 0b.5% on dev and eval data without over-fitting. The
ceptable accuracy using the logarithm of the dot product.Bf¢s,
the best accuracy was clearly achieved using the cosinandist
However, we used the Pearson correlation as the main metric f subsystend.926 shows low performance which is expected, because
QUESS™014, as it seems to be the most universal distance metrighe LID is not suitable for keyword search. On the other haued,
regardless the features. Note, that accuracy bififT parenthesis)
shows the same trends as the overall score.

3.4. Score normalization

languages of query and utterance should be matching, fongea

tic features, we used Shifted Delta Cepstra. Gaussian reirtodel
with 2048 Gaussians serves as Universal Background Modeifor
dimensional, gender-independent, i-vector extractob ptoduces
a distance (Pearson product moment correlation) betwesny qud
utterance i-vectors. This distance was used as a sidedefoofed

provides unigue score for each query-utterance pair.

We summarized our results in table 3. The conclusion is that
side-info is helpful for a single subsystem. The QU bri#§ abso-
lute improvement on dev ar¥; absolute improvement on eval data.
This shows over-fitting of QU side-info. The LID brings onipy

LID can be considered also as another subsystem becaudeuit ca
lates distance of query and utterance i-vectors. The acgafd |D

language scoring (see table 5) shows that LID extracts sareg/q
utterance information as the per language scores are |loaet for
minChaze.

When fusion ofi 1 calibrated subsystems was done, the side-info
started to degrade system accuracy on evaluation dataalftyadue

For both DTW and AKWS subsystems, the local maxima of frame-o the over-fitting.
by-frame accumulated detection scores are selected aglasmnde-
tections. For overlapping detections, only the best sgooimes are
preserved. For the AKWS, the accumulated detection scoeesog-
malized by the length of the detection, for the DTW, by thegtbrof
warping path (done on-the-fly). After the length normalizas, we

apply anm-normwhich was found the best last year [3]. Finally, we

take the highest score of particular query in particulagrattice and
attach this score to the query—utterance pair.

4. SCORE CALIBRATION

Next, we calibrate the scores using binary logistic regoessvhere
the input to the logistic regression is a vector of normaligeores
augmented with different per-term, per-query side-infation

5. FUSION

We used two fusions: the first one on the level of feature vecto
going to DTW (inspired by Fuentes et al. [12]). Here, we coeca
nated feature vectors ¢fGP BN atomic systems and then processed
them by our DTW subsystem (denoteddfission). Fuentes reported
significant gain from this fusionl(% on MTWV) on the SWS2013
data. However, we got on8% on MTWYV and0.7% on minChz.
improvement compared to single best subsystem (DTW-GR{Cze
BN), see linesl and4 in table 5. Anyway, we let théfusion sub-
system in for “bigfusion”.

The second type of fusion was on level on subsystem outputs
(system combination). All calibrated scores from the ifdlial sub-

scores, denoted asideinfo number of phonemes, log of num-
ber of phonemes, number of speech frames, log of number etbpe

systems were fused using binary logistic regression linksssifier.
11 subsystems took part in the bigfusion systerh AKWS based
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Approach sideinfo evalminChge MTWV devminChqe MTWV
bigfusion - primary QU 0.465(0.310/0.461/0.673) | 47.3 | 0.461(0.309/0.513,0.624) 16.4
bigfusionnoside 0.464(0.323/0.470/0.660) 49.7 0.486(0.333/0.554/0.624) 49.8
bestsingle QU LID | 0.528(0.374/0.546/0.714) 41.9 0.533(0.376/0.600,/0.675) 41.2
LID 0.926(0.897/0.946/0.920) 1.3 0.929(0.896/0.961,/0.901) 2.0
AKWS-cz QU 0.648(0.519/0.645/0.848) 25.6 0.641(0.500/0.680/0.824) 25.0
AKWS-T3-cz QU | 0.674(0.597/0.694/0.756) | 19.4 | 0.673(0.581/0.742/0.718) | 19.2
bigfusionnoside - bestmetrig 0.455(0.310/0.462/0.653) 50.0 0.479(0.321/0.549/0.611) 50.6

Table 4. Results for the approaches in minimuih.. and minimum TWV with per query typel(T2/T3). The bigfusion system was our
primary system submitted to the evals. AKWS-cz and AKWS-E3experiment on3lqueries. Notice accuracy improvement dhbut loss
on overall score.

Approach sideinfo ALL Albanian Basque Czech NNEnglish Romanian Slovak

DTW-GP-Czech BN - 0.586(42.7) | 0.519(43.8) | 0.773(32.3) | 0.591(42.8) | 0.853(11.2) | 0.368(59.4) | 0.444(57.5)
DTW-SP-Czech Post - 0.677(33.8) | 0.551(40.7) | 0.843(24.0) | 0.693(29.0) | 0.881(8.9) | 0.424(47.2) | 0.564(49.3)
AKWS-SP-Czech Pos - 0.665(25.7) | 0.799(12.9) | 0.865(13.6) | 0.628(35.2) | 0.927(2.9) | 0.597(29.9) | 0.394(59.4)
DTW-GP-4fusion BN - 0.579(44.7) | 0.522(44.7) | 0.773(36.1) | 0.590(41.4) | 0.831(13.6) | 0.329(65.3) | 0.453(55.8)
bigfusion - 0.486(49.8) | 0.497(46.4) | 0.715(38.7) | 0.505(50.1) | 0.811(16.2) | 0.279(65.2) 0.320(67.4)
bigfusion QU 0.461(46.4) | 0.525(41.8) | 0.688(36.5) | 0.474(49.1) | 0.796(16.3) | 0.295(56.6) | 0.310(65.5)
LiD 0.929(2.0) 0.903(2.1) 0.984(0.4) 0.918(4.9) 0.973(0.2) 0.930(0.7) 0.930(1.3)

Table 5. Dev data results (and per language results)ininC,... and minimum TWV in parenthesis. Notice: 1) Difference betwsest
single subsystem (ling and4fusion on feature level (lin¢). 2) Difference between DTW (li2¢ and AKWS (ling) approaches on SP-Czech
Post 3) Difference between best single subsystemijJiaad bigfusion (lines and6).

on SD Post3 DTW based on SD Post,DTW based on GP BN} by about twice more Toccurrences than2IT3 (see table 1). While
DTW based onifusion. We summarized results of interesting sub-implementing “softness” to cover2IT3, we get hit on T where any
systems and the bigfusion in table 5. The bigfusion imprayed softness in unwanted. Our conclusion here is, that it doesna&e
score of best single subsystem W% minCie. sense to cover X queries by a special approach (search algorithm),
as these queries are covered enough by “softness” of thdasthn
DTW algorithm.
6. RESULTS, T2 AND T3 QUERIES
In table 5, we analyzed also per language accuracy. We atmclu
Table 4 summarizes accuracies of systems we submitted to tfBat good accuracy is achieved in scenarios, where the queryt-
QUESST®014 evaluations. In this scetion we aim at query type {erance channel and type of speech are matching. What issogo
analysis (the impact of score calibration was discusseedtian 4 IS the very low accuracy on non-native English. This is plpa
and fusion was discussed in section 5). As you can noticeTthe ¢aused by the channel rather than accent mismatch (as thetadc

queries — exact match — achieved the best accufBBY( minCrae TEDXx is not so strong). Next, we observed superiority of 'AKWS
for bigfusion system). The Tqueries — variations — achieved sig- over DTW (based on SP Czech Post) on Slovak data. This can be
nificantly lower accuracy0(461 minCy..) and the B —reordering ~ €xplained by language match (Slovak is very close to Czeot) a
— achieved the worst on@.673 minCnz.). This is given by 1) also type of speech match (SD Czech achieved higher acctiracy
no optimization of our systems om2Tand T and 2) difficulty to GP Czech).
identify T2/T3 in randomized data and search them correctly.

Although no T2/T3 handling was included in our bigfusion
submission system, we experimented with improving acqueac
these queries. The AKWS approach was modified to allow the las
phoneme in the query to be any phoneme. We found a tiny im- 7. CONCLUSIONS
provement 0f0.4% on T2, but overall1% minCy.. deterioration.
The other experiments (for example, use “wild-card” for fhet,

second, and the last two phonemes) led to loss of accuracyceve we presented our QUESST14 bigfusion system, which achieved
T2. the best accuracy ofi,... metric. Moreover, our single best system

The best approach to cope with We found was to split queries based on Czech GlobalPhone bottleneck features, DTW aed sid
longer thari7 phonemes in the middle. Then, we searched for thesénfo calibration scored the second with differenoerf). We con-
two particular sub-queries independently. Finally, we geerthe  clude the superiority of bottleneck features in DTW to pdsts
sub-query results by forbidding sub-queries overlap lotigan 10 in cross-channel and multilingual environments. We fouedrBon
frames. Results of this experiment are in table 4 lii@end6. Sys-  product moment correlation distance a good universal metthile
tem AKWS-cz is reference system where we search firilthe  one can achieve a small improvement by using log-cosinartdist
same way as for T (exact match). We implemented the above men-for posteriors and cosine distance for bottle-necks. Ounclesion
tioned split to sub-queries in system AKWS-T3-cz. We gotriove-  on different query types is, that there is no advantage ahgopith
ment9% on T3 but the overall deterioration 4% of Cr... oneval  query variations (%) as these can lead to significant accuracy loss on
queries. exact match (T). On the other hand, there is interesting room to im-

In all T2/T3 experiments, we obtained a small improvement onprove search algorithms for reordering querie8)(While avoiding
T2/T3 followed by large loss of accuracy orl Tit can be explained accuracy loss on exact matchl{T
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