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ABSTRACT

The paper investigates into Query by Example (QbE) – a spoken
term detection technique with queries entered by voice. It describes
BUT QbE system that achieved the best accuracy in MediaEval
QUESST2014 evaluations. This evaluation was challenging because
of severe mismatch between queries and utterances, and introduction
of new types of queries. The paper provides an analysis of DTW
sub-system’s in mismatched conditions (especially targeting DTW
metrics) and discusses approaches investigated for QUESST2014:
generation of calibration side-information by a language identifica-
tion system, and handling T2 and T3 queries relaxing the constraints
of an exact match. All results are provided on QUESST2014 devel-
opment and evaluation data.

Index Terms— query-by-example spoken term detection, spo-
ken document retrieval, acoustic keyword spotting, dynamic time
warping, fusion, m-norm, logistic regression

1. MOTIVATION

As shown in a recent summary paper [1], the QbE approaches can
be roughly divided into two categories: the pattern-matching ones
look for similarities at the feature level and are mostly represented
by a Dynamic Time Warping (DTW)-style comparison of query and
utterance segments. The second category is represented by sym-
bolic systems (based on Weighted Finite State Transducers)where
the queries and utterances are represented by a sequence or graph
of discrete symbols (phones for example). Our Acoustic Keyword
Spotting (AKWS) builds a model of query and processes the utter-
ances by looking at log-likelihood ratio of the keyword model and
a background model. The AKWS can be considered in between the
DTW and symbolic systems.

The QUESST2014 dataset was challenging because of mixed
language, acoustic conditions, and3 types of queries (exact match,
variation, and reordering). We wanted to thoroughly compare and
combine the DTW and the AKWS approaches. In our previous re-
search aiming at SWS2012 evaluations [2], we found bottleneck fea-
tures superior to standard posteriors, so our goal was to compare pos-
terior and bottleneck features in mismatched-channel scenario and
also to compare different distance metrics for DTW.

In comparison to our last year system [3], we used lower number
of systems in parallel and used bottleneck features. Our goal was
to further investigate the sensitivity of particular approaches to the
language / channel mismatch in the query and utterance data.Also,
coping with different types of queries was challenging thisyear [4].
Similarly to SWS2013, we used systems already available at BUT
(socalled Atomic Systems).

* Igor Szöke was supported by Grant Agency of Czech Republicpost-
doctoral project No. GP202/12/P567.

min./seg. dev / eval type

Albanian 127/968 50(20/13/16) / 50(18/13/17) read
Basque 192/1841 70(16/33/21) / 70(30/19/21) broadcast
Czech 237/2652 100(77/24/27) / 100(73/27/32) conversational
NNEnglish 273/2438 138(46/46/46) / 138(46/46/46) TEDx
Romanian 244/2272 100(46/21/31) / 100(43/27/30) read
Slovak 312/2320 102(102/53/14) / 97(97/47/10) parliamentary

SUM dev 1385/12491 560(307/190/155) mixed
SUM eval 1385/12491 555(307/179/156) mixed

Table 1. Set of6 European languages. The first column: amounts of
data per language. The second column: the numbers of development
(dev) and evaluation (eval) queries (all(T1/T2/T3)). The last column
is type of speech.

2. DATA AND SCORING

The QUESST2014 organizers brought the evaluations closer to a real
scenario – voice search over a set of audios. The database consists
of only one set of utterances – used both for development and eval-
uation – and two sets of queries: one for development and the other
for evaluation. The overall length of utterance data is23 hours, in6
languages (table 1).

Utterances in the search repository were shuffled and no side
information was provided to participants regarding the spoken lan-
guage, acoustic conditions, or query type. Therefore, any adaptation
needs to rely on unsupervised algorithms. QUESST2014 brings two
interesting research areas:

• Cross-channel problem in query – utterance. All of the
queries were dictated and recorded by mobile telephone. The
utterances were from different sources and speaking style
(read, conversational, lecture, broadcast).

• 3 different types of queries: Type1 (T1) queries seek the
exact match (the same way as in SWS2013, SWS2012). If
the query iswhite horse, an utterances such as...my
white horse is nice... should be found. Type2
(T2) queries are queries with variations (for example in-
flections). Utterances such as...my whiten horses
are nice... are expected. Type3 (T3) queries are
queries with reordering, for example...my horses are
nice and white.... Each word in query has at least4
phonemes, no other information was provided. As the queries
were randomized, each participant should find a way how to
detect T1/T2/T3 and search them. One query could appear in
all forms (T1/T2/T3) in the data.

The evaluation goal was changed from keyword spotting task
(Where is the occurrence of Query005?) to detection task (Is
Query005 in Utterance0156?). Normalized cross-entropy cost
(Cnxe) was chosen as primary metric by the organizers [4]. Well
known Term Weighted Value (TWV) defined by NIST [5] was the
secondary metric. Actual TWV (ATWV) score is calculated ac-
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cording to a hard YES/NO decision for each detection given bya
system. Maximum TWV (MTWV) is then calculated by searching
for a global threshold (to set YES/NO decision) with respectto max-
imization of ATWV. ATWV = 1 means100% accurate system
(no false alarms (FA) and no misses), and lowerATWV represents
worse system. System with no output hasATWV = 0. ATWV can
be negative (no hits, lots of FAs).

On the other hand,Cnxe is based on system scores. It mea-
sures the fraction of information, with regard to the groundtruth,
that is not provided by system scores, assuming that they canbe
interpreted as log-likelihood ratios (LLR). A perfect system would
getCnxe = 0 and a non-informative system would getCnxe = 1,
whereasCnxe > 1 would indicate severe miscalibration of the log-
likelihood ratio scores. More details on both evaluation metrics used
for QUESST2014 can be found in [1].

As Cnxe was the primary metric, we did not optimize on TWV.
We just found the best global threshold (maximizing the TWV by
hard YES/NO decision). The QUESST2014 dataset is available
here1.

3. SYSTEM OVERVIEW

We followed our system architecture from SWS2013 [3]. Only brief
system description is provided with emphasis on differences and new
things in this paper. The reader is kindly asked to read also our
previous paper [6].

Our Query-by-Example (QbE) system (figure 1) is based on
phoneme-state posterior extractors and bottleneck features extrac-
tors. Each extractor (denoted as anAtomic system) is an artificial
neural network taking raw audio file as the input (either query ex-
ample or test utterance) producing phoneme state posteriors (POST)
or bottleneck features (BN) as the output. We used7 Atomic Sys-
tems –3× phoneme state posteriors,4× bottleneck features. See
section 3.1 for details.

Phoneme state posteriors were then processed by aQuery-by-
Example Subsystems. We have two types of subsystems, one based
on the AKWS (section 3.2) and the other based on the DTW (sec-
tion 3.3). The input of each subsystem is the matrix of phoneme
state posteriors or bottleneck features for query example and utter-
ance. The output is a set of detections of given query examplein the
utterance.

The next step is ascore normalization and calibration. It takes
the set of detections and normalizes the scores. Next, only one score
per query-utterance pair is generated. Finally, the scoresare cal-
ibrated with respect to the normalized cross entropy –Cnxe (sec-
tion 4).

Fusion is the final stage of the QbE system. It takes calibrated
outputs of all subsystems and fuses them into one output. Again, we
optimize the fusion parameters with respect to the normalized cross
entropy –Cnxe (section 5).

3.1. Atomic Systems

All our Atomic systems use Artificial Neural Network classifiers
(ANN) to estimate per-frame phoneme state posterior probabilities
(posteriorgrams) or bottle-neck features (outputs of hidden layer).
Our motivation was to re-use already trained ANNs availableat Brno
University of Technology (BUT).

1http://speech.fit.vutbr.cz/software/quesst-2014-multilingual-database-
query-by-example-keyword-spotting
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Fig. 1. Query-by-Example system schema: Q means Queries as the
input, U means Utterances as the input, SD means SpeechDat atomic
systems where the output are phoneme posteriors. GP means Glob-
alPhone atomic systems where the output are bottleneck features.

The ANNs were trained as acoustic models for phoneme recog-
nizers in several past BUT projects. Altogether, we ended-up with 7
Atomic systems with the following architectures and trained on the
following datasets:

• 3× SpeechDat2 (Czech, Hungarian and Russian; monolin-
gual LCRC systems [7], trained on20 hours of read speech
per language) for estimations of phoneme state posteriors.
Denoted asSD Post. The Hungarian system was also used
as Speech Activity Detector (SAD).

• 4× GlobalPhone (Czech, Portuguese, Russian, Spanish;
monolingual stacked-bottleneck systems [8, 9] for BN fea-
tures, trained on20 hours of read speech per language).
Denoted asGP BN.

3.2. Acoustic Keyword Spotting based QbE

In AKWS [6], we build an HMM for each query and then calcu-
late log likelihood ratio between the query model and a background
model (free phone loop). In QbE task, however, we need to generate
the phoneme sequence for each of the acoustic examples – aquery-
to-text step. This is achieved by decoding each example using free
phoneme loop. We remove all silence labels (if present) in decoded
queries. The AKWS works on top of phoneme posteriors.

3.3. Dynamic Time Warping based QbE

In our implementation, we follow the standard QbE recipe – subse-
quence DTW [10]. A single DTW is run for each combination of
query and utterance and the query is allowed to start at any frame
of the utterance. When selecting the locally optimal path inthe
standard DTW algorithm, transition from the smallest accumulated
distance is chosen. In our implementation, we compare the accu-
mulated distances (including the current local distance) normalized
by the corresponding path lengths on-the-fly. Note that in the stan-
dard subsequence DTW, no on-the-fly path length normalization in
performed, which results in the inappropriate preference for shorter
(recently started) paths. We applied SAD and removed all silence

2http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-
temporal-context
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Features corr cos euc logcos logdot
SD CZ POST 0.687(0.534) 0.768(0.633) 0.852(0.806) 0.649(0.453) 0.658(0.460)
SD HU POST 0.646(0.505) 0.712(0.584) 0.805(0.731) 0.679(0.510) 0.691(0.523)
SD RU POST 0.653(0.509) 0.706(0.557) 0.789(0.712) 0.652(0.495) 0.662(0.510)
GP CZ BN 0.593(0.435) 0.585(0.425) 0.777(0.672) 0.722(0.601) -
GP PO BN 0.659(0.536) 0.650(0.522) 0.882(0.830) 0.819(0.750) -
GP RU BN 0.668(0.533) 0.658(0.516) 0.862(0.800) 0.814(0.726) -
GP SP BN 0.673(0.558) 0.663(0.540) 0.849(0.773) 0.822(0.741) -
GP CZ+PO+RU+SP BN4fusion 0.586(0.432) 0.579(0.418) 0.761(0.671) 0.713(0.601) -

Table 2. Comparison of distance metrics scored byminCnxe. Number for T1 queries only are shown in parenthesis. SD POSTdenotes
3-state posterior features from some of SpeechDat-East languages, GP BN denotes bottle-neck features from some of GlobalPhone languages.
The last line is a fusion.

System sideinfo eval dev
LID - 0.926(1.3) 0.929(2.0)
bestsingle - 0.556(42.4) 0.586(42.7)
bestsingle QU 0.535(41.7) 0.539(40.5)
bestsingle LID 0.551(43.4) 0.581(43.6)
bestsingle QU+LID 0.528(41.9) 0.533(41.2)
bigfusion - 0.464(49.7) 0.486(49.8)
bigfusion QU 0.465(47.3) 0.461(46.4)
bigfusion LID 0.473(49.0) 0.496(49.5)
bigfusion QU+LID 0.470(46.7) 0.466(46.2)

Table 3. Comparison of different calibration side-info. The scores
are minCnxe with MTWV in parenthesis. The bestsingle is single
QbE subsystem based on DTW on GP Czech bottlenecks. The big-
fusion system is fusion of11 subsystems. LID is a subsystem based
only on LID sideinfo used as scores. Notice the differences between
dev and eval accuracy for single subsystem and system fusion.

frames from queries. We experimented with different distance met-
rics and input features in DTW.

We used different metrics for measuring distances between
query-utterance vectors:Pearson product moment correlationdis-
tance (corr),cosinedistance (cos),Euclideandistance (euc),loga-
rithm of the cosinedistance (logcos) andlogarithm of the dot product
(logdot) – see table 2. The Euclidean distance gave us the worst re-
sults for both posteriors and BNs. For posteriors, the logarithm of
the cosine provided us the best results and we also obtained ac-
ceptable accuracy using the logarithm of the dot product. For BNs,
the best accuracy was clearly achieved using the cosine distance.
However, we used the Pearson correlation as the main metric for
QUESST2014, as it seems to be the most universal distance metric
regardless the features. Note, that accuracy on T1 (in parenthesis)
shows the same trends as the overall score.

3.4. Score normalization

For both DTW and AKWS subsystems, the local maxima of frame-
by-frame accumulated detection scores are selected as candidate de-
tections. For overlapping detections, only the best scoring ones are
preserved. For the AKWS, the accumulated detection scores are nor-
malized by the length of the detection, for the DTW, by the length of
warping path (done on-the-fly). After the length normalizations, we
apply anm-normwhich was found the best last year [3]. Finally, we
take the highest score of particular query in particular utterance and
attach this score to the query–utterance pair.

4. SCORE CALIBRATION

Next, we calibrate the scores using binary logistic regression, where
the input to the logistic regression is a vector of normalized scores
augmented with different per-term, per-query side-information
scores, denoted assideinfo: number of phonemes, log of num-
ber of phonemes, number of speech frames, log of number of speech

frames, average log-posterior of speech frames taken from SAD
and optionally the language indentification (LID) i-vectorscore.
The side-info is generated for queries and utterances so thefi-
nal “feature vector” for calibration consists of:1 detection score
(query–utterance pair),5 query side-info,5 utterance side-info. The
logistic regression parameters are trained on developmentset. We
denote this query+utterance side-info parameters asQU.

Another set of experiments was performed with a language iden-
tification (LID) system. The motivation to use LID was simple: the
languages of query and utterance should be matching, for example,
a Czech query should not be searched in Basque utterances, etc. We
used a state-of-the-art system based on i-vectors [11]. As acous-
tic features, we used Shifted Delta Cepstra. Gaussian mixture model
with 2048 Gaussians serves as Universal Background Model for600
dimensional, gender-independent, i-vector extractor. LID produces
a distance (Pearson product moment correlation) between query and
utterance i-vectors. This distance was used as a side-info (denoted
asLID), and we also scored LID as separate subsystem as the LID
provides unique score for each query-utterance pair.

We summarized our results in table 3. The conclusion is that
side-info is helpful for a single subsystem. The QU bring5% abso-
lute improvement on dev and2% absolute improvement on eval data.
This shows over-fitting of QU side-info. The LID brings only tiny
improvement of0.5% on dev and eval data without over-fitting. The
LID can be considered also as another subsystem because it calcu-
lates distance of query and utterance i-vectors. The accuracy of LID
subsystem0.926 shows low performance which is expected, because
the LID is not suitable for keyword search. On the other hand,per
language scoring (see table 5) shows that LID extracts some query-
utterance information as the per language scores are lower than1 for
minCnxe.

When fusion of11 calibrated subsystems was done, the side-info
started to degrade system accuracy on evaluation data. Probably due
to the over-fitting.

5. FUSION

We used two fusions: the first one on the level of feature vectors
going to DTW (inspired by Fuentes et al. [12]). Here, we concate-
nated feature vectors of4 GP BN atomic systems and then processed
them by our DTW subsystem (denoted as4fusion). Fuentes reported
significant gain from this fusion (10% on MTWV) on the SWS2013
data. However, we got only2% on MTWV and0.7% on minCnxe

improvement compared to single best subsystem (DTW-GP-Czech
BN), see lines1 and4 in table 5. Anyway, we let the4fusion sub-
system in for “bigfusion”.

The second type of fusion was on level on subsystem outputs
(system combination). All calibrated scores from the individual sub-
systems were fused using binary logistic regression linearclassifier.
11 subsystems took part in the bigfusion system –3 AKWS based
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Approach sideinfo evalminCnxe MTWV devminCnxe MTWV
bigfusion - primary QU 0.465(0.310/0.461/0.673) 47.3 0.461(0.309/0.513/0.624) 46.4
bigfusionnoside 0.464(0.323/0.470/0.660) 49.7 0.486(0.333/0.554/0.624) 49.8
bestsingle QU LID 0.528(0.374/0.546/0.714) 41.9 0.533(0.376/0.600/0.675) 41.2
LID 0.926(0.897/0.946/0.920) 1.3 0.929(0.896/0.961/0.901) 2.0
AKWS-cz QU 0.648(0.519/0.645/0.848) 25.6 0.641(0.500/0.680/0.824) 25.0
AKWS-T3-cz QU 0.674(0.597/0.694/0.756) 19.4 0.673(0.581/0.742/0.718) 19.2
bigfusionnoside - bestmetric 0.455(0.310/0.462/0.653) 50.0 0.479(0.321/0.549/0.611) 50.6

Table 4. Results for the approaches in minimumCnxe and minimum TWV with per query type (T1/T2/T3). The bigfusion system was our
primary system submitted to the evals. AKWS-cz and AKWS-T3-cz is experiment on T3 queries. Notice accuracy improvement on T3 but loss
on overall score.
Approach sideinfo ALL Albanian Basque Czech NNEnglish Romanian Slovak
DTW-GP-Czech BN - 0.586(42.7) 0.519(43.8) 0.773(32.3) 0.591(42.8) 0.853(11.2) 0.368(59.4) 0.444(57.5)
DTW-SP-Czech Post - 0.677(33.8) 0.551(40.7) 0.843(24.0) 0.693(29.0) 0.881(8.9) 0.424(47.2) 0.564(49.3)
AKWS-SP-Czech Post - 0.665(25.7) 0.799(12.9) 0.865(13.6) 0.628(35.2) 0.927(2.9) 0.597(29.9) 0.394(59.4)
DTW-GP-4fusion BN - 0.579(44.7) 0.522(44.7) 0.773(36.1) 0.590(41.4) 0.831(13.6) 0.329(65.3) 0.453(55.8)
bigfusion - 0.486(49.8) 0.497(46.4) 0.715(38.7) 0.505(50.1) 0.811(16.2) 0.279(65.2) 0.320(67.4)
bigfusion QU 0.461(46.4) 0.525(41.8) 0.688(36.5) 0.474(49.1) 0.796(16.3) 0.295(56.6) 0.310(65.5)
LID 0.929(2.0) 0.903(2.1) 0.984(0.4) 0.918(4.9) 0.973(0.2) 0.930(0.7) 0.930(1.3)

Table 5. Dev data results (and per language results) inminCnxe and minimum TWV in parenthesis. Notice: 1) Difference between best
single subsystem (line1) and4fusion on feature level (line4). 2) Difference between DTW (line2) and AKWS (line3) approaches on SP-Czech
Post 3) Difference between best single subsystem (line1) and bigfusion (line5 and6).

on SD Post,3 DTW based on SD Post,4 DTW based on GP BN,1
DTW based on4fusion. We summarized results of interesting sub-
systems and the bigfusion in table 5. The bigfusion improvedthe
score of best single subsystem by10% minCnxe.

6. RESULTS, T2 AND T3 QUERIES

Table 4 summarizes accuracies of systems we submitted to the
QUESST2014 evaluations. In this scetion we aim at query type
analysis (the impact of score calibration was discussed in section 4
and fusion was discussed in section 5). As you can notice, theT1
queries – exact match – achieved the best accuracy (0.310 minCnxe

for bigfusion system). The T2 queries – variations – achieved sig-
nificantly lower accuracy (0.461 minCnxe) and the T3 – reordering
– achieved the worst one (0.673 minCnxe). This is given by 1)
no optimization of our systems on T2 and T3 and 2) difficulty to
identify T2/T3 in randomized data and search them correctly.

Although no T2/T3 handling was included in our bigfusion
submission system, we experimented with improving accuracy on
these queries. The AKWS approach was modified to allow the last
phoneme in the query to be any phoneme. We found a tiny im-
provement of0.4% on T2, but overall1% minCnxe deterioration.
The other experiments (for example, use “wild-card” for thefirst,
second, and the last two phonemes) led to loss of accuracy even on
T2.

The best approach to cope with T3 we found was to split queries
longer than7 phonemes in the middle. Then, we searched for these
two particular sub-queries independently. Finally, we merged the
sub-query results by forbidding sub-queries overlap longer than10
frames. Results of this experiment are in table 4 lines5 and6. Sys-
tem AKWS-cz is reference system where we search for T3 in the
same way as for T1 (exact match). We implemented the above men-
tioned split to sub-queries in system AKWS-T3-cz. We got improve-
ment9% on T3 but the overall deterioration is2.4% of Cnxe on eval
queries.

In all T2/T3 experiments, we obtained a small improvement on
T2/T3 followed by large loss of accuracy on T1. It can be explained

by about twice more T1 occurrences than T2/T3 (see table 1). While
implementing “softness” to cover T2/T3, we get hit on T1 where any
softness in unwanted. Our conclusion here is, that it does not make
sense to cover T2 queries by a special approach (search algorithm),
as these queries are covered enough by “softness” of the standard
DTW algorithm.

In table 5, we analyzed also per language accuracy. We conclude
that good accuracy is achieved in scenarios, where the queryand ut-
terance channel and type of speech are matching. What is surprising
is the very low accuracy on non-native English. This is probably
caused by the channel rather than accent mismatch (as the accent of
TEDx is not so strong). Next, we observed superiority of AKWS
over DTW (based on SP Czech Post) on Slovak data. This can be
explained by language match (Slovak is very close to Czech) and
also type of speech match (SD Czech achieved higher accuracythan
GP Czech).

7. CONCLUSIONS

We presented our QUESST2014 bigfusion system, which achieved
the best accuracy onCnxe metric. Moreover, our single best system
based on Czech GlobalPhone bottleneck features, DTW and side-
info calibration scored the second with difference (0.7%). We con-
clude the superiority of bottleneck features in DTW to posteriors
in cross-channel and multilingual environments. We found Pearson
product moment correlation distance a good universal metric, while
one can achieve a small improvement by using log-cosine distance
for posteriors and cosine distance for bottle-necks. Our conclusion
on different query types is, that there is no advantage of coping with
query variations (T2) as these can lead to significant accuracy loss on
exact match (T1). On the other hand, there is interesting room to im-
prove search algorithms for reordering queries (T3) while avoiding
accuracy loss on exact match (T1).
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and Ekaterina Egorova, “The language-independent bottleneck
features,” inProceedings of IEEE 2012 Workshop on Spoken
Language Technology. 2012, pp. 336–341, IEEE Signal Pro-
cessing Society.
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