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Abstract
The most popular way to apply Deep Neural Network (DNN)
for Language IDentification (LID) involves the extraction of
bottleneck features from a network that was trained on auto-
matic speech recognition task. These features are modeled us-
ing a classical I-vector system. Recently, a more direct DNN
approach was proposed, it consists of estimating the language
posteriors directly from a stacked frames input. The final deci-
sion score is based on averaging the scores for all the frames for
a given speech segment. In this paper, we extended the direct
DNN approach by modeling all hidden-layer activations rather
than just averaging the output scores. One super-vector per ut-
terance is formed by concatenating all hidden-layer responses.
The dimensionality of this vector is then reduced using a Prin-
cipal Component Analysis (PCA). The obtained reduce vec-
tor summarizes the most discriminative features for language
recognition based on the trained DNNs. We evaluated this ap-
proach in NIST 2015 language recognition evaluation. The per-
formances achieved by the proposed approach are very compet-
itive to the classical I-vector baseline.
Index Terms: LID, I-vector, DNN, hidden layers

1. Introduction
Recently, deep neural networks (DNNs) have shown significant
improvements in many speech recognition tasks over state-of-
the-art Gaussian mixture model (GMM) systems [12]. The rea-
son for the improvements is attributed to DNNs ability to model
complex, non-linear manifolds that may be separating features
from different classes of speech sounds [1, 2, 4, 12]. Motivated
by this success, [2] used DNNs for language recognition task.
The approach involves training a DNN to classify language tar-
gets directly, at each input frame. For a given test segment,
language scores are computed by time-averaging log-posterior
probabilities of the DNN output layer [4]. The approach showed
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promising results by performing better than I-vector system
[6, 11] in short-segment conditions (less than 3 seconds) [1, 2].
Whereas, I-vector system is shown to be performing better in
longer segment (10, 30 and 120 second) conditions.

In this work we propose a technique to improve frame-by-
frame DNN LID. The logistic regression layer used at the output
of DNN can cause significant loss in the information required to
discriminate languages. We hypothesize that hidden layer acti-
vations contain better language discriminant information. Fur-
thermore, the hidden layer information can be complementary
to output activations, used in direct DNN-LID. Results from the
LID experiments support our hypothesis.

The LID experiments are performed on NIST Language
Recognition Evaluation (LRE) 2015 corpus [5]. Compared to
direct DNN approach, we achieved 38 % relative improvement
in development set. Also, we outperform state-of-the-art I-
vector system [3, 10, 11] in evaluation (eval) set of NIST LRE
2015. Combination of proposed technique and state-of-the-art
I-vector system resulted in a 4 % relative improvement.

The rest of the paper is organized as follows: section 2 de-
scribes NIST LRE 15 database we use in this work. The direct
DNN approach as well as the proposed DNN approach are dis-
cussed in section 3. Section 4 shows experimental analysis of
the proposed system with respect to various hyper-parameters.
Comparison with state-of-the-art I-vector system [9] is pre-
sented in section 5. Section 6 presents conclusions and future
work along the proposed approach.

2. NIST LRE 2015

Table 1: Language clusters present in NIST LRE 2015
database[5].

Cluster Target Languages

Arabic (ara) Egyptian, Iraqi, Levantine, Maghrebi,
Modern Standard

Chinese (chi) Cantonese, Mandarin, Min, Wu
English (eng) British, General American, Indian
French (fre) West African, Haitian Creole
Slavic (sla) Polish, Russian

Iberian (ibe)
Caribbean Spanish, European Spanish,
Latin American Spanish,
Brazilian Portuguese

All the experimental results shown in this paper are per-
formed on primary condition of NIST LRE 2015. The database
contains 20 target languages, which are grouped into 6 clusters
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[5]. Table 1 describes the language clusters in the corpus. The
task is designed to recognize dialect within its language cluster.
The training data provided for the primary condition has been
divided into training (train) and development (dev) sets. The
train set is composed of 60 % of the original training data and
dev set consist of the remaining 40 %. The segments belonging
to the dev set are further divided into short cuts, ranging from
3 to 30 seconds of speech [9]. This split resulted in 3042 seg-
ments (248 hours of speech) for train set, and 42295 segments
(146 hours of speech) for dev set [9]. The results are reported
on dev and evaluation (eval) sets.

3. DNN for Language ID
3.1. Frame-by-frame DNN classification

x1 x2 x3 xT-1xT

Figure 1: Frame-by-frame DNN Language Identification

Figure 1 shows the architecture of the DNN used for LID
[1, 2]. It is a fully-connected feed-forward DNN consisting of
3 hidden layers. Each hidden layer has 2560 neurons with Rec-
tified Linear activation function [2]. The output softmax layer’s
dimensionality is equal to the number of target languages N`.
We used 40 dimensional log-Mel filterbank features to train the
neural network. A 3-second sliding window-based mean and
variance normalization is applied to the log-Mel features. A
context window of 21 frames (10 frames on each side of the
current frame) is applied at the input, resulting in 840 dimen-
sional feature vector at every frame. Just before presenting the
features at input layer of the DNN, a global mean and variance
normalization is applied. This results in a neural network with
16 million parameters (including weights and biases), for a 20
target language case.

The network is trained using stochastic gradient descent
(SGD) to minimize cross-entropy between the frame level lan-
guage labels and its outputs. The SGD uses minibatches of size
200 frames. We start with an initial learning rate of 0.001, and
the learning rate has been halved after every epoch. We did not
use any cross-validation set for scheduling learning rate.

Once the network is trained, scores of a test utterance are
computed by accumulating the log-likelihood as:

s` =
1

N

N∑
t=1

log p(L`|xt, θ) (1)

where p(L`|xt, θ) is the posterior probability of language `, ob-
tained at the output of neural network [1, 2]. xt is input feature
vector at frame t and N is the total number of frames in the test
segment. θ defines the neural network.

3.2. Modeling hidden information

In this section, we describe proposed technique to model infor-
mation present in hidden layers of the DNN. This approach is il-

lustrated in figure 2. Given a speech utterance, we time-average
activations of hidden and output layers. The time-averaged ac-
tivations of all the layers are stacked to form a single, duration
independent vector, referred to as DNN super-vector. Dimen-
sionality of the DNN super-vector is reduced using principal
component analysis (PCA). This results in a low dimensional
fixed length representation of input speech utterance, similar
to classical I-vector used in speaker and language recognition
tasks [3, 11]. This vector is referred to as DNN I-vector from
here on.

Gaussian linear classifier (GLC) has been shown to be an
effective classifier on I-vectors for language recognition [6, 9].
We also propose to use (GLC) in the DNN I-vectors system.
In this probabilistic model,the class–conditional log–likelihood
for µh given language ` can be computed as:

logP (µh|`) =
1

2
log |Λ|− 1

2
(µh −m`)

TΛ(µh −m`)+k ,

(2)
where k is a data–independent constant. The model parameters
can be easily obtained by Maximum–Likelihood estimation [9,
14].

3.3. Performance Comparison

In order to compare direct DNN system with proposed DNN
I-vector system, we trained a single neural network to classify
all 20 languages. The architecture of this network is described
in section 3.1. The first row of table 2 shows the Cavg obtained
from direct DNN approach on dev and eval sets. The perfor-
mance of DNN I-vector system is reported in the second row
of the same table. Both systems are based on the same neural
network. For each utterance, the hidden layer activations are
time-averaged to compute the super-vector. A DNN I-vector
of dimension 1800 is computed by reducing the dimensionality
of the corresponding super-vector. A Gaussian liner classifier
is trained on the DNN I-vectors to classify the 20 target lan-
guages. From the table 2, we can conclude that performance of
the DNN I-vector system is significantly better than the direct
DNN system [1]. We obtained a relative improvement of 40 %
on dev set and 20 % on eval set.

Table 2: Comparison of Cavg between baseline and proposed
DNN-LID systems. DEV* REFERS TO CALIBRATED.

Cavg × 100

System dev∗ eval

1 direct DNN 13.61 45.39
2 DNN I-vector 9.90 38.12

3.4. Per–cluster DNN

Results in the previous section are obtained by training a DNN
to classify all the 20 target languages. Since the task in NIST-
LRE15 challenge is to recognize dialects given a language fam-
ily, we trained a separate DNN for each cluster. First row of
table 3 show the results of direct DNN system with a single net-
work. Performance of direct DNN system, with one network
per–cluster, is shown in second row of table 3. It is evident
from the table 3 that per–cluster DNN system seems to out-
perform the single DNN which was trained to classify all target
languages of NIST 2015 LRE.
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Figure 2: Proposed DNN I-vector system for LID.

Results of the DNN I-vector system with single network
and per–cluster networks are reported in rows 3 and 4, respec-
tively. Similar to direct DNN approach, per–cluster DNN I-
vector system is also performing better than single DNN I-
vector system. Note that in DNN I-vector case, per–cluster and
single network systems generate super-vectors of different di-
mensions. In order to have same number of parameters for the
final GLC back-end, we reduce dimensionality of super-vectors
to 1800. Based on these performances, we only use per–cluster
DNN architecture for further analysis in the rest of the paper.

Table 3: Comparison of Cavg between single-DNN and per-
cluster systems

Cavg × 100

System dev∗ eval

1 direct DNN (1 net) 13.61 45.39
2 direct DNN (6 nets) 11.69 44.71
3 DNN I-vector (1 net) 9.90 38.12
4 DNN I-vector (6 nets) 7.47 36.72

4. Experimental analysis
This section presents an empirical analysis of DNN I-vector
system with respect to various hyper-parameters in the system
architecture.

4.1. Input feature representation

Results of the DNN I-vector systems presented in previous
sections use networks which are trained on log-Mel filterbank
features. However, bottleneck features which are extracted
from neural networks trained for speech recognition task, have
shown significant improvements over acoustic features in many
LID works [7, 8, 10, 13]. In this section, we compare between
two DNN I-vector systems trained on log-Mel filterbanks and
bottleneck features. In particular, we use Stacked BottleNeck
(SBN) features [7, 8].

4.1.1. Stacked Bottleneck feature extraction:

SBN extraction pipeline consist of cascade of two neural net-
works. Each neural network has a 80 dimensional bottleneck
layer before last hidden layer. The first neural network is trained
on log-Mel filterbank features. The output of the first network is

stacked in time (t−10, t−5, t, t+5 and t+10), and given as in-
put to second neural network. Both neural networks are trained
on Switchboard database (audio and transcriptions) [9]. The
80 dimensional bottleneck features, obtained from the second
neural network are referred to as Stacked Bottleneck features.
More details about the stacked bottleneck features can be found
in [8, 7, 9]. Table 4 compares log-Mel filterbanks and SBN fea-
tures. From the table, it is evident that the performance of SBN
features is significantly better than log-Mel filterbanks. We ob-
tained 44 % and 34 % relative improvement in dev and eval sets,
respectively. The reason for this improvement can be attributed
to, robustness to acoustic mis-matches and higher discrimina-
tive information present in the SBN features [9]. For the rest
of the experiments, we use DNNs which are trained on SBN
features. We also keep the same dimensionality of the DNN
I-vectors (1800).

Table 4: Performance of DNN I-vector system with two input
features.

Cavg × 100

System dev∗ eval

1 log-Mel filter banks 7.47 36.72
2 stacked bottlenecks 4.21 23.92

4.2. Per–cluster PCA

In the previous experiments, super-vectors from multiple
DNNs, one for each cluster, are stacked to form a single super-
vector. DNN I-vector is generated from this super-vector by
reducing its dimensionality using PCA transform. For example,
in row 4 of table 3, PCA transforms 46,100 dimensional super-
vector to 1800 dimensional DNN I-vector. Estimation of PCA
transform on this high-dimensional space can be data hungry
and computationally expensive. This problem becomes more
severe if the number of hidden layers in the neural networks are
increased. One approach to mitigate the problem, is to train per–
cluster PCA transforms. That is, instead of having a single PCA
transform which operates on super-vector obtained from multi-
ple clusters, we employ 6 PCA transforms, one for each clus-
ter, and generate per–cluster DNN I-vector. Per-cluster DNN
I-vectors are then stacked and given as input to GLC. Using
per–cluster PCA approach, we can generate DNN I-vectors of
much lower dimensionality. Table 5 presents a comparison be-
tween DNN I-vector systems, using single PCA transform and
per–cluster PCA transforms. From this table, it is evident that
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Cavg of per-cluster PCA system is slightly worse than single
PCA strategy, in both dev and eval sets. But, we get a signif-
icant reduction in the number of parameters (41 million to 6
million) compared single PCA system. Also, per–cluster PCA
system is faster and has smaller memory footprint than single
PCA system.

Table 5: Performance of DNN I-vector system with different
PCA configurations.

Cavg × 100

System dev∗ eval

1 Single PCA 4.21 23.92
2 Per-cluster PCA 4.35 24.09

Table 6: Performance of DNN I-vector system with different hid-
den responses.

Cavg × 100

System dev∗ eval

1 Pre+Per–cluster DNNs+Per–cluster PCA 4.47 22.92
2 Post+Per–cluster DNNs+Per–cluster PCA 4.35 24.09
3 Pre+Per–cluster DNNs+single PCA 4.15 22.58
4 Post+Per–cluster DNNs+single PCA 4.21 23.92

4.3. Pre-nonlinearity vs Post-nonlinearity

In all previous experiments, the super-vectors were obtained by
time averaging hidden layer outputs (post-nonlinearity). Ta-
ble 6 shows the comparison with systems, where super-vectors
are obtained by time averaging hidden layer pre-activation re-
sponses (pre-nonlinearity). We can conclude from the table
that, super-vectors computed from pre-nonlinearity values are
a better choice than super-vectors computed after the activation
fuction was applied (post-nonlinearity). The reason for this be-
havior could be that, PCA transform, applied on super-vectors,
assumes the data is being generated from a Gaussian condi-
tional distribution [14]. Pre-nonlinearity values have a better
fit to Gaussian distribution than post-nonlinearity values. The
difference might disappear by using a subspace method which
is more suitable for post-nonlinearity values

5. Comparison with I-vector system
In this section, we compare DNN I-vector system with state-of-
the-art Gaussian mixture model (GMM) based I-vector system
[9, 11]. We briefly describe the baseline I-vector system [9, 11]
used in our experiments. The baseline I-vector system consists
of an universal background model (UBM) comprised by 2048
components, with diagonal-covariance. The UBM is trained on
the balanced training set in 5 iterations (up to 15 hours of ran-
domly selected training utterances per language). The dimen-
sionality of the total variabilty space is 600. More details about
this system can be found in [9, 11].

Table 7 shows the Cavg results obtained from various sys-
tems. Rows 1 and 2 present the results of direct DNN approach
proposed by [4]. Results of various DNN I-vector systems are
shown in rows 3, 4, and 5. It can be observed from the table

that the proposed approach results in close to 30 % relative im-
provement over direct DNN approach. It is important to remind
the reader that the DNNs used in DNN I-vector systems are the
same as the ones used in the direct DNN systems. The improve-
ment observed is due to modeling hidden layer responses using
proposed approach.

Performance of the proposed DNN I-vector systems are
competitive to the standard GMM I-vector system (row 6). Fu-
sion of the systems resulted in 14 % relative improvement in dev
set and 4 % relative improvement in eval set. This illustrates the
complementary nature of the proposed technique. The signifi-
cant improvement observed in dev set can be attributed be to
fusion weights, which are tuned to dev set.

Table 7: Comparison and fusion of Cavg between DNN I-vector
and I-vector systems

Cavg × 100

System dev∗ eval eval∗

1 Direct DNN (1 net) 9.15 37.35 29.66
2 Direct DNN (6 net) 5.94 33.86 25.46

3 DNN I-vector (1 net) 5.65 23.95 23.93
4 DNN I-vector (6 nets + 1 PCA) 4.15 22.58 20.73
5 DNN I-vector (6 nets + 6 PCA) 4.45 22.92 20.89

6 GMM I-vector 3.69 23.31 20.93

7 score fusion(4, 6) 3.18 – 20.10
8 score fusion(5, 6) 3.19 – 20.15
9 score fusion(4, 5, 6) 3.17 – 20.11

6. Conclusions
In this work, we proposed a technique to improve DNN based
Language recognition. The approach is based on modeling hid-
den layer information of DNNs, and extracting an I-vector like
representation for a given speech segment. The technique is
referred to as DNN I-vector system. This approach is shown
to be significantly better than direct DNN baseline. We also
showed that proposed approach is fairly robust to the choice of
hyper-parameters in the model. Experimental results indicated
that DNN I-vector system is competitive and complementary to
GMM I-vector system. In future, we would like to explore dif-
ferent ways of extracting DNN super-vector and different sub-
space methods to compute DNN I-vector.
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tilingual Bottleneck Features for Language Recognition”, in Proc.
Interspeech, 2015.
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