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ABSTRACT
In this paper, we propose a DNN adaptation technique, where the
i-vector extractor is replaced by a Sequence Summarizing Neural
Network (SSNN). Similarly to i-vector extractor, the SSNN pro-
duces a “summary vector”, representing an acoustic summary of
an utterance. Such vector is then appended to the input of main
network, while both networks are trained together optimizing single
loss function. Both the i-vector and SSNN speaker adaptation meth-
ods are compared on AMI meeting data. The results show compara-
ble performance of both techniques on FBANK system with frame-
classification training. Moreover, appending both the i-vector and
“summary vector” to the FBANK features leads to additional im-
provement comparable to the performance of FMLLR adapted DNN
system.

Index Terms— DNN, adaptation, i-vector, sequence summary,
SSNN

1. INTRODUCTION

The adaptation methods for Deep Neural Networks (DNNs) are a
very active area of research. The traditional approach which leads
to good results is training a DNN on speaker adapted FMLLR fea-
tures [1], which introduces multi-pass decoding and a dependency
on a GMM model.

To avoid the dependency, one can apply the unsupervised self-
training of the DNN. While using multi-pass decoding, a small
amount of speaker-specific parameters inside the DNN is trained
using the 1st pass hypotheses [2, 3].

Other popular methods use embedding of auxiliary information
to the DNN input, which avoids the multi-pass decoding. Very pop-
ular are i-vectors [4, 5], which encode both the speaker and channel
characteristics in a compact fixed-length representation.

Soon after the i-vectors revolutionized the speaker identification
systems, they influenced the Automatic Speech Recognition (ASR).
At first as additional input features to discriminatively trained Re-
gion Dependent Linear Transform for GMMs [6], later as additional
input features of a DNN [7, 8, 9], while the i-vectors were also suc-
cessfully used in robust ASR [10, 11, 12].

An alternative paradigm of using i-vectors as extra input features
is to train a small adaptation network, which converts the i-vectors
into offsets of input-features of the main network [13]. In this way,
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we can easily return to the speaker independent model by producing
no offsets if we do not have enough data to estimate the i-vectors
properly.

Yet another approach to extract a fixed length speaker represen-
tation is to average the activations in the last hidden layer, which gen-
erates the “d-vectors”. This can be done in a feed-forward NN [14],
or in LSTM [15]. In both cases, the networks are trained for per-
frame classification of speakers. The averaging is done after the
neural network is trained, which is fundamentally different from our
approach. In our approach, the “sequence summary” representation
is trained together with the main network, directly optimizing its ob-
jective function.

In our work, we first used i-vectors as extra input features, then
we replaced the i-vector extractor by a Sequence Summarizing Neu-
ral Network (SSNN). Similarly to i-vector extractor, the SSNN pro-
duces a “summary vector”, which represents acoustic summary of
an utterance. The “summary vector” is obtained by enclosing a
sequence-averaging operation into the last component of the SSNN.
The “summary vector” is then appended to the input of main net-
work, and both networks are trained together, while the gradients
for SSNN are calculated by back-propagating through the main net-
work, which is trained to optimize a single loss function. The exper-
iments show that comparable WER reduction can be achieved both
by i-vector and “summary vector” approach on FBANK system with
frame-classification training.

In section 2 we develop the idea of neural-network based “sum-
mary vector”, while in section 3 we provide formal formulation of
the back-propagation through the necessary sequence-averaging op-
eration. Then in section 4 we describe the experimental setup, while
section 5 presents the results, followed by a conclusion.

2. “SUMMARY VECTOR”, NN-BASED ALTERNATIVE OF
I-VECTOR

In the literature we have seen that using i-vectors as extra input fea-
tures leads to WER reductions [7, 8, 9], while at the same time
we introduce a dependency on the i-vector extractor and its mod-
els (GMM-UBM, T-matrix, Voice Activity Detection). To estimate
the i-vector properly, we also need to have enough data for the target
speaker.

In this paper, we propose an alternative, which removes this de-
pendency. We generate a neural-network based “summary vector”
similar to i-vector. As illustrated in Figure 1, this can be done by
connecting two neural networks, where the output of the Sequence
Summarizing Neural Network (SSNN) is averaged over a sentence
and concatenated to the input of the main network. This average
vector represents a summary of the sentence, while its dimension is
independent on the length of the sequence.
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Fig. 1. Topology of main-network with “sequence summary” input.
The summary is computed by Sequence Summarizing Neural Net-
work with sentence-averaging on the output.

3. FORMULATION

This section provides the formulation of feed-forward and back-
propagation of the proposed architecture of the two neural networks :
auxiliary SSNN network and the main network. Recall that the key
point is that the output of auxiliary network is averaged over a sen-
tence and used as input of the main network.

3.1. Feed-forward

Let ou = {ou,t ∈ RD|t = 1, . . . , Tu} be a sequence of D dimen-
sional feature vector of utterance u. The output posterior probability
yu,t(s) of the DNN for the HMM state s is obtained using the soft-
max activation function:

yu,t(s) , p(s|ou,t) =
exp(as(ou,t; θo)))P
s′ exp(as′(ou,t; θo))

, (1)

where as(·) is the activation at the output layer for state s given ou,t

with a set of parameters θo. The set θo includes the affine transfor-
mation parameters for all the DNN layers.

In our framework, the original input feature vector ou,t is aug-
mented by anK dimensional vector xu ∈ RK to form the following
D +K dimensional feature:

ōu,t ,

»
ou,t

xu

–
. (2)

Note that the vector xu augmenting the utterance u is independent
on time, and it can involve utterance-level characteristics of speech
(e.g., speaker, speaking style, room acoustics, and stationary noise).
For example when i-vectors are used as extra features in the obser-
vation vector, they are usually constant within an utterance.

In our proposed framework, the augmented vector is obtained
by the average of output vectors of an auxiliary network with output
xu,t, which is represented as follows:

xu(ou; θx) ,
1

Tu

TuX
t=1

xu,t(ou,t; θx), (3)

where θx is a set of parameters of the auxiliary network to be learned
from data, and ou , {ou,1, · · · ,ou,Tu}. Then, in Eq. (1), we can
replace the activation function as(·) with the following new function
bs(·):

as(ou,t; θo)→ bs(ou,t,xu(ou; θx); θ̄o). (4)

Thus, the new activation function is represented by the auxiliary
network parameters θx and the parameters θ̄o, which are the orig-
inal parameters θo extended by connections for new input features.
The next section describes the back-propagation of the proposed net-
work, which jointly learns both θ̄o and θx.

3.2. Back-propagation

The back propagation of the extended original parameters θ̄o is the
same as the conventional one. The objective functionF can be either
frame cross-entropy or sequence-discriminative criteria (e.g., MMI,
sMBR [16]). The derivative is represented as:

∂F
∂θ̄o

=
∂F

∂bs(ou,t, ·)
∂bs(ou,t, ·)

∂θ̄o

. (5)

where for simplicity we use bs(ou,t, ·) for the activations instead of
bs(ou,t,xu(ou; θx); θ̄o). Note that the gradient can be computed
separately for each observation frame ou,t, especially when we use
the frame cross-entropy criterion as F .

Now, we focus on the solution of the back propagation of θx.
By using the chain rule, the derivative of F with respect to θx is
represented as follows:

∂F
∂θx

=
∂F

∂bs(ou,t, ·)
∂bs(ou,t, ·)
∂xu(ou; θx)

∂xu(ou; θx)

∂θx
. (6)

We use the chain rule to substitute the derivative of Eq. (3) into Eq.
(6), while we consider that the loss for all frames in the sequence (i.e.
utterance) depends on xu(ou; θx). The derivative is then rewritten
as:

∂F
∂θx

=

"
1

Tu

TuX
t′=1

∂F
∂bs(ou,t′ , ·)

∂bs(ou,t′ , ·)
∂xu(ou; θx)

#
∂xu,t(ou,t; θx)

∂θx
.

(7)

Thus, we can derive the back-propagation of θx analytically. Note
that the derivative of the sequence-averaging operation has analog-
ical function form to the original averaging function. The error
derivative is averaged over the whole utterance u with length Tu,
which was not the case in Eq. (5). This is a unique property of the
proposed network allowing the utterance-level characteristics to be
learned (or compensated) by the network.

4. EXPERIMENTAL SETUP

The experiments were performed on AMI meeting conversation cor-
pus1, using the Independent Headset Microphone (IHM) recordings.
The data were recorded with 16 kHz sampling rate, the train-set con-
tains 77 hours of data, while the dev and eval sets consist of 9 hours
each.

For the DNN experiments, we needed to build initial GMM-
HMM models to produce the tied-state clustering, alignments and
FMLLR features. The GMM-HMM models are trained on features
obtained by splicing together 7 frames (3 on each side of the current
frame) of 13-dimensional MFCCs (C0-C12) and projecting down
to 40 dimensions using linear discriminant analysis (LDA). The
MFCCs are normalized to have zero mean per speaker. We also
use a single semi-tied covariance (STC) transform on the features
obtained using LDA. Moreover, speaker adaptive training (SAT)
is done using a single feature-space maximum likelihood linear
regression (FMLLR) transform estimated per speaker.

All our speech recognition systems are HMM-based with cross-
word tied-states triphones. The initial GMM-HMM system was
trained using standard mixing-up maximum likelihood training.
The DNNs models were built using the following two recipes: a
simplified one and a complete one.

1http://corpus.amiproject.org/
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4.1. Simplified DNN recipe

The simplified recipe consists of frame-classification training of ran-
domly initialized DNN with 4 hidden layers composed of 1024 sig-
moid neurons each, and softmax output layer with 3977 neurons.

The input weight matrix was initialized from N (0, 0.001), the
3 following initial weight matrices had samples from N (0, 0.01)
and the output layer weight matrix was initialized fromN (0, 0.005).
The different variances ensure that the gradients in the 1st mini-batch
will be “reasonable”, which was discussed in [17]. The hidden bi-
ases were initialized from U(−4.0, 0), while the initial output biases
were set to zero.

The input features are 40 log Mel-filterbank outputs extended
by 3 Kaldi-pitch features [18]. We apply per-speaker mean and vari-
ance normalization, frame splicing of 21 frames (10 on each side
of current frame). Each temporal trajectory is scaled by Hamming
window and reduced by Discrete Cosine Transform with 11 basis.
The final 473-dimensional features are globally shifted and scaled to
have zero mean and unit variance on the DNN input.

4.2. Complete DNN recipe

The complete recipe consists of RBM-pretraining, frame-classifi-
cation training and the sequence-discriminative training. The net-
work has 6 hidden layers of 2048 sigmoid neurons each and a soft-
max output layer with 3977 outputs.

The DNNs were trained on the LDA+STC+FMLLR features ob-
tained from the initial GMM-HMM system, here we applied splice
of 11 frames (5 on each side of current frame) and global normal-
ization to have zero mean and unit variance in the 440 dimensional
DNN input.

The DNN was initialized with Restricted Boltzmann Machine
(RBM) pre-training [19], using the setup described in [20]. Af-
ter pre-training, we appended randomly initialized softmax output
layer and continued with frame-classification training which min-
imizes the cross-entropy between the triphone tied-state posteriors
and the Viterbi alignment. The last stage of the recipe are 4 epochs
of sequence-discriminative training which optimizes Sequence Min-
imum Bayes Risk (sMBR) objective [16], while the learning-rate is
fixed to 10−5.

4.3. Common for both DNN recipes

For the i-vector systems, we used mini-batch SGD training with ini-
tial learning-rate 0.008 and 256-frame mini-batches. For systems
with “sequence summary” we used SGD with per-utterance updates
and initial learning-rate 0.004.

In all the per-frame classification trainings, we used learning-
rate scheduling based on relative improvement of the frame cross-
entropy on 10% held-out set. We start to halve the learning-rate
when the relative improvement falls below 0.01, and the training
ends if the relative improvement is lower than 0.001, which is usually
after 14 epochs.

To be able to use RBM pre-training with “summary vector” on
input, we first trained a small network to initialize the Sequence
Summarizing Neural Network.

4.4. I-vector extractor

We used the i-vector extractor from the BUT standardization ini-
tiative2, it is trained on 9000 hour corpus composed of Fisher

2http://voicebiometry.org/

English (part 1 and 2), NIST SRE 2004-2008, Switchboard (phase
2, phase 3, cellular part 1, and cellular part 2). The i-vectors have
600 dimensions, we generated one i-vector vector per speaker,
while using a multi-lingual NN-based VAD tuned to detect con-
fident speech. The produced i-vector dataset was both mean and
length-normalized, while we did not use Within Class Covariance
Normalization (WCCN). We also compared 600-dimensional and
100-dimensional i-vectors, and observed no difference in WER
performance.

4.5. Sequence Summarization Neural Network (SSNN)

The SSNN is trained jointly with the main network using the stan-
dard back-propagation algorithm, as discussed in section 3. We suc-
cessfully trained the architecture of the two networks from random
initialization, while using the per-utterance update SGD.

The SSNN consists of 2 Tanh layers with 512 neurons and a
600-dimensional layer with linear output, where the linear outputs
are averaged over the entire sequence. The biases were initialized
to 0, while the weight matrices were initialized from N (0, 0.0036),
here the variance was tuned manually. The learning rate for SSNN
is the same as for the main network.

In case of simplified recipe, the insertion of SSNN to the baseline
DNN caused the increase of number of parameters from 7.7 to 9.1
millions. In the complete recipe the increase was from 30.1 to 32.0
millions of parameters.

5. RESULTS

The first experiment compares the mini-batch training and the train-
ing with per-utterance updates. As we see in Table 1, the insignif-
icant difference of 0.1% shows that both are equally good for our
database.

All the results in Table 1 are obtained with the “simplified DNN
recipe”. The simplification is that the topology is smaller, there is
no RBM pre-training and sMBR training, and the input features are
speaker independent. By comparing the 1st and 2nd block in Table 1,
we see that the use of i-vectors or the “summary vectors” leads to
similar performance improvements on eval set: 1.6% for i-vector,
1.4% for “summary vector”, while on the dev set the 0.8% i-vector
improvement is better than 0.5% “summary vector” improvement,
compared to the unadapted baselines.

In the 3rd block of Table 1, we used the speaker-adapted FMLLR
features instead of the speaker-independent FBANK features. Here,
the performance improvement from the “summary vector” method
is smaller: 0.1% on dev set and 0.4% on eval set. If we consider
i-vectors, “summary vectors” and FMLLR as alternative methods to
choose from, the eval set suggests that FMLLR is the best, while the
differences on dev set are smaller. However, we should also consider
practical limitations: both the i-vector and FMLLR methods need
several utterances for each speaker, while for the “summary vector”
all we need is a single utterance.

We also tried to use both the “summary vectors” and i-vectors
as the extra input features of the main network. The result in the
2nd block in Table 1 shows complementary behavior reaching the
performance of the FMLLR system without any extra features (1st
row in 3rd block).

We also experimented with the per-sentence i-vectors extracted
from the frames where VAD detected speech. However, the perfor-
mance was 4% worse than the baseline. This could be possibly fixed
by keeping a context of few previous sentences as done for the train-
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Table 1. Comparing the i-vector and “summary vector” speaker
adaptation of DNN on “simplified recipe”: 4 layers, random initial-
ization, FBANK features with Hamming-DCT processing.

Simplified DNN recipe WER%
dev eval

mini-batch training 27.9 31.4
+ i-vector 27.1 29.8

per-utterance update 28.0 31.3
+ “summary vector” 27.5 29.9
+ “summary vector” and i-ivector 27.0 29.2

per-utterance update (FMLLR) 27.4 28.8
+ “summary vector” 27.3 28.4

Table 2. Comparing the i-vector and “summary vector” speaker
adaptation of DNN on very challenging “complete recipe”: 6 layers,
RBM pre-training, FMLLR features.

Complete DNN recipe WER%
dev eval

Baseline
- frame training 25.8 27.1
- sMBR 24.2 24.7
i-vector
- frame training 25.6 26.3
- sMBR 23.8 23.9
“summary vector”
- frame training 26.0 26.6

(no RBM, random init.) 26.4 27.0
- sMBR 24.5 24.6

ing of i-vector extractor in [9], but this already deviates from the
per-sentence processing we use for SSNN.

The results for the “complete DNN recipe” are in Table 2, where
we again compare the i-vector and “summary vector” systems with
the baseline. Here the baseline has speaker-adapted FMLLR fea-
tures, a large topology initialized by RBM pre-training, and trained
by per-frame training and sequence-discriminative sMBR training.
After sMBR training, the i-vector system outperforms the very chal-
lenging baseline system by 0.4% on dev set and 0.8% on eval set. On
the other hand, the comparison of sMBR “summary vector” system
with the sMBR baseline system shows a little degradation of -0.3%
on dev-set and tiny improvement of 0.1% on eval-set. This result is a
little disappointing, however if we subdivide the dev set by sentence
lengths as shown in figure 2, we see that the system with “summary
vectors” outperforms both the baseline and i-vector DNN systems
on sentences longer than 10 seconds, which is promising. Certainly
there is an open space for further investigation.

Last, as the RBM pre-training with “summary vectors” on input
requires SSNN which is already trained, we tried to replace the RBM
initialization with random initialization. This leads to performance
degradation of 0.4% on both test sets (3rd block of Table 2).

6. CONCLUSIONS AND DISCUSSION

In this paper, we proposed an alternative method to produce DNN
adaptation vectors similar to i-vectors. The vectors are computed
by the Sequence Summarizing Neural Network and characterize
the acoustics in an utterance. This is done by enclosing sentence-
averaging operation in the last component. The SSNN network
is trained together with the main network using standard back-
propagation algorithm with per-utterance updates.

For the simplified system, the performance improvement from
the proposed SSNN method is comparable to the case when i-vectors
are used. The combination of i-vectors and SSNN leads to further
improvements.

On the very challenging complete system, the i-vectors were
more beneficial, than the SSNN method, which did not bring clear
improvement compared to the baseline, but the results from long
sentences in figure 2 are encouraging.

The benefit of the proposed technique is that it does not require
multi-pass decoding and it relies only on one single test utterance,
giving it the potential to become more practical than the i-vector
method which needs several utterances for each speaker and the
complicated i-vector extraction framework.

Finally, our belief is that the use of Sequence Summarizing Neu-
ral Network is not limited to speaker adaptation of DNN. We see it
as a generic framework which can produce “summary vectors” for
sequential data in general. The SSNN framework is conceptually
simpler than recurrent networks, which also support the transfer of
information across frames.

The information transfer in recurrent networks is local and the
order of frames is important. The signal from more distant frames
is hard to pass because it gets changed by each cycle of recurrency.
This limitation is less severe in LSTMs, where the memory cells
keep inner state across frames. Contrarily, the frame order in aver-
aging is unimportant and all the frames are equally important.

In future we can study the interactions of RNNs and the sen-
tence averaging. Another promising direction is to extend the aver-
aging into history or try to improve the “summary vectors” of short
sentences.
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Sentence length
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Baseline, WER 24.2%
i-vector on DNN input, WER 23.8%
SSNN averaging in DNN, WER 24.5%

Fig. 2. Performance on dev set, subdivided by sentence lengths
(complete recipe, sMBR systems from table 2). The i-vector inputs
(estimated per-speaker) are helpful for all sentence lengths, while
“summary vectors” (extracted per-sentence) are deletrious for short
sentences and helpful for sentences longer than 10 seconds.
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biometry standard,” Proposed draft, Speech@FIT, BUT, Brno,
Czech Republic, 2015.
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