
Chapter 10
Training Data Augmentation and Data Selection

Martin Karafiát, Karel Veselý, Kateřina Žmolíková, Marc Delcroix,
Shinji Watanabe, Lukáš Burget, Jan “Honza” Černocký, and Igor Szőke

Abstract Data augmentation is a simple and efficient technique to improve the
robustness of a speech recognizer when deployed in mismatched training-test
conditions. Our work, conducted during the JSALT 2015 workshop, aimed at the
development of: (1) Data augmentation strategies including noising and reverbera-
tion. They were tested in combination with two approaches to signal enhancement:
a carefully engineered WPE dereverberation and a learned DNN-based denoising
autoencoder. (2) Proposing a novel technique for extracting an informative vector
from a Sequence Summarizing Neural Network (SSNN). Similarly to i-vector
extractor, the SSNN produces a “summary vector”, representing an acoustic sum-
mary of an utterance. Such vector can be used directly for adaptation, but the main
usage matching the aim of this chapter is for selection of augmented training data.
All techniques were tested on the AMI training set and CHiME3 test set.

10.1 Introduction

Training (or “source”) versus evaluation (“target”) data match or mismatch is a well-
known problem in statistical machine learning. It was shown [1] that an automatic
speech recognizer trained on clean data performs accurately on clean test data but
poorly on noisy evaluation data. But it holds also vice versa—a recognizer trained
on noisy data performs accurately on noisy but poorly on clean evaluation data.
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Unfortunately, “clean” and “noisy” are only very broad categories; the source vs.
target data mismatch can have many forms and can depend on the speakers, acoustic
conditions, and many other factors.

Typical solutions for dealing with a data mismatch include speech enhancement,
where we modify the (possibly noisy) target data to fit a system trained on clean
source data [13, 33], and model adaptation, trying to adjust/adapt a model to deal
with the mismatch condition [10, 15, 30]. A third technique, investigated in this
chapter, is data augmentation. Here, we are trying to change the source data in
order to obtain data with similar characteristics to the target data. Such generated
data (generally a greater amount than the original one, as we are trying to cover a
wide variety of target conditions) is called “augmented.”

Note that two terms are generally used in the literature: data augmentation
usually means filling sparse target data by borrowing from rich source data, while
data perturbation means adding more variation into the target data by using
the target data only. In our approach to data augmentation, we usually combine
both, i.e., we borrow from source data and we modify it to fit the target data
characteristics.

10.1.1 Data Augmentation in the Literature

One of the first attempts to augment source data to fit the target data was made by
Bellegarda et al. [4]. In experiments conducted on the Wall Street Journal corpus,
the goal was to populate the target speaker feature space with transformed data
from source speakers. A feature rotation (“metamorphing”) algorithm [3] was used:
both source and target speaker features are first transformed onto a unit sphere by
phoneme-dependent normalization, then a transformation is estimated to map the
source features to target ones. For a target speaker, the closest source speakers can
be found using a distance metric among phoneme clusters on the sphere. When these
source speakers are found, one can remap their features to the target speaker space,
thus increasing the data for speaker-dependent model training. The conclusion was
that 100 target speaker sentences augmented by 1500 source speakers’ sentences
led to a speaker-dependent model with the same accuracy as a model trained on 600
target speaker sentences.

More recent approaches can be split into categories depending on the level on
which the data augmentation is done:

On the audio level, the goal is to perturb the audio to minimize source/target
data mismatch. The original voice is not modified in the sense of generating an
unseen speaker; the augmentation is done to neglect different acoustic environments
by using artificial reverberation, noising, or some other perturbation of the source
data. In this scenario, we typically have enough source speakers, but a nonmatching
acoustic environment (for example a quiet place versus a crowded public place).
The usual procedure includes adding artificial [17] or real [18] noise. Reverberation
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can also be simulated using real or artificial room impulse responses [18], or both
methods can be combined.

The audio itself can also be modified. The approaches covered in [20] include
upsampling and downsampling the audio with an appropriate change of refer-
ence labels timing, or changing the pitch or tempo of the raw audio using an
appropriate audio editor. The results of [20] show that reverberation/noising and
resampling/pitch modifications are not completely complementary.

Finally, new speech data can be artificially generated using either statistical or
concatenative text-to-speech (TTS) synthesis. This approach may not generate a
large variety of new speakers but can still generate unseen sentences to augment
training data for less frequent phoneme contexts. The latter technique, where
speaker and prosody parameters are generated using hidden Markov models [27],
is used more often. For use with automatic speech recognition (ASR) training, one
can skip audio generation and use statistical speech synthesis to generate directly
perceptual linear prediction (PLP) or mel-frequency cepstral coefficient (MFCC)
features [22, 34].

On the feature level, the augmentation is done on the level of extracted features:
low-level (Mel-banks, PLPs) or high-level (neural network bottle-neck features).
A typical example is vocal tract length perturbation (VTLP) [14], modifying the
speaker’s vocal tract shape by spectral shifts. This is an “inverse” technique to
the commonly used vocal tract length normalization (VTLN), where the goal is
to normalize different speakers to a generic one. In VTLP, new data is generated
by altering the true VTLN factor; for example, the authors of [14] generated
five versions of data and tested them on TIMIT phoneme recognition. A nice
improvement was observed; moreover, they found a positive effect of perturbing
the test data with several warp factors and then averaging the acoustic-model (deep-
neural-network, DNN) scores before the decoding.

Stochastic feature mapping (SFM) [5] falls under feature-level data augmentation
too. Here, feature transformations are used to create artificial speakers. This
approach is partly complementary to VTLP but its main advantage is that features
can be easily generated on the fly.

10.1.2 Complementary Approaches

In a broader sense [23], data augmentation can be seen also from a different
perspective: We can “fill” the sparsity of the actual training data with either
untranscribed data from the target language, synthesized data from the target
language, or other language data.

Untranscribed data can be used in the case where we have a few transcribed
resources but a vast amount of untranscribed data (for example from Internet
sources). In so-called self-training [39] (a variation of unsupervised or semisuper-
vised training), a speech recognition system is first bootstrapped using the available
little amount of transcribed data, then used to label the untranscribed data. A
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confidence measure is used to select the reliably transcribed segments, which are
then added to the training set, and the system is retrained. The process can be done
iteratively.

Data from other languages can be used, which has the great advantage of using
real, not artificially prepared, data. However, it is more complicated because of
language mismatch, which can be partially overcome by using universal phone
sets, phone-to-phone mappings, or hidden-layer unit-to-target mappings in multiple-
layer perceptrons [9]. Note, however that multilingual training is still a very active
research topic, which is being investigated in several projects, such as the U.S.
IARPA-sponsored Babel.1

The experimental part of this chapter concentrates only on the signal-processing
approaches described in Sect. 10.1.1.

10.2 Data Augmentation in Mismatched Environments

10.2.1 Data Generation

In this section, we describe the noising and reverberation techniques used and the
strategies to construct the training dataset.

• Noise. Our training data was processed by artificially adding two types of noises
real background noises were downloaded from various sources, for example
Freesound,2 and “babbling noises” were created by merging speech from random
speakers.

• Reverberation. We generated artificial room impulse responses (RIRs) using a
“room impulse response generator” tool from E. Habets.3 The tool can model
the size of the room (three dimensions), the reflectivity of each wall, the type
of microphone, the position of the source and the microphone, the orientation of
microphone toward the audio source, and the number of bounces (reflections) of
the signal. In each room, we created a pair of RIRs: one was used to reverberate
(by convolution with the RIR) the speech signal and the other was used to
reverberate the noise. Both signals were then mixed into a single recording. Each
pair of RIRs differed only by the coordinates of the audio sources (speech/noise).
We randomly set all parameters of the room for each room model.

• Data augmentation strategies. For each original clean utterance (independent
headset microphones - IHM) from the AMI corpus, a corrupted version of the
utterance was created by randomly choosing one of the following four speech
corruption methods:

1https://www.iarpa.gov/index.php/research-programs/babel.
2www.freesound.org.
3https://github.com/ehabets/RIR-Generator.

https://www.iarpa.gov/index.php/research-programs/babel
www.freesound.org
https://github.com/ehabets/RIR-Generator
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1. One of the real background noises (see above) was randomly selected and
added to the speech signal at a signal-noise-ratio (SNR) randomly selected
from values: of �5, 0, 5, 10, and 15 dB.

2. One of the RIRs was randomly selected and used to reverberate the speech
signal. In this case, no noise was added. Note that when adding reverberation,
we compensated for the incurred delay to match the timing with the original
signal.

3. The third option is a combination of the previous two. A random stationary
noise and random reverberation were added. Speech and noise were rever-
berated by two different RIRs as described above. The two signals were then
mixed at a randomly selected SNR level from the same range as before.

4. The same as the previous option, but babbling noise was used instead of
stationary.

10.2.2 Speech Enhancement

In addition to the above data augmentation, we investigated two front-end
approaches to handle source and target data mismatch caused by noise and
reverberation. Here, we compare two main approaches: denoising by a neural-
network(NN)-based autoencoder and signal-processing enhancement using the
weighted prediction error (WPE).

10.2.2.1 WPE-Based Dereverberation

Reverberation is responsible for nonstationary distortions that are correlated with
the speech signal and, consequently, it cannot be suppressed using the conven-
tional noise reduction approaches. Therefore, we used the WPE dereverberation
method [35, 36], which was shown to greatly improve ASR in reverberant conditions
for several tasks [7, 37]. WPE is discussed in detail in Chap. 2.

WPE is based on long-term linear prediction (LP), but introduces modifications
to conventional LP to make it effective for dereverberation. It is well known that
multichannel LP can be used for channel equalization [11]; however, using conven-
tional LP for speech signals causes excessive degradation because LP equalizes not
only the room impulse responses but also the (useful) speech production process.
To address this issue, WPE modifies the conventional LP algorithm in two ways:
by modeling speech with a short-term Gaussian distribution with a time-varying
variance [21], and by introducing a short time delay in the LP filters that prevents
the equalization of the speech production [19].

WPE has a number of characteristics that make it particularly suitable for distant
speech recognition: it is based on linear filtering, which ensures a low level of
distortion in the processed speech. WPE can be formulated for single-channel or
multichannel cases. It has also been shown to be relatively robust to ambient noise.
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Note that the WPE algorithm does not require a pretrained model of speech and
operates in a per-utterance manner.

More details about this technique can be found in Chap. 2.

10.2.2.2 Denoising Autoencoder

An artificial neural network was also employed as a denoising autoencoder to
enhance (denoise and dereverberate) the speech signal. It was trained on the
artificially created parallel clean–noisy AMI corpora. The reverberated and noised
data described above (option three) was used for this purpose.

The input of the NN consisted of 257-dimensional vectors of log spectra stacked
over 31 frames (i.e., a 7967-dimensional vector). The desired output was a 257-
dimensional vector (again a log spectrum) corresponding to the clean version of
the central input frame. A standard feedforward architecture was used: 7967 inputs,
3 hidden layers each with 1500 neurons, 257 outputs, and tanh nonlinearities in
the hidden layers. The NN was initialized in such a way that it (approximately)
replicated its input to the output and it was trained using the conventional stochastic
gradient descent to minimize the mean squared error (MSE) objective.

We have experimented with different strategies for normalizing the NN input
and output. To achieve a good performance, utterance-level mean and variance
normalization was applied to both the NN input and the desired NN output. To
synthesize the cleaned-up speech log spectrum, the NN output was denormalized
based on the global mean and variance of clean speech.

10.2.3 Results with Speech Enhancement on Test Data

In the following experiments, we compare the effectiveness of the two speech
enhancement techniques described in the previous sections: the denoising autoen-
coder and WPE [7] dereverberation. Table 10.1 shows results on the noisy CHiME-
3 data obtained with the baseline DNN-based ASR system trained on clean
independent-headset-microphone (IHM) AMI data. The table compares results
obtained on the original unprocessed noisy test data and those obtained on data
enhanced with the two techniques. The results are also compared for systems trained

Table 10.1 Performance of
speech enhancement
techniques on CHiME-3

Test data XE sMBR
enhancement (%WER) (%WER)

None 48.86 46.99

WPE 45.36 43.63

Autoencoder 30.58 30.59

WER word error rate
The bold numbers indicate the best val-
ues in the table that help the orientation
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Table 10.2 Results on
CHiME-3 with different data
augmentation variants

DNN training data Test data XE sMBR
Noise type Reverb enhancement (%WER) (%WER)

None None None 48.86 46.99

Babble Artificial None 26.41 –

Stationary Artificial None 25.8 –

Stationary None None 24.26 20.47

Stationary None WPE 22.72 19.28

The bold numbers indicate the best values in the table that help
the orientation

using a frame-by-frame cross-entropy (XE) objective and systems further retrained
using state-level minimum Bayes risk (sMBR) discriminative training [28].

A relatively small improvement was obtained with WPE. This can be easily
explained, as WPE aims to only dereverberate the signals, and relatively low
reverberation is present in the CHiME-3 data due to the small distance between
the speaker and the microphones. This trend might, however, differ for other test
data. On the contrary, the denoising autoencoder provides significant gains, as it
was trained to reduce both noise and reverberation.

No improvement was obtained from sMBR training. A possible reason is that
new types of errors caused by the presence of noise in the data were not seen during
the training, where only the IHM data were used. Note that much larger relative
gains from sMBR will be reported in the following sections, where the training data
was augmented with artificially corrupted speech data (see, e.g. Table 10.2).

10.2.4 Results with Training Data Augmentation

Table 10.2 presents results obtained when adding different types of noise to the
training data (babbling vs. stationary noise). We also tested whether it helps to
add reverberation to the training data or if it is sufficient to corrupt the training
data only with additive noise. Interestingly, the best results were obtained with no
reverberation added to the training data, but with the test data enhanced using the
WPE dereverberation technique. WPE enhancement brings almost 1.5% absolute
improvement. This indicates that signal-level dereverberation is more effective than
training the acoustic model on reverberated speech.

Table 10.2 also shows a nice improvement (over �3% absolute) from retraining
DNNs using sMBR sequence training. Comparing the results in Tables 10.1
and 10.2, we observe that better performance could be achieved by training a
recognizer on artificially corrupted data than using a denoising autoencoder trained
on the same data to reduce noise.

Table 10.3 shows the results obtained for the different training datasets on the
REVERB dev set. As for the CHiME-3 experiment, we observe that adding noise to
the training data greatly improved performance. Not surprisingly, in the case of the
REVERB data, adding reverberation to the training data also significantly improved
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Table 10.3 Results on
REVERB dev set with
different data augmentation
variants (sMBR models)

DNN training data dev

Test data Near Far
Noise type Reverb enhancement (%WER) (%WER)

None None None 92.48 90.89

Stationary None None 52.49 49.72

Stationary Artificial None 40.33 37.93

None None WPE 56.19 49.28

Stationary None WPE 19.75 22.52

Stationary Artificial WPE 19.75 20.77

The bold numbers indicate the best values in the table that help
the orientation

performance. However, the improvement brought by the reverberant training data is
significantly reduced when using a dereverberation front end.

On the CHiME-3 test, we found no effect from adding reverberation into the
training data for acoustic-model training. On the contrary, the WPE dereverberation
technique was found effective. We also showed that greater performance improve-
ment could be achieved by retraining the acoustic model on artificially corrupted
speech than using a denoising autoencoder trained on the same training data to
remove noise. On the REVERB test, adding reverberation was found beneficial, but
the gains become smaller when using the WPE dereverberation front end. On the
other hand, the impact of adding noisy training data remains. In future, we would
like to verify our findings on other databases.

Finally, sMBR was found effective when the system was trained on noised data,
in comparison with a system based on an enhancement autoencoder, where no gain
from discriminative training was observed.

Note that the effect of data augmentation has also been investigated for the
REVERB task in [8], with the significant difference that they used (instead of the
AMI corpus) the REVERB training data, which they augmented with noise and
various SNRs. In addition, in CHiME-3 and AMI, data augmentation has also been
performed by treating each microphone signal recording as an independent training
sample. This simple approach was also found to improve performance [26, 38].

10.3 Data Selection

10.3.1 Introduction

Using the methods above, we can generate large amounts of augmented data, from
which it is possible to choose the training set. Different approaches to data selection
have been explored in the past. Many existing methods are based on inspecting
the frequency of speech units to evaluate the benefit of adding an utterance to the
training. In [32], the data selection strategy aimed to choose such a subset which has
a uniform distribution over phonemes or words. Similarly, the selection method in
[31] was guided by the term frequency and inverse document frequency (TF-IDF) of
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triphones. However, these methods are not very suitable for the case of data created
by artificial noising as they do not explore the acoustic diversity.

A different approach was used in [2], where the aim was to select a subset of the
data with the most similar acoustic characteristics to the target domain. To achieve
this, the vector of the posterior probabilities of components in Gaussian mixture
models was used to represent each utterance. The idea of using a fixed-length vector
for characterization of utterances was also exploited in [25], where the selection was
based on the distributions of i-vectors.

Here we investigate use of a fixed-length “summary vector” representing the
acoustic conditions to select training utterances that are the most similar to the test
conditions. Unlike the existing data selection approaches, the proposed summary
vector extraction exploits a neural network framework. A special NN is used to
compensate for the mismatch between clean and noisy conditions. This is realized
by appending a compensation network to an NN trained on clean speech. The
compensation network is trained to perform utterance-level bias compensation.
Consequently, the output of the compensation network summarizes the information
about the noise conditions of an entire utterance and can thus be used to select useful
training data.

The extracted “summary vector” has the desired property of discriminating
specific noise types, which can be proved by visualizing the vectors. Moreover,
we have also confirmed experimentally that the proposed “summary vector” can be
used to select training data and that it outperforms random training data selection
and i-vector-based data selection.

10.3.2 Sequence-Summarizing Neural Network

We describe each utterance using a fixed-length vector summarizing the acoustic
conditions of the utterance. In other words, a vector is extracted from each utterance
that is in some sense similar to i-vectors known from speaker recognition [6].
However, instead of relying on a conventional i-vector extraction, we train a special
neural network able to “summarize each utterance.”

To extract summary vectors, we train a composite architecture combining two
neural networks as sketched in Fig. 10.1 (a similar architecture was previously
used for speaker adaptation [29]). It consists of the main NN and the sequence-
summarizing NNs (SSNN), both sharing the same input features. To train this
scheme for the extraction of summary vectors, we proceed as follows:

1. First, the main network (DNN.�/, upper part of Fig. 10.1) is trained on clean data
X clean as a standard DNN classifier with triphone state targets Y and a cross-
entropy criterion (XEŒ��):

O�clean D arg max
�

XE
�
Y ; DNN

�
X cleanI �

��
: (10.1)
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Main network

Per-frame
features

Summary
vector

Sequence-summarizing
neural network

AVG

Fig. 10.1 Training of acoustic-condition estimator

The estimated parameters of the main network O�clean then stay fixed for the rest
of the training.

2. The sequence-summarizing NN is added to the scheme (SSNN.�/, lower part of
Fig. 10.1), which also receives frame-by-frame speech features (the same as in
the main network) as its input. The last layer of the SSNN involves averaging
(global pooling over the frames) and produces one fixed-length summary vector
for each utterance, which is then added to the hidden-layer activations of the
main network. The whole architecture is now trained on noisy data X noisy with
the same objective as used in the first step:

arg max
˚

XE
h
Y ; DNN

�
X noisy; SSNN.X noisyI ˚/I O�clean

�i
: (10.2)

Note that only the parameters of the sequence summarizing neural network ˚

are trained at this point.

The idea of the training procedure is that the SSNN should learn to compensate
for the mismatch caused by presenting noisy data X noisy to the main network,
which was previously trained only on clean data X clean. Thus, the summary
vector extracted by the SSNN should contain important information about the
acoustic conditions to characterize the noise component of an utterance. In the final
application (data selection), we discard the main network and only use the SSNN to
extract the summary vectors.
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10.3.3 Configuration of the Neural Network

To find the optimal configuration of the summarizing neural network, we performed
a set of experiments varying the hidden layer where the summary vector is added
(connection layer), the size of this layer (thus the size of the extracted vector),
and the amount of data used to train the network. Although the whole composite
network as seen in Fig. 10.1 was not intended to be used for decoding in the final
application, for these experiments, we used it directly to test the noisy data. This
scenario, channel adaptation, allowed us to find the best configuration without the
final time-consuming procedure—data selection and system rebuild.

First, the optimal connection layer was evaluated. In these experiments, the sizes
of all hidden layers in both DMM and SNN were 2048 and the amount of noised
training data was equal to the original clean set. The results on CHiME-3 are shown
in Table 10.4. It seems that adding the summary vector to the second hidden layer
is the most effective for adapting the clean DNN to the noisy data. Moreover,
the results present over 8% absolute WER reduction by adding a summary-vector
extractor to the clean DNN. It is a nice improvement, taking into account that the
extractor performs just a simple per-utterance bias compensation in the hidden layer
of the clean DNN classifier.

The second hidden layer was taken as the connection layer and the optimal size
of the summary vector was evaluated. To be able to train summary-vector extractors
of different sizes, we had to retrain the original DNN classifier with various sizes
of the second hidden layer on the clean data. Table 10.5 shows the WER reduction
as a function of dimensionality of the summary vector. It degrades with decreasing
dimensionality; therefore we decided to keep its original dimensionality of 2048.

Finally, the effect of adding data for the training of the summarizing network
was evaluated. We generated several random selections of noised data and trained

Table 10.4 Optimal
connection layer for training
of summary-vector extractor
(CHiME-3)

Connection layer XE (%WER)

None 47.72

1 39.89

2 39.32
3 40.09

4 41.08

5 40.70

The bold numbers indicate the best val-
ues in the table that help the orientation

Table 10.5 Dimensionality
of summary-vector extractor
(CHiME-3 %WER)

Size of second layer 256 512 1024 2048

Clean DNN 49:03 48:41 47:83 47:72

Joint NN 49:39 42:70 40:15 39:32

Abs. improvement �0:36 5:71 7:68 8:40

The bold numbers indicate the best values in the table
that help the orientation
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Table 10.6 Data sizes for
summary-vector extractor
training (CHiME-3 %WER)

Summary-vector Data size
dimensionality 1�train 2�train 3�train

1024 40.15 38.99 37.30

2048 39.32 40.24 37.15

The bold numbers indicate the best values in the
table that help the orientation

Fig. 10.2 t-SNE plots of summary vectors estimated from CHiME-3 data. The colors correspond
to the clusters obtained by k-means (left) and the actual noise conditions (right)

the SSNN on them. Table 10.6 shows the positive effect of a sufficient amount of
training data (3� original clean set).

10.3.4 Properties of the Extracted Vectors

To see whether the method generates vectors reflecting the noise conditions in the
data, we extracted the vectors for CHiME-3 utterances and observed their properties.
The CHiME-3 test set contains four different recording environments—bus (BUS),
cafe (CAF), street (STR), and pedestrian area (PED). We performed clustering of
the extracted vectors into four clusters using k-means and compared the obtained
clusters to the real environments in the data. Figure 10.2 shows two plots created
by t-SNE [12]—the right one shows the four real environments in the data and the
left one the clusters created by k-means. Although the clusters were created by an
unsupervised technique, there are clear similarities with the real ones.

It is also worth comparing the newly proposed summary vector with i-vectors [6]
as i-vectors are also known to capture information about the channel. Note that i-
vectors were also recently used for adapting DNNs in speech recognition tasks [16,
24]. Figure 10.3 shows i-vectors and summary vectors extracted from CHiME-3
projected onto the first two liner discriminant analysis (LDA) bases. The recording
environment labels were used as the classes for LDA. It seems that the environments
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Fig. 10.3 Plot of the first and second LDA bases on CHiME-3 data for i-vectors (left) and
summary vectors (right)

are better separated in the summary-vector space than in the i-vector space.4 This
shows that summary vectors contain information suitable for CHiME-3 recording
environment clustering, even though the extractor was trained on different data (a
corrupted AMI corpus).

10.3.5 Results with Data Selection

To perform data selection, we extract summary vectors for each generated training
utterance and each test utterance. We select a subset of the generated training data
by selecting the utterances that are the closest to the test set conditions. For this,
we compute the mean over all summary vectors of the test set and measure its
distance to the summary vector of each utterance of the training data. Only the
closest utterances are kept in the training subset. By this, we aim to select that type
of added noise which matches best the noise in the test data. The amount of selected
data is equal to the size of the clean training set.

As few different types of noise are present in the test data, computing the mean
of summary vectors from the whole test set may not be the best way to represent it.
Therefore, further experiments were performed by clustering the summary vectors
of the test set and computing the means of these clusters. The training utterances
were then selected to have the shortest distance to the summary vector centroid of
one of the clusters.

For measuring the distance between vectors, we used the cosine and Euclidean
distances. Table 10.7 shows results obtained using these two measures and different
numbers of clusters of test data. The results indicate that using the cosine distance is
more effective. The best results are obtained using four clusters of test data, which
corresponds to the fact that there are four real recording environments in the test set.

4Brno University of Technology open i-vector extractor (see http://voicebiometry.org) was used for
these experiments.

http://voicebiometry.org
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Table 10.7 Comparison of
different selection methods
(CHiME-3 %WER)

Distance measure/# clusters 1 4 10

Cosine 25.09 24.72 24.98

Euclidean 26.75 26.55 26.59

Table 10.8 Comparison of
random vs. automatic
selection results (CHiME-3
%WER)

Selection

Dataset Random i-Vector Summary vector

dev 25.8 25.61 24.72
eval 45.58 44.02 43.23

The bold numbers indicate the best values in the
table that help the orientation

Table 10.8 shows the best result obtained with the summary-vector data selection
compared to random data selection and selection using i-vectors. About 1% absolute
improvement on the dev set and 2% on the eval set was obtained with the proposed
data selection method compared to random data selection, showing the effectiveness
of the proposed data selection method.

10.4 Conclusions

We have shown that, despite its simplicity, data augmentation is an effective
technique to improve the robustness of a speech recognizer when deployed in
mismatched training–test conditions. Noising of the data was found to be more
effective than NN-based denoising strategies. We have also proposed a new promis-
ing approach for selecting data within the augmented set, based on a summarizing
neural network that is able to generate one fixed-dimensional vector per utterance.
On the CHiME-3 test set, we observed 1% absolute improvement over random data
selection and the technique also compared favorably to data selection based on i-
vectors.
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