
Alternative Approaches to Neural Network based Speaker Verification
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Abstract
Just like in other areas of automatic speech processing, feature
extraction based on bottleneck neural networks was recently
found very effective for the speaker verification task. How-
ever, better results are usually reported with more complex neu-
ral network architectures (e.g. stacked bottlenecks), which are
difficult to reproduce. In this work, we experiment with the so
called deep features, which are based on a simple feed-forward
neural network architecture. We study various forms of apply-
ing deep features to i-vector/PDA based speaker verification.
With proper settings, better verification performance can be ob-
tained by means of this simple architecture as compared to the
more elaborate bottleneck features. Also, we further experiment
with multi-task training, where the neural network is trained
for both speaker recognition and senone recognition objectives.
Results indicate that, with a careful weighting of the two objec-
tives, multi-task training can result in significantly better per-
forming deep features.
Index Terms: automatic speaker recognition, deep neural net-
works, bottleneck features

1. Introduction
Often, the problem of automatic speaker recognition is formu-
lated as answering the question of whether two audio segments
were uttered by the same speaker or by two different speak-
ers. For several years i-vector/PLDA approach [1, 2] has been
the state-of-the-art method for text-independent speaker verifi-
cation. Recently, several methods making use of the popular
artificial neural networks have been introduced, providing sig-
nificant improvements to the i-vector/PLDA paradigm [3, 4, 5].
Feature extraction based on bottleneck (BN) NNs was recently
found very effective for the speaker verification task [5], just
like in other areas of automatic speech processing [6]. A BN
NN has one ”bottleneck” hidden layer with output dimensional-
ity significantly lower than the other layers. The network learns
to compress high dimensional NN inputs into low dimensional
vectors of BN layer activations while preserving the information
relevant for the task that the whole network is trained for. The
activations of the BN layer (BN features) can be used as low
dimensional features. In the case of speaker recognition, bottle-
neck features are extracted frame-by-frame from raw spectral
features and used as the input for an i-vector/PLDA system.

For speaker recognition, the intuitive choice would be to
train BN NN for the speaker classification task. Indeed, such
training should help to preserve the speaker related informa-
tion in the bottleneck layer. However, such strategy was
never successful. Instead, current state-of-the-art systems use
BN networks trained for frame-by-frame senone classification
(i.e. ASR-like task) [5]. It might seem a counterintuitive
choice since such network should suppress speaker informa-
tion, and emphasize information useful for ASR. However, this
method provides significant gains compared to the standard i-

vector/PLDA approach and, currently, yields the best results
reported on English data. The success of ASR trained bottle-
neck features can be explained by the sensible clustering of the
acoustic space when GMM-UBM is trained on top of BN fea-
tures. In this work, we delve into multi-task training, where
the NNs are trained for both speaker recognition and senone
recognition objectives. The motivation is to keep the ASR-like
training, which has proved useful, while also encouraging the
NNs to preserve more speaker related information.

In our previous works on BN features for speaker recog-
nition [7], we have used more elaborate BN architectures, the
so-called stacked bottlenecks (SBN), which originally proved
to be very effective for the ASR task [6]. SBNs use not a sin-
gle BN network but a cascade of two such networks. The BN
features are extracted from the first network and then stacked in
time and used as an input to the second one. Finally, the activa-
tions of the bottleneck layer of the second network are used as
the final feature vectors. In this work, we provide the results of
both techniques, BN and SBN features, and show that stacked
bottleneck method does not bring any significant improvement
with regard to the simpler BN architecture.

Even for the simple BN architecture, finding the best con-
figuration might be difficult and expensive. One has to decide
on the size of the neural network, position of the BN layer, size
of the BN layer (i.e. dimensionality of the extracted features),
etc. In order to test the different configurations, a separate NN
needs to be trained for each of them. Moreover, optimization of
parameters is more difficult with the BN architecture, where a
different learning rate needs to be usually carefully selected for
the weights forming the bottleneck. Recently, an alternative fea-
ture extraction method based on NN without any bottleneck was
introduced. The so-called deep features are simply the activa-
tions of some high-dimensional hidden layer postprocessed by
a standard dimensionality reduction technique such as Principal
Component Analysis (PCA) or Linear Discriminant Analysis
(LDA). This way, features of different dimensionalities derived
from different hidden layers can be extracted from a single NN.
In [8], these new features were successfully applied for text-
dependent speaker recognition, which inspired us to test their
effectiveness also for the text-independent task.

In this paper, we experiment with the standard i-
vector/PLDA system trained on the different NN based features.
The results reported on female part of NIST SRE 2010, con-
dition 5 (English telephone data) show that the deep features
are able to outperform BN or SBN. Further improvements in
speaker verification performance can be obtained by means of
the multi-task training of the NNs.

2. Deep features
The extraction of deep features is similar to the one of the BN
features. First, the NN needs to be trained for senone classifi-
cation (and also speaker classification in the case of multi-task
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Figure 1: Example of a neural network used for deep feature
extraction.

training). The network does not have to have any BN layer. Fig-
ure 1 shows the NN architecture for the deep feature extraction
as used in our experiments.

To form the input to the network, 60-dimensional spectral
features are used (20 MFCCs, including C0, augmented with
their ∆ and ∆∆ features). These features are short-term mean
and variance normalized [9] over a 3 second floating window.
For each frame, a window of 31 frames around the current frame
(i.e. +/- 15 frames) is considered. In this window, the tempo-
ral trajectory of each feature coefficient is weighted by a Ham-
ming window and projected into first 6 DCT bases (including
C0) [10]. This results in a 6 × 60 = 360-dimensional input to
the NN for each frame.

We use a NN with 4 hidden layers each consisting of 1500
sigmoid units. The NN has 2423-dimensional softmax out-
put corresponding to senone (triphone tied-state) targets. The
frame-by-frame triphone tied-state labels were obtained using
force alignment with a pre-trained GMM-HMM ASR system.
The 2423 triphone states were obtained using decision tree state
clustering during the ASR system training.

In the case of multi-task training, the network has an
additional 1307-dimensional softmax output, which predicts
speaker targets. In other words, all the weights in the NN are
shared for solving both tasks except for the weights to the two
softmax outputs, which are task specific. The objective func-
tion for the multi-task training is a weighted sum of two cross-
entropy objectives corresponding to the two individual tasks.
With the stochastic gradient descent training, this corresponds
to updating NN parameters using two gradients (one for each
objective) and two corresponding learning rates defining the rel-
ative importance of the two objectives. For optimizing the two
objectives, we use two different databases each annotated only
for one of the tasks (see section 3.1). Therefore, for every up-
date of the NN parameters, two equal mini-batches are used
(one from each database).

Once the NN is trained, the input spectral features are
frame-by-frame propagated through the network. From a se-
lected hidden layer, the vectors of activations (after the non-
linearity) are reduced in dimensionality using PCA or LDA
(with speakers as classes) and taken as deep features. Finally,
the obtained frame-by-frame features are used as the input to
the standard i-vector/PLDA based speaker verification system.

3. Experimental Setup
3.1. Datasets and performance metrics

For the (single) task of senone classification, the NNs are
trained on Fisher English parts 1 and 2 datasets containing ap-
proximately 1700 hours of transcribed English speech. Unfortu-
nately, only one or two recordings are available for each speaker
in the Fisher dataset, which makes it unsuitable for speaker clas-
sification task training. Therefore, for the multi-task training,
we additionally used Switchboard 2 dataset, which has many
recordings per speaker. We discard all the speakers with less
than 10 utterances and train the NNs on the data from the re-
maining 1307 speakers. One utterance from each speaker is left
out for cross-validation. However, no transcriptions are avail-
able for Switchboard 2. Therefore, we keep Fisher English for
the senone classification task in the multi-task training.

The i-vector/PLDA speaker recognition system is trained
on PRISM dataset [11], containing Fisher parts 1 and 2, Switch-
board 2, 3 and Switchboard cellphone phases. Also, Mixer
datasets are added to the training. We evaluate the performance
on female part of NIST Speaker Recognition Evaluation (SRE)
2010, condition 5 which consists of English telephone data [12].
As evaluation metrics, we use the equal error rate (EER, in
%) and the minimum detection cost functions (minDCF08 and
minDCF10) as they were defined in evaluation plans of NIST
SRE 2008 and 2010 [13, 12].

3.2. I-vector/PLDA back-end

For all of our experiments, we train the same i-vector/PLDA
systems, which only differ in the used input features. For fast
turnaround of experiments, we report most of our results for
scaled down systems, where GMM-UBM models have only 512
Gaussian components and i-vectors have 400 dimensions. The
dimensionality of i-vectors is further reduced to 250 using LDA.
Finally, i-vectors are normalized using length normalization fol-
lowed by global mean and variance normalizations. A PLDA
model is used to obtain log-likelihood ratio speaker verification
scores for each pair of i-vectors forming a trial. At the end of the
paper, we also present selected results with the full-sized sys-
tems (UBMs with 2048 Gaussians, 600-dimensional i-vectors).

4. Experiments
4.1. Deep features for speaker verification

Table 1 compares the performances obtained with the con-
ventional MFCC features, BN features and various configura-
tions of deep features (DF). To extract the BN features, we use
our standard NN configuration, which is the same as for the
deep features (see Figure 1) except that the third ’bottleneck’
layer has 80 neurons (rather than 1500). Also, the bottleneck
layer uses linear activations (i.e does not use the sigmoid non-
linearity).

In Table 1, the column labeled as dim. corresponds to the
feature dimensionality. In the case of deep features, it is the
dimensionality obtained after applying PCA or LDA. Figures
show that deep features outperform the MFCC baseline in all
cases and provide a performance similar or better than the BN
features. Note that the deep features used here are extracted
from the last (forth) hidden layer of the network trained in the
multi-task fashion.

As the results indicate, both dimensionality reduction ap-
proaches provide similar performance with PCA having the ad-
vantage that no class labels are necessary for its estimation.
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Table 1: Performance of MFCC, BN and deep features (ex-
tracted from the 4th layer of the multi-task trained network)
obtained with the scaled-down system on NIST SRE 2010, con-
dition 5, female part.

Features dim. EER,% minDCF08 minDCF10

MFCC - 60 2.68 0.133 0.517
BN - 80 1.99 0.085 0.328
DF LDA 80 1.96 0.096 0.378
DF LDA 100 1.95 0.088 0.360
DF LDA 200 1.58 0.074 0.324
DF PCA 80 1.94 0.086 0.312
DF PCA 100 1.92 0.081 0.330
DF PCA 200 1.77 0.074 0.285
DF PCA 300 1.68 0.072 0.291

When using the deep features it is important to choose the tar-
get dimensionality for the dimensionality reduction. We started
with 80, the optimal dimensionality for the BN features [7].
Further, we performed the comparison of different dimension-
alities of deep features. We found that 80 dimensions is not the
optimal choice. Generally, larger feature vectors result in bet-
ter speaker recognition performance. We increased our feature
vectors up to 300 dimensions for PCA, which yielded the best
performance for some of the metrics. However, the improve-
ment is already relatively small and not worth of the increased
computational complexity and memory requirements.

4.2. Layer used for the feature extraction

In Table 2, we compare deep features extracted from different
hidden layers of the same neural network. For this experiment,
the NN is trained in the multi-task fashion and the dimensional-
ity of the extracted feature vectors is reduced by PCA to 80. The
results indicate that, in the case of the deep features, the layers
closer to the output produce better features for speaker recog-
nition. This trend is different from the one reported in [14] for
BN features, where better performance was obtained with BN
layers closer to the NN input.

Table 2: Comparison of 80-dimensional deep features extracted
from different layers of a multi-task trained NN. Results are re-
ported for the scaled-down system on NIST SRE 2010, condition
5, female part.

layer EER,% minDCF08 minDCF10

2 2.72 0.127 0.393
3 2.21 0.095 0.321
4 1.94 0.086 0.312

4.3. Multi-task training

As mentioned before, excellent speaker recognition perfor-
mance can be obtained with NN based features when the NN is
trained for the senone classification task. In contrast, attempts
to train the NN for the speaker recognition task have generally
failed [15]. In our experiments with multi-task training, we train
the NN for both tasks at the same time. However, the relative
weight of the two tasks has to be carefully selected. Intuitively,
the ”successful” senone classification task should be weighted

as the more important one. Technically, we use two different
learning rates for the two multi-task objectives. Table 3 shows
results obtained with different learning rate values. First, we
fix the learning rate for the senone classification task to 0.004
(the optimal value for single-task training), while we sweep the
learning rate for the speaker classification task over a range
from 0 to 0.02 (0 in the last line means senone classification
task only). The best performance was achieved when the learn-
ing rate for speaker classification is in the range from 0.0001
to 0.0004, which is an order of magnitude lower than the learn-
ing rate for senone classification. The other choices, including
the single-task training, resulted in a significant degradation in
performance. Next, we fix the learning rate for speaker clas-
sification task to 0.0002 and we vary the learning rate for the
senone classification task. We see that the training is not very
sensitive to the exact value of the learning rate as long as it stays
high compared to the learning rate for the speaker recognition
task.

Table 3: Performance of deep features depending on learn-
ing rates of two tasks in multi-task training. EER,% for NIST
SRE10, condition 5, female part

learning rate for
speaker \senone 0.001 0.002 0.004 0.008

0.02 4.65
0.002 2.28

0.0004 1.66
0.0002 1.78 1.83 1.77 1.75
0.0001 1.73

0.00004 2.04
0.00002 2.06

0.000002 2.02
0 2.11

4.4. Full-scale systems

Table 4 presents selected results for full-size systems, which are
based on 600-dimensional i-vectors extracted using UBM with
2048 Gaussian components. All the systems differ only in the
used input features. The systems use the same BN or deep fea-
tures as used in the previous experiments with the scaled-down
systems. For comparison, we also include results obtained with
the more elaborate SBN features, which were the features of our
choice in our previous works (e.g. [7]).

For the deep features, we use the configuration that was
found optimal in the previous experiments: deep features are
extracted from the last layer of the multi-task trained neural net-
work. The learning rates were set to 0.004 and 0.0002 for the
senone and speaker classification tasks, respectively. We ap-
plied PCA dimensionality reduction to reduce the size of the
deep features to 200.

Results reveal that SBN features are outperformed by both,
BN and deep features by a wide margin (i.e. 20% and 25%
relative improvement in terms of EER, respectively). The deep
features turned out to be the best performing NN based features.

It has been shown [7] that the performance of i-
vector/PLDA systems can be improved by concatenating BN
features with the original MFCCs. Therefore, we also report re-
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Table 4: Comparison of the performance of BN, stacked BN
and 200-dimensional deep features (extracted from the 4th layer
of the multi-task network) on NIST SRE 2010, condition 5, fe-
male part. Large-scale system: UBM of 2048 Gaussians, 600-
dimensional i-vectors

features EER,% minDCF08 minDCF10

BN[16] 1.62 0.065 0.220
SBN[7] 2.02 0.077 0.222

DF 1.52 0.062 0.210
BN+MFCC[16] 0.96 0.042 0.146
SBN+MFCC[7] 0.93 0.041 0.140

DF+MFCC 1.32 0.053 0.189

sults for the different sets of features concatenated with MFCCs.
Unfortunately, the best ”stand alone” performing deep features
attain the worst performance when concatenated with MFCCs,
meaning that both sets of features are not as complementary
as the others. The SBN+MFCC based system outperforms
BN+MFCC based one by a small margin (i.e. 3% relative im-
provement in terms of EER). Still, the attained gain is not signif-
icant enough when considering how computationally expensive
the SBN features are, compared to the simple BN architecture.

5. Conclusions
We have shown that the conceptually simpler deep features can
be a good alternative to BN features. For larger feature di-
mensionalities, the deep features have the potential to outper-
form BN features. Besides, deep features are more experiment-
friendly as, unlike with BN features, it is not necessary to retrain
the neural network to experiment with feature dimensionality,
or with the position of the layer used for the feature extraction.

The results presented on NIST SRE 2010 dataset indicate
that: deep features are more informative when extracted from
the layer closer to the output of the network. Both PCA and
LDA projected deep features perform similarly, therefore, PCA
seems a better choice as it does not require any class labels for
training. Generally, deep features of higher dimensionality per-
form better, while the improvements will not always compen-
sate for the higher computational costs. And multi-task training
can be beneficial with careful tuning of learning rates for each
task.

Unfortunately, deep features seem to be less complemen-
tary to raw MFCCs than BN features. The improvements from
concatenating deep features with MFCCs are much smaller than
what was previously observed for the BN features.
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