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A method is presented in which conventional speech algorithms are applied, with no modifications,

to improve their performance in extremely noisy environments. It has been demonstrated that, for

eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of

signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent

model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID per-

formance was optimized when the SNR of the testing and training data were close or identical. In

this current effort multiple i-vector algorithms were used, greatly improving both processing

throughput and equal error rate classification accuracy. Using identical approaches in the same

noisy environment, performance of SID, language identification, gender identification, and diariza-

tion were significantly improved. A critical factor in this improvement is speech activity detection

(SAD) that performs reliably in extremely noisy environments, where the speech itself is barely

audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first

maximized detection probability at low levels (�10 dB � SNR < þ10 dB) using just the voiced

speech envelope, and the second exploited features extracted from the original speech to improve

overall accuracy at higher quality levels (SNR � þ10 dB). https://doi.org/10.1121/1.5031029

[JFL] Pages: 2313–2320

I. INTRODUCTION

We address the problem of efficient speaker, language,

and gender identification (SID, LID, and GID) and diariza-

tion of speech in degraded conditions. Our goal is to triage

potentially massive amounts of data to efficiently extract rel-

evant information. A variety of approaches have been pro-

posed to improve the performance of SID,1–5 LID,6–8 GID,9

and diarization10,11 in degraded channels. Generally, these

methods rely on modifying extracted features or analysis

methods to make performance more robust. We have previ-

ously demonstrated12 that several eigen-channel SID algo-

rithms13,14 could be significantly improved by testing on

speaker models trained on a lattice of signal-to-noise-ratio

(SNR) levels. It was found that the best classification perfor-

mance occurred when the SNR of the test data nearly

matched the SNR of the training data. An advantage of this

approach was that no modification of the recognition process

was required.

Our present effort is based on the i-vector approach

developed at the 2008 JHU workshop15 as simplification of

Kenny’s Joint Factor Analysis model.16 We apply methods

similar to our previous eigen-channel SID efforts to improve

the performance of i-vector SID, LID, GID, and diarization.

In the present tests, SID, GID, LID, and diarization were

applied to speech at SNR levels ranging from barely audible

speech (SNR ¼ �10 dB) to relatively noise-free speech

(SNR � þ30 dB). Unlike our eigen-channel effort, three

SNR estimates are required for the i-vector models and the

best performance does not occur when the three SNR esti-

mates are equal. Like our eigen-channel work, no modifica-

tions of the recognition processes are required.

For i-vector processes, extracted features and processes

associated with LID, GID, and speaker diarization are similar

to those used for SID, so noise affects all of these processes

similarly. We examine SID, LID, GID, and diarization, dem-

onstrating a significant performance improvement for these i-

vector processes. Performance of our original eigen-channel

work was measured as EER.12 This same metric is used in

the current work, with the exception of diarization, whose

performance is measured as diarization error rate (DER).

The i-vector approach provides a means of reducing

large dimensional input data to a small dimensional feature

vector while retaining speaker relevant information and

improving classification performance.17–19 Improvements in

throughput are realized because comparisons of the small i-

vector generated voiceprints require only 150 floating-point

numbers, compared to the numerically large (�512 to 2048)

Gaussian mixture models (GMM), resulting in thousands of

floating-point numbers required in the original Eigen-

channel implementation. For large voiceprint libraries,

i-vector speaker comparisons are many times faster. For

10 000 speakers, SID may be more than 30 times faster than

real time.a)Electronic mail: waveland@erols.com
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Prior to performing speech recognition/classification

functions in extremely noisy environments, time segments of

active speech must be differentiated from periods of speech

inactivity. We use two different speech activity detection

(SAD) algorithms, depending on the signal quality. The first

of these is based entirely on the speech envelope. Envelope-

based SAD algorithms generally perform very well in most

situations. Bach et al. demonstrated a 10 dB SNR advantage

of their envelope-based SAD over mel-frequency cepstral

coefficient (MFCC) based processes.20 An early example of

such SAD algorithms is the syllable rate speech activity

detector (SRSAD) that was developed in the 1990s.21

SRSAD is still in common use because it reliably distin-

guishes speech from noise and other signals in voice grade

channels and because of its ability to process about 8000

voice grade channels in real time. A shortcoming of SRSAD

is that it does not perform well in negative SNR conditions.

The newer syllable rate voice activity detector (SRVAD),

used in this current effort, is based on the same principles as

SRSAD but performs much better in severe noise.22

One key issue in matching training sets to test data is

reliably estimating the quality of the data. In our previous

eigen-channel work, this was accomplished with an iterative

procedure in which SNR and speech activity were iteratively

re-estimated to obtain final SNR and speech activity esti-

mates. For the present i-vector experiments, this process was

too computationally intensive for large scale applications. In

this work, SNR was estimated using SAD segmentation. The

signal-plus-noise power was estimated from the envelope of

the speech segments, and the noise power was estimated

from periods of non-speech. This process was efficient and

accurate enough for our purposes.

This paper is structured as follows. Section II describes

the attributes of the speech activity algorithms used in the

simulations, automatic estimation of speech activity, ground

truth, and generation of speech at various quality levels.

Section III introduces the i-vector processing approach,

while Secs. IV, V, and VI specifically address these new

SID, GID, and LID i-vector approaches with classification

results, as a function of the inputted speech test SNR.

Section VII covers noise-robust diarization. The paper closes

with general conclusions and recommendations in Sec. VIII.

II. SPEECH ACTIVITY DETECTION AND QUALITY
ESTIMATION

SRVAD is used for the lowest speech signal levels

(�10 dB < SNR < 0 dB). It uses only the AM envelope

waveform. The process is loosely based on the syllable rate

since it attempts to exploit syllable rate features in the spec-

trum of the signal envelope. At the 8 kHz sample rate of the

original speech signal, the signal envelope is significantly

over sampled. In computing the signal envelope, the signal

is normalized to have zero mean and unit variance by sub-

tracting the signal mean and dividing by the square root of

the signal variance. The analytic signal is computed using

the Hilbert transform and the signal envelope is computed as

the magnitude of the analytic signal. A lowpass filter with a

cutoff frequency of 15 Hz is applied, and the filtered

envelope is down sampled by a factor of 128 to a sample

rate of 62.5 Hz.

A one-sided spectrogram representing the signal enve-

lope was computed with 64-point (corresponding to 1.024 s)

hamming windowed Fourier transforms with an overlap of

58 samples. The spectrogram was “over-normalized” by

dividing the magnitudes of components of each spectrum by

the sum of the squared spectral magnitudes. Three features

were extracted from each spectrum: (1) the maximum spec-

tral magnitude, (2) the absolute difference computed as the

sum of absolute values of the difference of the spectral mag-

nitudes and the mean spectral magnitude, and (3) the cen-

troid of the over-normalized envelope spectrum.

A speech/silence determination is made every 6th enve-

lope sample, or every 0.096 s using quadratic discriminant

analysis (QDA).22 Each QDA calculation produces two pat-

tern recognition distances, corresponding to the speech and

the noise, where typically one would choose the lower dis-

tance to be the correct estimate of speech activity or absence.

To prevent the decision from rapidly oscillating between the

two classes, a voting algorithm is employed. This is the case

for SRSAD. In SRVAD, we have opted to simplify the pro-

cess by median filtering the two distance vectors to remove

any short impulsive artifacts. The seven-point median filter

outputs for the two QDA distance vectors, are designed to

smooth out class changes of less than 0.3 s.

Advantages of envelope activity detection include a sig-

nificant sampling rate reduction, allowing simultaneous real-

time monitoring of multiple channels. Because features are

extracted from the speech envelope spectrum and not the

speech spectrum itself, this process is insensitive to spectral

color, which can be imparted to a voice channel by sensor

hardware used in acquisition. Away from any speech activ-

ity, the false alarm rate is almost negligible (Pfa< 0.1%). At

higher SNR values, it typically declares speech activity 3 to

4 report samples prior to and after (0.288 to 0.384 s earlier

and later) the actual beginning and ending of the speech

segment. Additional edge correction processing now corrects

for this. Unfortunately, that option was not available during

the simulations.

SRVAD has been demonstrated to provide a 50% detec-

tion rate at the �10 dB SNR, where only the voiced speech

segments can be detected. At this low SNR, the 50% detec-

tion rate was still sufficient to achieve SID performance with

a 19% EER. At SNR levels of 0 and 30 dB, the SID EER

was reduced to 7.5% and 3.23%, respectively. For SNR

levels above þ10 dB, we use a different SAD developed by

Phonexia, Ltd. In this paper it is referred to as Phonexia

VAD (or PVAD). PVAD is more complex and less efficient

than SRVAD but is more accurate for higher quality signals.

For SNR levels greater than þ10 dB, PVAD provided

more accurate speech activity than SRVAD (operating with-

out its edge correction option), primarily at the onset and

termination of speech activity. PVAD invokes successive

tests with decreasing throughput and increasing accuracy.

The first of these is simply an energy-based test, followed by

a technical signal removal function that removes telephony

tones, pulses, flat spectra, etc. Next a fundamental speech

(pitch) frequency is estimated and tracked, where longer

2314 J. Acoust. Soc. Am. 143 (4), April 2018 Bartos et al.



signals lacking a fundamental frequency are removed.

Finally, a more computationally-intensive, but very precise,

neural network SAD algorithm is applied.

To prepare data needed for testing these two SAD algo-

rithms, a separate “reference” activity detection algorithm

was used. This algorithm is based on a phoneme recognizer

with some post-processing of the output speech segmenta-

tion and was applied to dual-channel clean recordings in

order to automatically generate the SAD ground truth prior

to degrading them with additive Gaussian white noise. When

training/testing with other types of noise (car, babble), the

original multiple quality model lattice approach to noise-

robust SID also appeared to be valid. As a result only wide-

band stationary white noise was used during this effort. The

main reason for using wide-band stationary noise as the deg-

radation medium was that it is most often encountered when

monitoring communication channels that have very chal-

lenged, barely detectable link budgets. The noise spectrum

itself need not be necessarily white, because both SAD algo-

rithms use AM envelope features that are insensitive to spec-

tral shape. Only a reasonable short term stationarity

assumption is required. SRVAD does not apply technical

signal removal of telephony tones, pulses, etc., as PVAD

does, so these scenarios were not included in the

simulations.

III. i-VECTOR THEORETICAL BACKGROUND

In the i-vector approach the speaker and channel is mod-

eled by one GMM. The GMM is represented as a super-

vector of GMM means (concatenation of mean vectors from

all Gaussians). The speaker and channel dependent super-

vector is adapted from a universal background model

(UBM) super-vector using a shift that is given by a linear

combination of basis vectors with the maximal variability.

The number of basis vectors is much smaller (hundreds) in

comparison to the super-vector size (tens of thousands). This

can be described by the expression

s ¼ mþ Tw; (1)

where s is the speaker and channel dependent super-vector,

m is the UBM GMM mean super-vector, T is a low-rank

matrix representing M basis vectors spanning the subspace

with maximum variability in the mean super-vector space,

and w is a standard normal distributed vector of size M. For

each observation X, the goal is to estimate the parameters of

the posterior probability of w,

pðwjXÞ ¼ Nðw; wx;L�1xÞ: (2)

The i-vector is the maximum a posteriori (or MAP) point

estimate of the variable w, i.e., the mean w of the posterior dis-

tribution p(wjX). It maps most of the relevant information

from a variable-length observation X to a fixed- (small-)

dimensional vector. L–1x is the precision of the posterior distri-

bution. Averaging over time is done through a collection of

GMM statistics. The i-vector extraction does not remove any

channel or non-speech effect. It preserves the total variability

of GMM statistics in the MAP sense. The channel variability

is subsequently removed by linear discriminant analysis

(LDA), i-vector mean normalization, normalization of the i-

vector to unit length, and later in a classifier based on

probabilistic-LDA (PLDA).23

A relative comparison of SID throughput was conducted

on a Quad-Core AMD Opteron Processor 8356, with 128

GB of RAM, as a function of speaker library size. Due to the

huge reduction of voiceprint data that has to be stored, mem-

ory requirements for the i-vector technique were essentially

constant while Eigen-channel memory usage grew exponen-

tially, as did processing times. Table I provides typical proc-

essing times for the i-vector and eigen-channel methods as a

function of speaker library size, when processing one minute

of speech. Note that for a small number of speakers, the i-

vector method is slower because it must perform additional

processing associated with dimensionality reduction down to

a 150-point voiceprint. However, for most practical speaker

library sizes (>100) this approach is well worthwhile as is

evident from Table I.

IV. NOISE-ROBUST SID

As noted earlier, eigen-channel SID systems yielded the

best performance in terms of minimum EER when the SNR

of the training and testing records were identical. This is not
the case for the i-vector-based SID system, where optimum

performance is defined in terms of three SNR levels, not

two. Global system parameters (UBM GMM parameters and

T matrix) were calculated at one level of noise, defined as

SNR1. Speaker enrollment (analogous to training) and test-

ing quality, were represented by SNR2 and SNR3, respec-

tively. A lattice of ten SNR levels (�10, �7.5, �5, �2.5, 0,

5, 10, 15, 20, >30 dB) were used for all three SNR variables.

An SNR¼þ30 dB or greater is considered clean or essen-

tially noiseless. The two algorithm components that make up

the i-vector SID operation are voiceprint extraction and

voiceprint comparison.

First, in the voiceprint extraction algorithm, illustrated

in Fig. 1, after features are extracted from the original

speech, statistics are collected using the UBM (consisting of

a Gaussian mixture model with 512 Gaussians). Next, these

statistics are converted to an i-vector, which preserves the

global variability of speech in 400 floating-point numbers.

The speaker-only information is extracted using LDA,

resulting in the final voiceprint vector, which has 150 floats.

The quality level of the speech used to calculate the global

system parameters (i.e., the universal background model and

the projection parameters) is SNR1. Depending upon

whether it is an enrollment or test record, the SNR of the

input speech can either be SNR2 or SNR3.

The second i-vector SID system algorithm, illustrated in

Fig. 2, compares two voiceprints and generates a log

TABLE I. Relative Processing times (in seconds) for 60 seconds of speech.

Method 10 speakers 100 speakers 1000 speakers 10 000 speakers

i-vector 1.3274 1.3333 1.3575 1.9108

Eigen-channel 0.99338 5.7143 54.545 600
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likelihood ratio (LLR) score, where the recording from

which the voiceprints were generated may contain different

noise levels (SNR2 and SNR3). The model and calibration

parameters are extracted from speech with a noise level cor-

responding also to SNR1, as is the case with the first

algorithm.

The voiceprint comparison is accomplished by probabilis-

tic linear discriminant analysis (PLDA), followed by score cal-

ibration. The calibration is accomplished using logistic

regression (LR) trained for specific combinations of enroll-

ment and test record lengths. The output LLR score points to

two hypotheses where the voiceprints are either spoken by the

same or different speakers. Optionally, the LLR score can be

converted to a percentage score using a sigmoidal function.

In order to limit the large number of simulations required,

only female records were used on the NIST 2010 SRE set,

condition 5 data,24 because higher pitch female recordings

tended to yield worst case EER SID results. In order to pro-

duce a noise-robust SID (NRSID) system, an optimum set of

SNR results leading to a minimum EER had to be determined.

A total of 103 simulations were executed, where the average

speech duration was about 2 s. This resulted in ten 10� 10

matrices of EER values that had to be searched for a mini-

mum, as a combined function of SNR1, SNR2, and SNR3. To

illustrate the effect of choosing equal and non-equal SNR lev-

els, the reference activity detector was used to establish ground

truth for speech activity. For the case of equal SNR levels

(SNR1¼SNR2¼ SNR3), all ten SNR diagonal matrices were

compared to yield the NRSID performance shown in Table II.

Using PVAD on the clean data to determine speech

activity segmentation, the ten 10� 10 matrices correspond-

ing to the global system parameters (SNR1), the enrollment

or training record parameters (SNR2) in the rows and the

test record parameters (SNR3) in the columns of each

10� 10 matrix, were searched to determine the optimal com-

bination, which is shown in Table III. Differences in NRSID

performance, when selecting equal SNR (Table II) or non-

equal SNR levels (Table III) indicate an EER reduction at

all SNR levels, with a more significant improvement at SNR

levels of 0 dB and below.

Figure 3 illustrates the original12 unmodified eigen-

channel-based SID performance, the resulting improvement

to eigen-channel SID performance when the training and

testing SNR levels are matched, the unmodified i-vector SID

performance and the final operating capability (FOC) perfor-

mance of the i-vector SID variant that is described above.

The improvement between the unmodified eigen-channel

(dashed circle) and SNR-matched (solid circle) SID versions

is telling, as is the initial (dashed*) and FOC (solid*) perfor-

mance of the i-vector SID variant. It is interesting to note

that the EER of the unmodified eigen-channel performance

at an SNR¼ 10 dB and FOC NRSID performance at an

SNR¼�10 dB, are essentially equal, allowing a 20 dB

reduction in SNR, realizing nearly the same SID classifica-

tion performance (EER � 19%).

V. NOISE-ROBUST GID

The noise-robust gender identification (NRGID) system

is also i-vector-based and can use the same voiceprints17

generated by NRSID. If both NRSID and NRGID are always

to be executed, the additional processing necessary to also

realize gender classification processing is negligible. This is

realized using the logistic regression classifier. In the second

instance, if gender is to be used as a discriminator prior to

any other speech triage processing to essentially “halve the

search,” then more processing would be required to extract

the voiceprints. However; if it is then followed by NRSID as

part of a larger speech triage scheme, the EER vs SNR per-

formance for NRGID would be very similar. Figure 4 illus-

trates the processing blocks and the associated SNR

definitions for this second “stand-alone” instance of NRGID.

The first step requiring voiceprint extraction, as shown

in Fig. 1, is illustrated as a single module, where the system

parameters are trained at the system SNR level or SNR1, as

before. The second module in Fig. 4 classifies the voiceprints

as to gender and assigns a score, where the model parameters

were trained at a particular level, designated as SNR2. As

before, the input test record quality can be designated as

SNR3. As was the case with NRSID, the best configuration

of system (SNR1), model (SNR2), and test quality (SNR3) is

achieved by running simulations to determine the minimum

EER from the ten 10� 10 matrices. A total of 5000 records

FIG. 2. (Color online) Voiceprint comparison module.

TABLE II. IOC EER SID performance for identical test, train and system

SNRs.

SNR (dB) �10.0 �7.5 �5.0 �2.5 0 5 10 15 20 >30

EER (%) 22.93 17.34 12.59 9.75 8.01 6.03 5.33 4.36 3.79 3.23

TABLE III. SNR levels in (dB) used to obtain optimal (minimum EER) SID

performance.

SNR1¼ system �2.5 �2.5 �2.5 0 0 5 15 20 >30 >30

SNR2¼ train �5.0 0 0 5 5 10 20 >30 >30 >30

SNR3¼ test �10.0 �7.5 �5.0 �2.5 0 5 10 15 20 >30

EER (%) 19.25 13.09 10.42 8.48 7.48 6.02 4.81 3.75 3.35 3.13

FIG. 1. (Color online) Voiceprint extraction module.
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from both genders of the aforementioned NIST SRE data24

were used for experimentation purposes. Determining the

optimum (non-equal) configuration of SNR1 and SNR2, as a

function of the input test record at SNR3, a training set of

15 000 NIST SRE records were then used to yield the final

EER vs SNR3 performance listed in Table IV below. Note

that for the entire range of SNRs tested, the NRGID EER

remained below 5%.

VI. NOISE-ROBUST LID

An i-vector extraction process was used to obtain

language-prints (similar to voiceprints), enabling the com-

parison of these short vectors for rapid noise-robust language

identification (NRLID). Multiclass logistic regression was

used as a language classifier in this case. Figure 5 illustrates

the processing blocks with the associated SNR definitions,

similar in structure to i-vector gender classification in Fig. 4.

System parameters were trained at SNR1 and were processed

to extract a language-print, followed by the language classi-

fier, using language model parameters trained at SNR2. A

language and score were produced when the test record was

input at SNR3.

Six languages from a pre-existing language pack, listed

in Table V(a), were used for development. Using the same

simulation software structure as for NRSID and NRGID, the

optimum (minimum EER) combination of SNR1 and SNR2,

as a function of the test SNR3 level, were determined from

the ten 10� 10 matrices. This decision criteria was then

applied to the five target languages listed in Table V(b).

The only other difference in determining NRLID perfor-

mance was that SRVAD was used for all activity

segmentation, where 20% of the lowest energy of the voice

frame was included in the noise estimate needed to calculate

the testing SNR. All of the speech segments were used for

training. These assumptions resulted in the NRLID EER per-

formance as a function of the test SNR, shown below in

Table VI.

VII. NOISE-ROBUST DIARIZATION

The task of diarizing, or de-interleaving a noisy voice

record with more than one speaker, without prior speaker

training, was also considered a key component in the overall

noise-robust speech triage capability. This process enables

speaker separation into separate single-speaker voice records

needed for speaker enrollment in NRSID. The diarization

system used is based on a fully Bayesian approach that uses

GMMs with eigen-voice priors. The approach25 is very close

to the vector based approach well known in speaker recogni-

tion.17 There was no hard alignment of speaker to speech

segment until the final step of the algorithm. A vector of

speaker probabilities associated to each frame of speech,

was estimated. The probabilities were initialized randomly

and refined iteratively. The initial number of speakers

was preset to be higher than the final number of expected

speakers. Kenny’s original work26 was extended with a hid-

den Markov model layer that reduces rapid jumps between

speakers.

Figure 6 illustrates this iterative structure, where (1)

speaker GMM statistics are collected, (2) speaker factors

(i-vectors) from these statistics are estimated, and finally (3)

speaker factors are converted back to speaker GMMs, fol-

lowed by a re-alignment of frames to speakers using the

forward-backward algorithm. A Viterbi algorithm is used to

obtain the best path through the speakers. The diarization

algorithm then provides a speaker identity or no speaker

decision every 10 ms. Even though the algorithm is iterative,

it turned out to have a rather surprisingly fast throughput of

approximately 20 � real-time, where 3 to 4 iterations were

typically required for convergence.

The performance evaluation was applied to NIST SRE

2008 recordings, where the “reference” SAD yielded the

FIG. 4. (Color online) SNR definitions for NRGID.

TABLE IV. Optimum EER NRGID performance for system and model

SNRs vs test SNR.

Test SNR

(dB) �10.0 �7.5 �5.0 �2.5 0 5 10 15 20 >30

EER (%) 4.37 4.23 3.40 2.66 2.21 2.11 2.07 2.01 1.73 1.77

FIG. 5. (Color online) SNR definitions for NRLID.

FIG. 3. (Color online) Eigen-channel and i-vector speaker ID performance.
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training data with the ground truth activity segmentation

generated from clean data. The evaluation recordings were

created by adding together two records into one channel, and

then adding white noise. Care was taken so that there were

no overlapping speakers in the performance evaluation

records. SRVAD was then used to estimate the speech activ-

ity segmentation from these records. There are only two

SNR levels at play in the diarization speaker architecture,

displayed above: (1) the noise level at which the global

GMM statistics are trained, and (2) the SNR of the input

speech record containing two or more speakers.

The diarization error rate (DER), defined by NIST,27

was used as the evaluation metric. During the diarization

process, three types of errors can occur. The first is a speaker

error in terms of the percentage of time that a speaker’s iden-

tity is incorrectly assigned to another speaker, known as

speaker error rate (SER). In the second instance, a miss error

happens when speech is present in the reference record, but

no speaker is identified. Finally, a false alarm error occurs

when a speaker is identified but there is no speech activity

present. The DER is the sum of all three of these error rates.

Since there were only two SNR levels that could be varied,

simulations to determine the optimum performance were run

on a single two-dimensional (10� 10) DER matrix.

Selecting the optimum system SNR settings as a func-

tion of input SNR and the minimum DER, resulted in the

DER and SER vs SNR dependence, listed in Table VII and

plotted in Fig. 7. It is evident that decreasing SNR increases

DER monotonically. The decrease in SER below 0 dB, how-

ever, is due to worsening SRVAD performance, which is

detecting less and less of the voiced speech, resulting in

more correct speaker choices. This also results in increasing

missed speaker and false alarm errors (both are not shown),

increasing the overall DER.

When possible, normally speaker and language enroll-

ment and training are performed with the “cleanest” speech

records available. Unfortunately, these are not always avail-

able. The high DER percent levels at SNR levels below 0

and 5 dB, are not surprising, since diarization is one of the

most challenging speech triage functions. Noise-robust diari-

zation affords us the opportunity of enrolling and training

the other triage functions from speech records that are less

than ideal, down to SNR levels of about þ5 dB, as shown in

Fig. 7 and Table VII.

VIII. CONCLUSIONS AND RECOMMENDATIONS

We have presented a unified approach to classification

of speech in noise. In our approach, we have demonstrated

that i-vector-based SID, LID, and GID as well as diariza-

tion may be significantly improved by testing on models

trained at appropriate SNR levels. Our i-vector work is

based on our previous eigen-channel work in which it was

found that the SID performance was greatly improved

when the SNR level of the training data was nearly

matched to the SNR of the test data.12 In the present i-

vector study, classification was found to be dependent on

the SNR levels of the global models, the enrollment mod-

els and the test data. These SNR levels are independent,

and the best performance does not occur when all three

signal qualities are equal. Global models and enrollment

models were generated for a lattice of SNR levels between

�10 dB and þ30 dB. For test signal quality at any given

SNR, the best performance was achieved using the appro-

priate look-up tables that select simulation-based optimal

combinations of global, testing, and enrollment SNR lev-

els. Unlike other proposed robust SID, LID, GID, and dia-

rization methods,1–11 the methods we propose require no

modification of the actual classification method itself. Our

method only requires that global and enrollment models be

generated for a lattice of SNR levels.

A critical component is speech activity detection

which is used to separate segments of speech from seg-

ments of non-speech and to estimate SNR. Of two SAD

algorithms used, the SRVAD algorithm, based on the sig-

nal envelope, does not attempt to remove or mitigate spe-

cific (telephony, non-white car, babble, etc.) types of noise

or interference.22 It may be possible to improve the perfor-

mance of both noise-robust speech activity detection and

speech classification functions in other environments by

TABLE VII. Noise-robust diarization performance (in terms of DER and

SER) vs test SNR.

Test SNR

(dB) �7.5 �5.0 �2.5 0 5 10 15 20 >30

SER (%) 4.12 10.78 15.78 16.36 13.23 9.81 7.35 5.89 3.69

DER (%) 78.89 60.59 43.73 33.47 22.25 15.02 10.55 7.87 4.85

TABLE V. Language ID data sets.

(a) Development (b) Target

Language Train (h) Test (h) Language Train (h) Test (h)

Levantine Arabic 422.30 6.48 Gulf Arabic 52.23 50.20

Czech 39.50 8.24 Dari 108.67 4.65

Farsi 148.75 6.81 Hausa 56.82 56.03

Panjabi 10.47 4.88 Pashto 134.76 4.72

Thai 20.39 4.67 Somali 47.55 51.52

Urdu 95.36 5.03

TABLE VI. Optimum EER NRLID performance vs test SNR.

Test SNR

(dB) �10.0 �7.5 �5.0 �2.5 0 5 10 15 20 >30

EER (%) 25.59 13.87 10.48 8.44 7.28 6.25 5.23 4.94 4.80 4.94

FIG. 6. (Color online) Diarization system architecture.
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suppression or mitigation of reverberation, car, babble, and

other types of noise. This feature is partially implemented

in the PVAD and SRSAD21 algorithms.

Figure 3 illustrates how SID noise-robustness has

evolved from Eigen-channel unmodified performance

(dashed circles) prior to 2008,15 to the current SNR-lattice of

i-vector SID models (solid*), where a 19% EER perfor-

mance of the original and the evolved SID operations is

maintained for a 20 dB reduction in SNR (from þ10 dB to

�10 dB). As was the case with SID, the EER of the other i-

vector classification tools, dropped significantly when apply-

ing the SNR-lattice-based approach. At the lowest SNR

(�10 dB), the EER exceeded 40% for all of the unmodified

i-vector GID, SID, and LID models. This suggests that any

MFCC-based speech classification function could realize

increased classification performance in noise, if an SNR-

lattice approach were used. Figure 8 summarizes the FOC

Noise-robust SID, GID and LID performance. Diarization

performance is shown in Fig. 7.
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