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ABSTRACT

Developing speech technologies for low-resource languages
has become a very active research field over the last decade.
Among others, Bayesian models have shown some promising
results on artificial examples but still lack of in situ exper-
iments. Our work applies state-of-the-art Bayesian models
to unsupervised Acoustic Unit Discovery (AUD) in a real
low-resource language scenario. We also show that Bayesian
models can naturally integrate information from other re-
sourceful languages by means of informative prior leading
to more consistent discovered units. Finally, discovered
acoustic units are used, either as the 1-best sequence or as a
lattice, to perform word segmentation. Word segmentation
results show that this Bayesian approach clearly outperforms
a Segmental-DTW baseline on the same corpus.

Index Terms— Acoustic Unit Discovery, Low-Resource
ASR, Bayesian Model, Informative Prior.

1. INTRODUCTION

Out of nearly 7000 languages spoken worldwide, current
speech (ASR, TTS, voice search, etc.) technologies barely
address 200 of them. Broadening ASR technologies to ideally
all possible languages is a challenge with very high stakes in
many areas and is at the heart of several fundamental research
problems ranging from psycholinguistic (how humans learn
to recognize speech) to pure machine learning (how to extract
knowledge from unlabeled data). The present work focuses
on the narrow but important problem of unsupervised Acous-
tic Unit Discovery (AUD). It takes place as the continuation
of an ongoing effort to develop a Bayesian model suitable
for this task, which stems from the seminal work of [1] later
refined and made scalable in [2]. This model, while rather
crude, has shown that it can provide a clustering accurate
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enough to be used in topic identification of spoken docu-
ment in unknown languages [3]. It was also shown that this
model can be further improved by incorporating a Bayesian
”phonotactic” language model learned jointly with the acous-
tic units [4]. Finally, following the work in [5] it has been
combined successfully with variational auto-encoders lead-
ing to a model combining the potential of both deep neural
networks and Bayesian models [6]. The contribution of this
work is threefold:

• we compare two Bayesian models ([2] and [6]) for
acoustic unit discovery (AUD) on a very low resource
language speech corpus,

• we investigate the use of ”informative prior” to improve
the performance of Bayesian models by using informa-
tion from resourceful languages,

• as an extrinsic evaluation of AUD quality, we cascade
AUD with sequence/lattice based word discovery [7].

2. MODELS

The AUD model described in [1, 2] is a non-parametric
Bayesian Hidden Markov Model (HMM). This model is
topologically equivalent to a phone-loop model with two
major differences:

• since it is trained in an unsupervised fashion the ele-
ments of the loop cannot directly be interpreted as the
actual phones of the target language but rather as some
acoustic units (defined as 3-states left-to-right sub-
HMM) whose time scale approximately corresponds
the phonetic time scale.

• to cope with the unknown number of acoustic units
needed to properly describe speech, the model assumes
a theoretically infinite number of potential acoustic
units. However, during inference, the prior over the
weight of the acoustic units (a Dirichlet Process [8])
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will act as a sparsity regularizer leading to a model
which explains the data with a relatively small number
of units.

In this work, we have used two variants of this original
model. The first one (called HMM model in the remainder
of this paper), following the analysis led in [9], approximates
the Dirichlet Process prior by a mere symmetric Dirichlet
prior. This approximation, while retaining the sparsity con-
straint, avoids the complication of dealing with the variational
treatment of the stick breaking process frequent in Bayesian
non-parametric models. The second variant, which we shall
denote Structured Variational AutoEncoder (SVAE) AUD, is
based upon the work of [5] and embeds the HMM model into
the Variational AutoEncoder framework [10]. A very similar
version of the SVAE for AUD was developed independently
and presented in [6]. The main noteworthy difference be-
tween [6] and our model is that we consider a fully Bayesian
version of the HMM embedded in the VAE; and the posterior
distribution and the VAE parameters are trained jointly using
the Stochastic Variational Bayes [5, 11]. For both variants,
the prior over the HMM parameters were set to the conju-
gate of the likelihood density: Normal-Gamma prior for the
mean and variance of the Gaussian components, symmetric
Dirichlet prior over the HMM’s state mixture’s weights and
symmetric Dirichlet prior over the acoustic units’ weights.
For the case of the uninformative prior, the prior was set to be
vague prior with one pseudo-observation [12] 1.

3. INFORMATIVE PRIOR

Bayesian Inference differs from other machine learning tech-
niques by introducing a distribution p(ξ) over the parame-
ters of the model. A major concern in Bayesian Inference
is usually to define a prior that makes as little assumption
as possible. Such a prior is usually known as uninformative
prior. Having a completely uninformative prior has the prac-
tical advantage that the prior distribution will have a minimal
impact on the outcome of the inference leading to a model
which bases its prediction purely and solely on the data. In
the present work, we aim at the opposite behavior, we wish
our AUD model to learn phone-like units from the unlabeled
speech data of a target language given the knowledge that was
previously accumulated from another resourceful language.
More formally, the original AUD model training consists in
estimate the a posteriori distribution of the parameters given
the unlabeled speech data of a target language Xt:

p(ξ|Xt) =
p(Xt|ξ)p(ξ)

p(Xt)
(1)

1Because of lack of space, we have only given a rudimentary de-
scription of the models. Note that the HMM model was described at
length in [2] whereas the full description of the SVAE model is yet to be
published. However, the implementation of both models is available at
https://github.com/amdtkdev/amdtk

The parameters are divided into two subgroups ξ = {η,ut}
where η are the global parameters of the model, and ut are
the latent variables which, in our case, correspond to the se-
quences of acoustic units. The global parameters are sepa-
rated into two independent subsets : η = {ηA,ηL}, corre-
sponding to the acoustic parameters (ηA) and the ”phonotac-
tic” language model parameters (ηL). Replacing η and fol-
lowing the conditional independence of the variable induced
by the model (see [2] for details) leads to:

p(ut,η|Xt) ∝ p(Xt|ut,ηA)p(ut|ηL)p(ηL)p(ηA) (2)

If we further assume that we have at our disposal speech data
in a different language than the target one, denoted Xp, along
with its phonetic transcription up, it is then straightforward to
show that:

p(η,ut|Xt,Xp,up) ∝ p(Xt|ut,ηA)p(ut|ηL)p(ηA|Xp,up)
(3)

which is the same as Eq. 2 but for the distribution of the
acoustic parameters which is based on the data of the re-
sourceful language. In contrast of the term uninformative
prior we denote p(ηA|Xp,up) as an informative prior. As
illustrated by Eq. 3, a characteristic of Bayesian inference
is that it naturally leads to a sequential inference. Therefore,
model training can be summarized as:

• given some prior data Xp from a resourceful language,
estimate a posterior distribution over the acoustic pa-
rameters p(ηA|Xp)

• for a new unlabeled speech corpus, estimate the pos-
terior distribution but considering the learned posterior
distribution p(ηA|Xp) as a ”prior”.

Practically, the computation of the informative prior as well as
the final posterior distribution is intractable and we seek for an
approximation by means of the well known Variational Bayes
Inference [13]. The approximate informative prior q1(ηA) is
estimated by optimizing the variational lower bound of the
evidence of the prior data Xp:

q∗1 = arg max
q1

Eq1(ηA)

[
ln p(Xp,ηA|up, )

]
−DKL(q1(ηA)||p(ηA))

(4)

where DKL is the Kullback-Leibler divergence. Then, the
posterior distribution of the parameters given the target data
q2(ut,ηA,ηL) can be estimated by optimizing the evidence
of the target data Xt:

q∗2 = arg max
q2

Eq2(ut,ηA,ηL)

[
ln p(Xt,ut,ηA,ηL)

]
−DKL(q2(ηA)||q1(ηA))

−DKL(q2(ut,ηL)||p(ut,ηL))

(5)
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Note that when the model is trained with an uninformative
prior the loss function is the as in Eq. 5 but with p(ηA) in-
stead of the q1(ηA). For the case of the uninformative prior,
the Variational Bayes Inference was initialized as described in
[2]. In the informative prior case, we initialized the algorithm
by setting q2(ηA) = q1(ηA).

4. EXPERIMENTAL SETUP

4.1. Corpora and acoustic features

We used the Mboshi5K corpus [14] as a test set for all the
experiments reported here. Mboshi (Bantu C25) is a typical
Bantu language spoken in Congo-Brazzaville. It is one of the
languages documented by the BULB (Breaking the Unwrit-
ten Language Barrier) project [15]. This speech dataset was
collected following a real language documentation scenario,
using Lig Aikuma2, a mobile app specifically dedicated to
fieldwork language documentation, which works both on
android powered smartphones and tablets [16]. The corpus
is multilingual (5130 Mboshi speech utterances aligned to
French text) and contains linguists’ transcriptions in Mboshi
(in the form of a non-standard graphemic form close to the
language phonology). It is also enriched with automatic
forced-alignment between speech and transcriptions. The
dataset is made available to the research community3. More
details on this corpus can be found in [14].

TIMIT is also used as an extra speech corpus to train the
informative prior. We used two different set of features: the
mean normalized MFCC + ∆ + ∆∆ generated by HTK and
the Multilingual BottleNeck (MBN) features [17] trained on
the Czech, German, Portuguese, Russian, Spanish, Turkish
and Vietnamese data of the Global Phone database.

4.2. Acoustic unit discovery (AUD) evaluation

To evaluate our work we measured how the discovered units
compared to the forced aligned phones in term of segmen-
tation and information. The accuracy of the segmentation
was measured in term of Precision, Recall and F-score. If a
unit boundary occurs at the same time (+/- 10ms) of an actual
phone boundary it is considered as a true positive, otherwise it
is considered to be a false positive. If no match is found with a
true phone boundary, this is considered to be a false negative.
The consistency of the units was evaluated in term of normal-
ized mutual information (NMI - see [2, 4, 6] for details) which
measures the statistical dependency between the units and the
forced aligned phones. A NMI of 0 % means that the units are
completely independent of the phones whereas a NMI of 100
% indicates that the actual phones could be retrieved without
error given the sequence of discovered units.

2http://lig-aikuma.imag.fr
3It will be made available for free from ELRA, but its current version

is online on: https://github.com/besacier/mboshi-french-
parallel-corpus

Features Precision Recall F-score NMI
MFCC 28.40 54.36 37.36 17.92
MBN 24.60 41.71 30.95 14.81

Table 1: AUD results of the baseline (HMM model with un-
informative prior) - Mboshi5k corpus

4.3. Extension to word discovery

In order to provide an extrinsic metric to evaluate the qual-
ity of the acoustic units discovered by our different meth-
ods, we performed an unsupervised word segmentation task
on the acoustic units sequences, and evaluated the accuracy
of the discovered word boundaries. We also wanted to ex-
periment using lattices as an input for the word segmentation
task, instead of using single sequences of units, so as to better
mitigate the uncertainty of the AUD task and provide a com-
panion metric that would be more robust to noise. A model
capable of performing word segmentation both on lattices and
text sequences was introduced by [7]. Building on the work
of [18, 19] they combine a nested hierarchical Pitman-Yor
language model with a Weighted Finite State Transducer ap-
proach. Both for lattices and acoustic units sequences, we
use the implementation of the authors with a bigram language
model and a unigram character model4. Word discovery is
evaluated using the Boundary metric from the Zero Resource
Challenge 2017 [21] and [22]. This metric measures the qual-
ity of a word segmentation and the discovered boundaries
with respect to a gold corpus (Precision, Recall and F-score
are computed).

5. RESULTS AND DISCUSSION

First, we evaluated the standard HMM model with an uninfor-
mative prior (this will be our baseline) for the two different in-
put features: MFCC (and derivatives) and MBN. Results are
shown in Table 1. Surprisingly, the MBN features perform
relatively poorly compared to the standard MFCC. These re-
sults are contradictory to those reported in [4]. Two factors
may explain this discrepancy: the Mboshi5k data being dif-
ferent from the training data of the MBN neural network, the
neural network may not generalize well. Another possibility
may be that the initialization scheme of the model is not suit-
able for this type of features. Indeed, Variational Bayesian
Inference algorithm converges only to a local optimum of the
objective function and is therefore dependent of the initial-
ization. We believe the second explanation is the more likely
since, as we shall see shortly, the best results in term of word
segmentation and NMI are eventually obtained with the MBN
features when the inference is done with the informative prior.

4It would be more natural to use a 4-gram or an even higher order spelling
model for word discovery, but we wanted to be able to validate our metric
by matching it with the model of [20] (dpseg) which implements a bigram
language model based on a unigram model of characters (see details in Table
2).

5941



Features Model Inf. Prior Precision Recall F-score Precision Recall F-score
1-best Word Seg. Lattices Word Seg.

MFCC HMM no 28.8 74.5 41.5 29 75.9 41.9
MFCC HMM yes 28.5 79.1 41.9 29.3 78.1 42.6
MFCC SVAE no 28.7 77.2 41.9 30 74.4 42.8
MFCC SVAE yes 29.3 73.1 41.8 30.4 69.6 42.3
MBN HMM no 30.3 69 42.1 30.8 66.1 42
MBN HMM yes 29.2 67.5 40.8 29.9 67.8 41.5
MBN SVAE no 29.2 68.3 41 29.6 68.1 41.3
MBN SVAE yes 29.8 73.4 42.4 30.9 72.2 43.3

Table 2: Precision, Recall and F-measure on word boundaries, using different AUD methods. Segmental DTW baseline [23]
gave F-score of 19.3% on the exact same corpus; dpseg [20] was also used as a word segmentation baseline and gave similar
(slightly lower) F-scores to 1-best (best config with dpseg gave 42.5%) - Mboshi5k corpus

Features Model Average Unit duration (s)
phones 0.091

MFCC HMM 0.082
MFCC SVAE 0.096
MBN HMM 0.093
MBN SVAE 0.102

Table 3: Average duration of the (AUD) units (AUD) for the
HMM and SVAE models trained with an uninformative prior.
”phones” refers to the forced aligned phone reference.

Next, we compared the HMM and the SVAE models when
trained with an uninformative prior (lines with ”Inf. Prior”
set to ”no” in Table 4). The SVAE significantly improves the
NMI and the precision showing that it extracts more consis-
tent units than the HMM model. However, it also degrades
the segmentation in terms of recall. We further investigated
this behavior by looking at the duration of the units found by
both models compared to the true phones (Table 3). We ob-
serve that the SVAE model favors longer units than the HMM
model hence leading to fewer boundaries and consequently
smaller recall.

We then evaluated the effect of the informative prior on
the acoustic unit discovery (Table 4). On all 4 combinations
(2 features sets × 2 models) we observe an improvement in
terms of precision and NMI but a degradation of the recall.
This result is encouraging since the informative prior was
trained on English data (TIMIT) which is very different from
Mboshi. Indeed, this suggests that even speech from an unre-
lated language can be of some help in the design of an ASR
for a very low resource language. Finally, similarly to the
SVAE/HMM case described above, we found that the degra-
dation of the recall is due to longer units discovered for mod-
els with an informative prior (numbers omitted due to lack of
space).

Word discovery results are given in Table 2 for the Bound-
ary metric [21, 22]. We observe that i) the best word boundary
detection (F-score) is obtained with MBN features, an infor-
mative prior and the SVAE model; this confirms the results of
table 4 and shows that better AUD leads to better word seg-
mentation ii) word segmentation from AUD graph Lattices is
slightly better than from flat sequences of AUD symbols (1-
best); iii) our results outperform a pure speech based baseline

Features Model Inf. Prior Precision Recall F-score NMI
MFCC HMM no 28.4 54.36 37.6 17.92
MFCC HMM yes 29.88 47.34 36.64 20.42
MFCC SVAE no 30.1 49.29 37.38 21.03
MFCC SVAE yes 35.85 25.59 29.87 21.67
MBN HMM no 24.6 41.71 30.95 14.81
MBN HMM yes 27.8 36.58 31.56 20.34
MBN SVAE no 26.8 41.51 32.57 18.33
MBN SVAE yes 30.75 37.94 33.97 23.49

Table 4: Effect of the informative prior on AUD (phone
boundary detection) - Mboshi5k corpus

based on segmental DTW [23] (F-score of 19.3% on the exact
same corpus).

6. CONCLUSION

We have conducted an analysis of the state-of-the-art Bayesian
approach for acoustic unit discovery on a real case of low-
resource language. This analysis was focused on the quality
of the discovered units compared to the gold standard phone
alignments. Outcomes of the analysis are i) the combina-
tion of neural network and Bayesian model (SVAE) yields a
significant improvement in the AUD in term of consistency
ii) Bayesian models can naturally embed information from
a resourceful language and consequently improve the con-
sistency of the discovered units. Finally, we hope this work
can serve as a baseline for future research on unsupervised
acoustic unit discovery in very low resource scenarios.
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