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Abstract
This paper complements the public release of the
BUT/Phonexia bottleneck (BN) feature extractor. Starting
with a brief history of Neural Network (NN)-based and
BN-based approaches to speech feature extraction, it describes
the structure of the released software. It follows by describing
the three provided NNs: the first two trained on the US English
Fisher corpus with monophone-state and tied-state targets,
and the third network trained in a multi-lingual fashion on
17 Babel languages. The NNs were technically trained to
classify acoustic units, however the networks were optimized
with respect to the language recognition task, which is the
main focus of this paper. Nevertheless, it is worth noting that
apart from language recognition, the provided software can be
used with any speech-related task. The paper concludes with a
comprehensive summary of the results obtained on the NIST
2015 and 2017 Language Recognition Evaluations tasks.

1. Introduction
The BUT group has a long tradition of research of NN-derived
features. Back in the years 2000-2002, most of its (now senior)
members worked with Hynek Hermansky and his OGI group
on temporal pattern (TRAP) features that followed the early
work of Sharma et al. [1]. Already at that time, the process-
ing worked in two stages: the temporal evolutions of energies
in spectral bands were processed by the first-stage neural net-
works, whose outputs were then merged by a merging NN. In
tandem-based ASR1, the NN-based features did not outperform
the classical MFCC and PLP coefficients. However, they have
become the basis of the very successful BUT phone recognizer,
which, in the early 2000’s, produced the state-of-the-art results
on TIMIT [2], and was released publicly2. It then served BUT
and many other groups as an excellent tokenizer for phonotactic
language identification [3, 4].

In the follow-up research, it became evident that phone pos-
terior probabilities were not the best features for tandem ASR;
better results could rather be achieved by taking features from
a narrow hidden NN layer, commonly referred to as bottleneck.

The work was supported by Czech Ministry of Interior project No.
VI20152020025 ”DRAPAK”, Technology Agency of the Czech Repub-
lic project No. TJ01000208 ”NOSICI”, and by Czech Ministry of Edu-
cation, Youth and Sports from the National Programme of Sustainabil-
ity (NPU II) project ”IT4Innovations excellence in science - LQ1602”.
The project was also supported by the Czech Science Foundation under
project No. GJ17-23870Y.

1“Tandem” denoted NN feature extractor feeding a classical
HMM/GMM system.

2http://speech.fit.vutbr.cz/software/
phoneme-recognizer-based-long-temporal-context

The newly introduced bottleneck (BN) features have, for the
first time, outperformed the classical MFCC/PLP coefficients
[5]. We have then settled on stacked bottleneck (SBN) feature
architecture (described in detail in Sec. 3.3), that again com-
prises two NN stages: the first looking at a rather short temporal
context, and the second processing several down-sampled out-
puts of the first, reaching a temporal context of 310 ms. These
features have been for long time our production features for
ASR, and have surrendered to simpler features (filter-bank out-
puts again) only recently, with the introduction of LSTMs that
are more powerful in modeling the temporal evolution of fea-
tures [6].

In addition to ASR, SBN features have a long and suc-
cessful track in language and speaker recognition. The use
of BN features for LID was investigated in [7, 8] with 45%
relative improvement to acoustic features baseline on DARPA
RATS database. A thorough summary of our recent work with
BN features in LID has been presented in [9]. Finally, SBN
features again contributed to a superior performance of BUT-
UAM-Phonexia-PoliTo system in 2017 NIST Language recog-
nition evaluation (LRE17) [10].

Although trained to model the phonetic content (and there-
fore discard any speaker information), BN features have been
successfully used in speaker recognition, as well. Numerous
sites reported good results either with BN features themselves,
or in a conjunction with conventional acoustic features, or as
DNN alignment for GMMs [11, 12, 13, 14, 15].

This paper and the release of the BN feature extractor con-
tinue in our tradition of releasing state-of-the-art techniques to
the R&D community with the aim of faster innovation and re-
producible science.

The rest of the paper covers i) the internals of the software
release in Sec. 2, ii) details on the training of included NNs
in Sec. 3, and iii) a summary of results achieved with BN fea-
tures extracted with the released package on NIST LRE15 and
LRE17 data [10, 16]. Sec. 5 provides the necessary download
information.

2. Overview of BN extractor
BUT/Phonexia bottleneck feature extractor is a Python toolkit
allowing to extract bottleneck features or phoneme classes pos-
terior probabilities from a given audio signal. The package in-
cludes the following components.

audio2bottleneck.py - a Python script to extract SBN fea-
tures for a given audio recording in .wav format. The
script could be modified to save BN features in addi-
tion to SBNs. Also, by default, the full feature matrix
is saved. One can change the script to save features only

Odyssey 2018 The Speaker and Language Recognition Workshop
26-29 June 2018, Les Sables d’Olonne, France

283 10.21437/Odyssey.2018-40

http://www.isca-speech.org/archive/Odyssey_2018/abstracts/61.html


for speech frames according to provided VAD labels or
to internally computed energy-based VAD.

bottleneck2posterior.py - a Python script to calculate matrix
of phoneme class posterior probabilities from SBN fea-
tures extracted with audio2bottleneck.py. The choice of
the network to extract posteriors has to be consistent with
the network used for SBN feature extraction.

utils.py, nn def.py, gmm.py - supplementary scripts used
by two main ones (audio2bottleneck.py and bottle-
neck2posterior.py)

README - text file with detailed description of software
structure and usage

nn weights - directory containing six .npz files with neural
network weights. There are three files with network
weights to extract SBN features from audio and three
files with the weights transforming SBNs into posteri-
ors. It is worth noticing that by merging corresponding
weight files, one can restore the originally trained neural
networks. In total, three networks were trained for BUT
BN feature extractor:

• FisherEnglish FBANK HL500 SBN80 PhnStates120.npz
+ FisherEnglish SBN80 PhnStates120.npz

• FisherEnglish FBANK HL500 SBN80 triphones2423.npz
+ FisherEnglish SBN80 triphones2423.npz

• Babel-ML17 FBANK HL1500 SBN80 PhnStates3096.npz
+ Babel-ML17 SBN80 PhnStates3096.npz

In the rest of the paper we will refer to them as to Fish-
erMono , FisherTri and BabelMulti , respectively.
Also, the directory contains three files with lists of class
labels the networks were trained to predict.

nn weights/FisherEnglish SBN80 PhnStates120.dir -
directory containing set of scripts and models for
generating phoneme lattices using HTK tool HVite. It
is possible to create phoneme posterior files, phoneme
strings and phoneme lattices - which can replace our
previously released phoneme recognizer. The main
script for this is phnrec.sh. The phoneme lattices or
phoneme soft counts might be used for phonotac-
tic language recognition, topic recognition or other
tasks, usually together with some classifier, such as
SVM/LM/Decision Trees/NN or other.

example - directory with a simple example of how to extract
and save SBN features and how to extract phoneme pos-
terior probabilities.

3. Details of released networks
3.1. Feature extraction

For all of the networks distributed with BUT/Phonexia BN fea-
ture extractor, we used the same input features and feature pre-
processing.

Acoustic features presented to the network are 24 log Mel-
scale filter bank outputs extracted from 25 ms-long frames ev-
ery 10 ms. For every utterance, global mean normalization on
speech frames is applied. We add a context of 10 frames (±5) to
each log filter bank feature vector. Then, along the time trajec-
tory of each feature coefficient, we apply a Hamming window
followed by projection into the first 6 DCT bases (0th to 5th).
This results in 6 × 24 = 144-dimensional input vector to the
NN.

In our previous works [9, 17], we used to augment the out-
puts of the log filter bank with fundamental frequency features.
In this work, we decided not to include these in order to keep the
BN extractor package self-contained and independent of other
third-party toolkits, which the users of BN extractor might not
have available. Experiments showed that there was no signif-
icant degradation in language recognition performance when
fundamental frequency features were not used.

3.2. Training data and targets

The BN extractor package provides three neural networks. Two
of them, FisherMono and FisherTri were trained on Fisher En-
glish, Parts 1 and 2 dataset. This dataset contains approximately
2000 hours of clean telephone speech in English. The two net-
works differ in the targets they were trained to predict. Fisher-
Mono is trained to assign one of 120 phoneme state class labels
(3 states per phoneme) to each frame. FisherTri assigns tri-
phone state labels to the frames, 2423 targets in total. These
states correspond to the original triphone state tying obtained
during GMM-HMM training.

The third network, BabelMulti , was trained on 17 lan-
guages from the IARPA Babel program3. These are also mainly
telephone conversational speech data, although small amount of
far field and scripted recordings is present. The target output of
this network is a vector of stacked phoneme states for all 17 lan-
guages. In total, the output consists of 3096 units. The output
layer utilizes block softmax activation function [18], meaning
that it is divided into 17 subsets corresponding to the phoneme
sets of the individual languages. During training, only the part
of the output layer corresponding to the language of the given
training example is updated.

3.3. SBN architecture

All released networks extract stacked bottleneck (SBN) fea-
tures. This term refers to a topology where each of the provided
networks is essentially a cascade of two bottleneck networks
(see Fig. 1). The first of them is a standard bottleneck network
taking as an input features described in Sec. 3.1. This network
has four hidden layers, third of which is 80-dimensional bottle-
neck layer. In other words, the configuration of this network is
144×DHL×DHL×80×DHL×Dout, where DHL is the size
of hidden layer, and Dout is the number of target classes. All
layers utilize logistic sigmoid activation function. The excep-
tions are linear bottleneck layer and softmax (block-softmax)
output. The second network has exactly the same architecture
as the first one except that it has different input dimensionality.
It takes as an input for the frame t BN features extracted from
the first network sampled at times t−10, t−5, t, t+5, t+10,
which results in 400-dimensional vector. By stacking bottle-
necks from the first network, the second effectively sees 31
frames in the original feature space at a time. The activations of
the bottleneck layer of this network are used as final features.
The architecture of all three released networks is identical ex-
cept for the size of hidden layers. In both networks trained on
Fisher English, hidden layers have 500 neurons, while each hid-
den layer of the multilingual network has 1500 neurons.

Although SBNs were originally introduced for the ASR
task [19], they were successfully adapted for language recog-
nition. Previously, we have shown that the advantage of stacked
architecture can be compensated by increasing input context for
the simpler traditional bottleneck network [9]. However, we de-

3Collected by Appen, http://www.appenbutlerhill.com
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Figure 1: Block diagram of stacked bottleneck (SBN) feature extraction. The blue parts of neural networks are used only during
training. The green frames in context gathering between the two stages are skipped. Only frames with shift -10, -5, 0, 5, 10 form the
input to the second stage NN.

cided to provide the full stacked BN network as it can be used
also for extraction of standard BN features (by propagating in-
put data only to the bottleneck layer of the first network). That
allows to compare which architecture (traditional or stacked)
suits better for a desired application. In Sec. 4.2.3, we provide
results of language recognition systems based on BN features
extracted from the networks distributed with the software.

To summarize, training schemes and architectures of all
three networks are almost identical, except for a few differences
highlighted in Tab. 1.

4. Experiments
4.1. Experimental setup

We report results of the released features on two most re-
cent NIST Language Recognition Evaluation tasks, LRE15 and
LRE17 [20, 21]. We trained similar systems for both conditions,
the main difference between the two being the data the systems
were trained on.

In both cases, we trained a diagonal-covariance UBM with
2048 components. The total i-vector extractor was trained in
10 iterations and the dimensionality of i-vectors was set to 600.
A simple Gaussian Linear Classifier (GLC) [22, 23] was used
on top of the i-vectors in order to obtain the vector of class-
conditional log-likelihoods for each segment. Model of each
language is represented by a Gaussian distribution with mean
estimated over i-vectors of given language and covariance ma-
trix that is estimated over all training data and shared across all
models. We trained a multi-class logistic regression to obtain a
scaling factor and an offset vector to calibrate the scores.

In case of LRE15, we used dataset provided by NIST for
the LRE15 fixed condition. The dataset consists of recordings
from 20 different languages, clustered into six groups according
to language similarities [20]. We split training data into two dis-
joint parts: training and development (dev) datasets [16]. These
datasets were created by randomly selecting 60% for the train-
ing part and 40% for the dev set. The segments belonging to the
development set were further split into short cuts of different
durations that contain from 3 to 30 seconds of speech. More-
over, a balanced training subset (up to 15 h per per language)
was randomly selected and used for UBM training in order to
partially compensate for big differences in the amounts of avail-
able training data per language. However, no data augmentation
was performed for the classes with less than 15 h of speech. Fi-
nally, we used the full training set to train i-vector extractor and
the GLC. The dev set was used to obtain calibration parame-
ters. We evaluated this system on the full LRE 2015 evaluation

dataset.
For LRE17 experiments, we have utilized the data supplied

by NIST (training and dev) for fixed condition. This dataset
contains recordings from 14 languages and, as in the case of
LRE 2015, they are split into five clusters of similar languages.
We downsampled all data to 8 kHz. Similarly to LRE15, we
created a balanced subset of training data having up to 15 hours
of speech per language. This set was used to train UBM; i-
vector extractor and GLC were trained using all training data.
In LRE17 dev, we split segments that contain more than 40 sec-
onds of speech into multiple short cuts ranging from 2.5 to 40
seconds. We also kept the original long segments that we cut.
The resulting dev set was used for calibration.

4.2. Results

4.2.1. Performance of SBNs on language recognition task

We evaluated performance of three types of SBN features on
LRE15 and LRE17 tasks. We report the results in terms of of-
ficial metrics of evaluations in 2015 and 2017, average Cavg

and Cact
avg, as defined in [20, 21]. Tab. 2 presents the results

achieved. The first part of Tab. 2 describes results on 2015.
They are as expected: the worst results for FisherMono , then
FisherTri and the best ones for Multilingual bottleneck features
BabelMulti . The second part of Tab. 2 shows results on 2017
data. They are similar except for Multilingual BN features Ba-
belMulti being a bit worse than FisherTri .

4.2.2. Effect of VAD

Our bottleneck feature extractor allows the users to utilize their
own VAD labels. In case the user supplies the BN extraction
script with a label file, it will be used to compute feature mean
normalization, also with slight modification of the script (un-
commenting a single line of code) the same VAD will be applied
to resulting bottleneck features. When the user does not provide
any label file, energy-based VAD will be computed: it is used
for feature normalization and also could be used to eliminate
non-speech frames from BN feature matrix.

We performed a set of experiments on NIST LRE15 to see
the effect of VAD. In all experiments, SBN features were ex-
tracted using exactly the same neural network and processed
with the same LID system, only VAD was varying. Here, the
network with 30-dimensional bottleneck layer was trained on
250 hours of Fisher English with 2423 triphone targets. These
bottlenecks were used as an input to LID system as described
in Sec. 4.1. Here, we only look at the performance on LRE15
task. Tab. 3 summarizes the results. The first line of the table
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Table 1: Summary of differences in architecture and training of three SBN networks released with BN extractor.

Network title Training data DHL Dout Output activation

FisherMono Fisher English 1+2 500 120 phone states Softmax
FisherTri Fisher English 1+2 500 2423 triphone states Softmax
BabelMulti 17 languages from IARPA Babel 1500 3096 phone states Block softmax

Table 2: Results of provided SBN features on NIST LRE 2015
and 2017 tasks. The performance metrics are the official LRE
metrics Cavg and Cact

avg, reported in [%].

SBN
LRE15 LRE17

Cavg Cact
avg Cavg Cact

avg

FisherMono 16.20 17.95 23.08 23.33
FisherTri 15.00 17.00 21.10 21.19
BabelMulti 13.82 15.98 21.87 21.99

Table 3: Performance of 30-dimensional SBN features w.r.t.
VAD method. Cavg, reported in [%], on NIST LRE 2015.

VAD Cavg

No VAD 32.27
Energy-based VAD 18.52
NN-based VAD 18.22

shows the performance of LID system, when no VAD was ap-
plied at all. The second line shows the performance of the same
system, when we used energy-based VAD supplied with BN
feature extractor. The last line corresponds to the experiment
where we used our own NN-based VAD. As the results indi-
cate, not using any VAD could significantly degrade the results,
while basic energy-based one can already provide reasonably
good performance. Using good VAD labels can help to improve
performance even further, but the difference is less significant.

4.2.3. Performance of BN features

As mentioned before, provided networks could be used not only
for stacked bottleneck feature extraction, but to extract stan-
dard BN features as well. One can extract BN features alone, it
would allow to slightly speed up the generation of features. Our
tests show that extraction of SBNs takes about 10-15% longer
than standard BNs. Also, just because bottlenecks are anyway
computed in order to get SBNs, one can save them and use as
an alternative or supplementary set of features. In this case, one
gets them practically for free, the only additional time cost is
due to saving them.

Here, we show the results achieved with standard BN fea-
tures on LRE17 task: Tab. 4 shows the performance of BN fea-
tures extracted from three networks distributed with BN feature
extractor. The results indicate that BNs perform significantly
worse than SBNs extracted from the same network (see Tab. 2).
As we have shown before [9], BNs could achieve comparable
results to SBNs when the input context is large enough. In our
case however, the first stage network “sees” rather short tem-
poral context, only 10 frames around the current one, that ex-

Table 4: Performance of BN features on NIST LRE 2017 task.
The performance metrics are the official LRE metrics Cavg and
Cact

avg, reported in [%].

BN Cavg Cact
avg

FisherMono 27.65 27.77
FisherTri 27.03 27.17
BabelMulti 28.63 28.77

plains poor performance of these features on language ID task.
However, one can still find these features useful for some other
application.

5. Download
The package homepage is available at
http://speech.fit.vutbr.cz/software/
but-phonexia-bottleneck-feature-extractor
It contains a download link and detailed installation instruc-
tions, as well as a list of system and software requirements. In
short, the extractor requires Python 2 with a working numpy
package.

6. Conclusion
In the last 10 years, bottleneck features have brought significant
advantage to BUT and Phonexia, both in the R&D work and in
production systems. This paper complements the public release
of our BN feature extractor, which was conducted with the aim
to level the field for newcomers in language identification, and
to generate new interesting research results. Note that while
the intended use of the BN extractor is primarily in language
ID, it can be equally well used in speaker recognition, ASR,
and maybe other applications such as unsupervised approaches,
querying-by-example, and others. We will be happy to learn
about your results!
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Černocký, “Analysis of DNN approaches to speaker iden-
tification,” in Proceedings of the 41th IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP 2016), 2016, 2016.

[12] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel
scheme for speaker recognition using a phonetically-
aware deep neural network,” in ICASSP, 2014.

[13] Y. Lei, L. Ferrer, M. McLaren, and N. Scheffer, “Com-
parative study on the use of senone-based deep neural net-
works for speaker recognition,” Submitted to IEEE Trans.
ASLP, 2014.

[14] Najim Dehak Fred Richardson, Douglas A. Reynolds, “A
unified deep neural network for speaker and language
recognition,” in Interspeech, 2015.

[15] Mitchell McLaren, Martin Graciarena, and Yun Lei, “Ad-
vances in deep neural network approaches to speaker
recognition,” in ICASSP, 2015.
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