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Abstract

Automatic speech recognition (ASR) systems often need to be
developed for extremely low-resource languages to serve end-
uses such as audio content categorization and search. While
universal phone recognition is natural to consider when no tran-
scribed speech is available to train an ASR system in a language,
adapting universal phone models using very small amounts
(minutes rather than hours) of transcribed speech also needs to
be studied, particularly with state-of-the-art DNN-based acous-
tic models. The DARPA LORELEI program provides a frame-
work for such very-low-resource ASR studies, and provides an
extrinsic metric for evaluating ASR performance in a human-
itarian assistance, disaster relief setting. This paper presents
our Kaldi-based systems for the program, which employ a uni-
versal phone modeling approach to ASR, and describes recipes
for very rapid adaptation of this universal ASR system. The
results we obtain significantly outperform results obtained by
many competing approaches on the NIST LoReHLT 2017 Eval-
uation datasets.

Index Terms: Universal acoustic models, topic identification,
cross-language information retrieval, transfer learning, low-
resource speech recognition

1. Introduction

The goal of DARPA’s Low Resource Languages for Emergent
Incidents program (LORELEI) is the rapid development of hu-
man language technologies for low-resource languages, specif-
ically in support of situational awareness for emergent missions
such as humanitarian assistance, disaster relief, or response to
an infectious disease outbreak [1, 2]. The situational awareness
gained from speech and text documents collected “in the wild”
is encoded in document descriptors called Situation Frames
(SF). A SF consists of three elements that must be recognized,
whenever present, in each speech document:

¢ Relevance — Produce a score of the document’s rele-
vance to the emergent incident,

« Situation Type — Produce one or more of 11 predefined
topics mentioned in the document,

¢ Location — Extract any place names related to the inci-
dent mentioned in the document.

This work was supported by DARPA LORELEI Grant No
HRO011-15-2-0024. The authors also thank Huda Khayrallah at the
Johns Hopkins University for her help with the machine translation sys-
tems.

The 11 topics were specified by the LORELEI program.

The LORELEI SF detection task is characterized by ex-
tremely limited training resources. The only available resources
for each evaluation language, called an Incident Language (IL)
are:

1. Monolingual text (only some of which is related to the
incident)

2. Untranscribed, unlabeled audio
3. 10 hours of consultation with a native informant (NI).
4. A small amount of IL-English parallel text

The NI is a native speaker of the IL with at least intermediate
proficiency in English. System developers may ask the NI to
perform any annotation tasks deemed necessary to build a sys-
tem for extractng SFs from speech, e.g. transcribing speech or
labeling documents with situation frames.

The lack of supervised training data in the IL. demands the
use of zero resource techniques, of cross-lingual knowledge
transfer on many different levels, or of combinations thereof.
To this end, we (i) developed an automatic speech recogni-
tion (ASR) system using universal phone models, (ii) explored
transfer of acoustic models trained on closely related languages,
and (iii) trained language-independent classifiers for situation
types. These three approaches are the focus of this paper, and
are applicable to other very-low-resource settings.

To obtain at least some labeled data in the IL—for adap-
tation of language universal systems—we asked the NI to read
some IL text, transcribe some IL speech, and provide situation
type labels for some documents in the IL. To increase the NI’s
annotation efficiency, all NI tasks were conducted via a web
browser-based user interface tailored to the specific LORELEI
tasks. We were able to obtain a few minutes (15-30) of tran-
scribed IL speech and a few hundred (150-300) SF Type labels,
which significantly improved performance. The read speech
turned out to be useful for dianostic purposes during system
development, but did not impact performance.

Other LORELEI project participants [3] have used acoustic
models trained on data collected during NI sessions and used an
IL-to-English machine translation system and English-language
SF-Type classifier. [4] also train an English SF-Type classi-
fier for this task, but translate the model’s features to the IL,
in which classification is then performed. As an alternative to
such training of an ASR system from IL speech, we opted for
a transfer learning paradigm and started with models trained on
one or more higher-resource language(s). Other previous ap-
proaches [5, 6, 7, 8] have explored cross-language ASR transfer
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Figure 1: Using the English SF-Type classifier to obtain adap-
tation/training data
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assuming shared phonemic representations, generally using the
GlobalPhone corpus [9], while [10] examines multilingual
training of a deep neural networks. Unlike these approaches,
which had on the order of hours of target language speech, we
are dealing with only minutes of adaptation speech.

In the remainder of the paper we describe the general sys-
tem and its primary components. We describe the universal
phone set ASR and language agnostic SF-Type classifier devel-
oped. Finally, we show results from the evaluation and analyze
the extent to which adaptation of various components (using the
data elicited from the NI) improves SF-Type task performance.

2. General System

For the NIST LoReHLT 2017 evaluation the two ILs were
Tigrinya (IL5) and Oromo (IL6). Both languages are spoken
primarily in the Horn of Africa and are related to varying de-
grees to Amharic. For each IL two sets of audio data are pro-
vided: the development set called set0 Speech, and the
evaluation set called setE Speech. The audio data consists
of audio stories segmented into audio clips lasting no more than
2 minutes. For instance, the set0 Speech for IL5 consists
of 83 audio stories segmented into 1323 audio clips; the setE
Speech for IL5 consists of 116 audio stories segmented into
1095 audio segments. We refer to these audio clips as speech
documents.

In our approach, we first convert the speech documents into
sequences of tokens. The tokens can be words in the IL, or
English translations of these words produced by a cascade of
IL ASR and IL-to-English machine translation (MT). They can
also be phone-like units discovered via acoustic unit discovery
(AUD) [11, 12] or word-like units discovered via unsupervised
term discovery (UTD) [13].

We then select audio documents for transcription and/or SF-
type annotation in order of their estimated informativeness. Af-
ter the NI has transcribed or annotated these documents, the
transcriptions are used to adapt the ASR system and the SF-type
annotations are added into the pool of training examples for the
English SF-Type classifier. See Fig. 1. Additionally, the labeled
documents can be used to train three IL specific classifiers on
the AUD, UTD, and IL word tokenizations of labeled set0
Speech audio documents respectively. In this way each tok-
enization scheme has a corresponding classifier capable of pro-
ducing SF-Type scores for audio documents.

Finally, for each of the four tokenizations of audio docu-
ments from setE, we use the corresponding SF-Type classi-
fiers to produce SF-Type scores. Our final SF-Type scores are
obtained as a weighted linear combination of the scores from
the four different SF-Type classifiers. See the Fig. 2

2.1. Data Selection

The selection procedure described above relies heavily on En-
glish translations of the IL words. Each IL document can be
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Figure 2: SF-Type classification process

classified using an English-language SF-Type classifier, trained
in advance using only data from other languages. More pre-
cisely, we produce an SF-Type score for each document us-
ing the English-language SF-Type classifier. We then select
the documents with the highest scores from each SF-Type to
present to the NI for labeling (correcting) and/or transcription.
We found that our data selection method outperforms random
selection.

3. Automatic Speech Recognition

The two main obstacles to building ASR in the IL are training
the acoustic models with little or no transcribed data and creat-
ing a suitable pronunciation lexicon.

3.1. Acoustic Models

The NI sessions are too short to collect enough data to train IL
acoustic models from scratch. Hence, we depend on preexisting
speech corpora to train acoustic models. All ASR systems were
built using Kaldi [14]. We investigate acoustic model transfer
from models trained on a single related language, as well as
models trained on many unrelated languages.

In both methods of acoustic model transfer, some ad-hoc
manual work may be required to map extra phones from one
language to another. It is then possible to rebuild the ASR de-
coding graph by providing both an IL pronunciation lexicon and
IL language model (LM). In both cases, a small amount of tran-
scribed data can be used for subsequent acoustic model adapta-
tion.

3.1.1. Universal Phone Set ASR

We refer to the transfer of acoustic models trained on many lan-
guages sharing a common phonemic representation as universal
phone set ASR. Our approach is similar to [8]. We use a se-
lection of 10 BABEL languages for training, 7 of which were
chosen as in [8], with 3 more chosen arbitrarily (Guarani, Mon-
golian, Dholuo). Diphthongs and triphtongs are split into their
constituent phones to reduce the number, and enforce sharing,
of phonemes. Also, as in [8], we standardize the representation
of tone (tonal trajectory) across all training languages. The final
acoustic models are time-delay neural networks (TDNNs, [15])
trained using the LF-MMI criterion ([16]).

3.1.2. Acoustic Model Adaptation

We used a weights transfer approach for model adaptation from
source to target language using transcribed data collected during
the NI sessions. We used the same method that was used in [17].

3.2. Pronunciation Lexicons and Language Models

We bootstrapped the lexicon using a G2P trained on a seed lex-
icon derived from the provided resources. For IL5 (Tigriyna)
the seed was a dictionary of words with IPA pronunciations,
and for IL6 (Oromo) the seed was an approximate grapheme-
to-phoneme map.

The vocabulary (word list) was generated from the provided



monolingual text. We (re)normalized the text according to IL
specific punctuation rules. Additional sources of words were
the bilingual gazetteer, transcripts obtained during the NI ses-
sions, and any provided dictionaries. The LM was trained on
the same text. LM hyper-parameters were chosen to minimize
perplexity on a held-out set (small subset of the monolingual
text not used for LM training).

4. Situation Frame Type Classifiers

We use two different approaches for Situation Frame classifi-
cation. The first, based on IL tokenizations, requires SF-Type
labels obtained during the NI sessions, but no IL MT. The sec-
ond is a cross-lingual approach based on English tokenizations,
requiring machine translation, but no IL SF-Type labels.

4.1. IL Classifier

After we tokenize the speech (see section 2) we represent each
speech document as a bag-of-words on unigram or n-gram oc-
currence counts of the tokens. Each vector is then scaled by the
inverse document frequency (IDF) and normalized to £% norm
unit length.

For each SF type, a single classifier is trained as in [18].
Specifically, we use a set of 11 SVMs (Support Vector Machine
classifiers), one for each type, trained on the bag-of-words fea-
tures. We used stochastic gradient descent (SGD) based linear
SVMs with hinge loss and £2 norm regularization [19, 20]. The
SF-Type labels used for classifier training were obtained during
the NI sessions.

4.2. English Classifier

If no IL SF-type labels are available we can still leverage the
existing speech corpora of other development languages, which
are annotated for SF-Type, in order to train a universal SF-Type
classifier. For each development language', we can construct
an ASR system using existing ASR training data, transcribe the
documents and translate the transcripts to English. After that, a
single SF-Type classifier can be trained on the combined data.

In our system, we translate each word into its four most
likely English translations according to the probabilistic bilin-
gual translation table employed in the MT system that was de-
veloped for a separate LoOReHLT MT evaluation. The transla-
tion table is derived from the provided parallel training data with
words aligned automatically by the GIZA++ [21] and Berke-
ley aligner [22]. In addition to using the training data provided
for the evaluation, native informants were also consulted (inde-
pendently under the MT effort) to produce hundreds of parallel
sentences and word translation pairs that are used in training to
increase the coverage of the MT system.

We then produce bag-of-words features over English words.
If or when the SF-type labels of some IL documents become
available, we can simply add these into the training data.

5. Experiments

Table 1 summarizes the resources collected during the NI ses-
sions. We use this data to adapt the systems described in sec-
tions 3 and 4. The labeled documents were used to train the IL
SF-Type classifiers on UTD, AUD, and ASR tokenizations. We
performed AUD as described in [11], but with two major mod-
ifications. First, the HMM model was embedded in a neural

ITurkish (LDC2016E109), Arabic (LDC2016E123), Spanish
(LDC2016E127), and Mandarin (LDC2016E108)

Table 1: Overview of resources gathered during the NI sessions

Read Transcribed Labeled documents

IL5 20 mins 27 mins 159
IL6 31 mins 18 mins 364

network generative model, known as Variational AutoEncoder
(VAE) [23]. Second, the model was initially trained supervis-
edly on a subset of the BABEL Ambharic training data. For both
incident languages, the model (VAE-HMM) was re-trained un-
supervisedly. We performed both AUD and UTD on multilin-
gual TDNN-based bottleneck features [18] of audio segments
corresponding to speech. The segments were obtained from a
DNN-based speech activity detection system that segmented au-
dio into speech and silence. We also processed only speech seg-
ments when decoding the adapted IL5 ASR as this gave a slight
improvement in performance.

For both IL5 and IL6 we treated Ambharic as the related
language and we trained a TDNN-LSTM system on the BA-
BEL Ambaric corpus. We generated triphone alignments as in
3.1.1. Our final ILS5 system used the Amharic ASR, though
we later found the adapted Universal model performed better.
Our final IL6 system used the universal phone set ASR. Both
systems were adapted using the collected transcribed speech.
An adapted English SF-Type classifier for each language was
trained by including all collected SF-type labels in the specific
language. We used the read speech to evaluate the quality of
both adapted and unadapted ASRs in both languages, as shown
in table 2. Systems were evaluated on the setE Speech in
two layers: the Relevance layer (to separate the documents
with at least 1 SF from non-relevant documents with zero SF
present), and Type layer (to detect all present SF types), using
average precision (AP, equal to the area under the precision-
recall curve). More evaluation metric details can be found in

(2].

Table 2: ASR Impact on SF-type Detection

ASR SF-Type  SF-Relevance =~ WER

ILS Universal 0.22 0.44 75.9
IL5 Related 0.26 0.46 68.5

IL5 Adapt Related 0.34 0.54 53.7
ILS Adapt Universal 0.35 0.54 51.6
IL6 Universal 0.34 0.73 63.0
IL6 Related 0.35 0.74 479

IL6 Adapt Related 0.37 0.77 44.4
IL6 Adapt Universal 0.37 0.77 39.8

Table 3 shows the performance of our final submission sys-
tems. All ASR systems are adapted, and ASR+MT refers to the
system using the English SF-Type classifier described in section
4.2.

Table 3: IL5 and IL6 Final Results

IL5 IL6
Method SF-Type  SF-Relevance | SF-Type SF-Relevance
ASR+MT 0.34 0.54 0.37 0.77
ASR 0.26 0.56 0.38 0.76
AUD 0.11 0.41 0.34 0.80
UTD 0.10 0.44 0.27 0.76
Combined 0.35 0.58 0.41 0.80




5.1. ASR Adaptation

Table 2 compares the performance of the related-language and
the universal phone set ASR before and after adaptation. ASR
adaptation on the 15-30 min of collected transcribed speech
improves SF-type classification modestly. Furthermore, WER
seems to track SF-type classification, which supports the util-
ity of the SF-type task as an extrinsic measure of ASR perfor-
mance. We also see that the universal phone set ASR has a sim-
ilar WER to the adapted related language ASR when adapted
on only 15-30 min of transcribed speech.

While ASR adaptation resulted in large gains in IL5 (59%
SF-Type, 23% SF-Relevance relative improvement), it helped
only marginally in IL6 despite similar WER gains in both lan-
guages. Possible explanations are the smaller amount of IL6
adaptation data collected and/or MT quality (BLEU-4 0.16 vs.
BLEU-4 0.09 for IL5/6 respectively).

5.2. Classifier Adaptation

The English SF-Type classifier was the best performing system
(see row 1 of table 3). For ILS, it was the best performing sys-
tem by a wide margin, indicating that SF-Type labels derived
from datasets from other languages can be extremely beneficial.
We also examined how using the SF-Type labels from other lan-
guages affects performance. Table 4, shows how including var-
ious types of labels in training impacts performance.

Table 4: IL SF-Type labels impact on SF-Type Classifiers.
Adapted ASR, is the ASR used in the evaluation. MT is the IL-
to-English MT described in 4.2 using SF-Type labels (~ 3000)
from other languages. Labels refers to IL specific labels col-
lected from the NI.

ILS IL6
System Type Rel | SF-Type Rel
Adapted ASR + MT + Labels |0.35 0.54| 037 0.77
Adapted ASR + MT + No Labels | 0.26 0.46| 0.19 0.73
Adapted ASR + Labels 0.26 0.56| 0.38 0.77

We note that using the English SF-Type classifier trained
only on the combined set of 3000 SF-Type labels from the de-
velopment languages (row 2 of table 4) yields similar perfor-
mance in IL5 as training an IL SF-Type classifier (row 3 of table
4) on only 159 IL specific SF-Type labels. While the English
SFE-Type classifier performed significantly worse on IL6 results
(row 2 of table 4), we believe that the English SF-Type classi-
fier trained on labels from other languages can match the per-
formance of an IL-specific SF-Type classifier. However, adding
the IL specific SF-Type labels to the English SF-Type classifier
training data always improves performance (rows 1,3 of table
4).

To demonstrate the value of IL specific SF-Type labels
we performed the following experiment on the setE Speech
ground truth SF-Type labels of both IL5 and IL6. For each lan-
guage, and each of 6 tokenizations (see Fig. 3) we trained IL
specific SF-Type classifiers, varying the number of SF-Type la-
bels used in training. We split the setE Speech of each lan-
guage into 10 folds and measured the performance, by 10-fold
cross validation, of each SF-Type classifier trained on between
1 and 9 folds worth of labels. Figure 3 shows the results of this
experiment.

We see from figure 3 that IL5 and IL6 SF-Type classifiers
trained on the same number of IL. SF-Type labels perform simi-
larly for AUD, UTD and unadapted ASR tokenizations; the IL6
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Figure 3: IL5,6 SF-Type Classifier performance as a function
of the number of SF-Type labels in training. The vertical dotted
line shows the number of SF-Type labels collected from the NI
in Tigrinya (IL5). The vertical dashed line shows the number of
SF-Type labels collected in Oromo (IL6). Since the SF-Type la-
bels used are from setE Speech, there is a small discrepancy
in type and relevance scores compared to the evaluation results.

AUD and UTD systems likely outperformed the corresponding
IL5 systems because we collected more IL6 specific SF-Type
labels. Collecting more IL specific SF-Type labels always helps
performance. We also see in IL5 that adding 159 SF-Type labels
to training (~ 2h NI time) is comparable to ASR-adaptation on
27 min of transcribed speech (~ 6h NI time).

6. Conclusions

This paper presents an SF-Type classification system of speech
documents used in the LoReHLT 2017 evaluation. The sys-
tem combines universal acoustic modeling, IL-to-English ma-
chine translation (MT) and an English-language topic classifier.
This combination requires no transcribed speech in the eval-
uation language, leading to near language-agnostic operation.
We demonstrated that adaptation on a small amount of tran-
scribed speech yields modest improvement in SF-type classifi-
cation. However, with enough IL specific SF-Type labels, an
MT-free system can achieve the same performance.

Finally we must consider that the intrinsic value of ASR-
based systems lies in the semantically meaningful tokenization
they produce. Using ASR-based systems opens up a promising
venue of research directed towards detecting names of people
and places in speech. This can be formulated as a keyword
search task using word-based search [24, 25], phonetic-based
search, or a fusion of the two [26].



[1]

[2

—

[3

—

[4

=

[5

[t}

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

7. References

S. Strassel and J. Tracey, “Lorelei language packs: Data, tools,
and resources for technology development in low resource lan-
guages.” in Proc. LREC, 2016.

N. Malandrakis, O. Glembek, and S. Narayanan, “Extracting situ-
ation frames from non-english speech: Evaluation framework and
pilot results,” in Proc. Interspeech, 2017.

P. Papadopoulos, R. Travadi, C. Vaz, N. Malandrakis, U. Herm-
jakob, M. P. Pourdamghani, B. Zhang, X. Pan, D. Lu, Y. Lin et al.,
“Team ELISA system for DARPA LORELEI speech evaluation
2016,” in Proc. Interspeech, 2017.

P. Littell, T. Tian, R. Xu, Z. Sheikh, D. Mortensen, L. Levin,
F. Tyers, H. Hayashi, G. Horwood, S. Sloto, E. Tagtow, A. Black,
Y. Yang, T. Mitamura, and E. Hovy, “The ariel-cmu situation
frame detection pipeline for lorehltl6: a model translation
approach,” Machine Translation, 2017. [Online]. Available:
https://doi.org/10.1007/s10590-017-9205-3

J. Loof, C. Gollan, and H. Ney, “Cross-language bootstrapping
for unsupervised acoustic model training: Rapid development of
a polish speech recognition system,” in Tenth Annual Conference
of the International Speech Communication Association, 2009.

N. T. Vu, F. Kraus, and T. Schultz, “Cross-language bootstrapping
based on completely unsupervised training using multilingual a-
stabil,” in Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on. 1EEE, 2011, pp. 5000—
5003.

A. Mohan, S. Umesh, and R. Rose, “Subspace based for in-
dian languages,” in Information Science, Signal Processing and
their Applications (ISSPA), 2012 11th International Conference
on. IEEE, 2012, pp. 35-39.

K. M. Knill, M. J. Gales, A. Ragni, and S. P. Rath, “Language
independent and unsupervised acoustic models for speech recog-
nition and keyword spotting,” in Proc. Interspeech, 2014.

T. Schultz, “Globalphone: a multilingual speech and text database
developed at karlsruhe university.” in INTERSPEECH, 2002.

A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual train-
ing of deep neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 7319-7323.

L. Ondel, L. Burget, and J. éernocky, “Variational inference for
acoustic unit discovery,” in Proc. SLTU, 2016.

C. Liu, J. Yang, M. Sun, S. Kesiraju, A. Rott, L. Ondel, P. Ghahre-
mani, N. Dehak, L. Burget, and S. Khudanpur, “An empirical eval-
uation of zero resource acoustic unit discovery,” in Proc. ICASSP,
2017.

A. Jansen and B. Van Durme, “Efficient spoken term dis-
covery using randomized algorithms,” in Proc. ASRU, 2011,
https://github.com/arenjansen/ZRTools.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, 2011.

V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Proc. Interspeech, 2015.

D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X.Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for ASR based on lattice-free MMLI,” in Proc. Inter-
speech, 2016.

V. Manohar, D. Povey, and S. Khudanpur, “JHU Kaldi System
for Arabic MGB-3 ASR Challenge using Diarization, Audio-
Transcript alignment and Transfer learning,” in Proc. ASRU 2017,
2017.

C. Liu, J. Trmal, M. Wiesner, C. Harman, and S. Khudanpur,
“Topic identification for speech without ASR,” in Proc. Inter-
speech, 2017.

2056

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal
estimated sub-gradient solver for SVM,” in Proc. ICML, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825-2830,
2011.

F.J. Och and H. Ney, “A systematic comparison of various statisti-
cal alignment models,” Computational Linguistics, vol. 29, no. 1,
pp. 19-51, 2003.

P. Liang, B. Taskar, and D. Klein, “Alignment by agreement,” in
Proc. NAACL HLT, 2006.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

J. Trmal, G. Chen, D. Povey, S. Khudanpur, P. Ghahremani,
X. Zhang, V. Manohar, C. Liu, A. Jansen, D. Klakow et al., “A
keyword search system using open source software,” in Proc. SLT,
2014.

J. Trmal, M. Wiesner, V. Peddinti, X. Zhang, P. Ghahremani,
Y. Wang, V. Manohar, H. Xu, D. Povey, and S. Khudanpur,
“The Kaldi OpenKWS system: Improving low resource keyword
search,” in Proc. Interspeech, 2017.

C. Liu, A. Jansen, G. Chen, K. Kintzley, J. Trmal, and S. Khudan-
pur, “Low-resource open vocabulary keyword search using point
process models,” in Proc. Interspeech, 2014.



