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1. INTRODUCTION

This submission is a collaborative/competitive effort of BUT,
Phonexia, Omilia, CRIM and UAM. All systems in fusions are
based on x-vector paradigm with different features, DNN topologies
and backends.

2. TELEPHONE SYSTEMS - CMN2

2.1. Training data, Augmentation

For training the networks, we used the following:

• SRE 4, 5, 6, 8, 10

• Fisher Arabic

• All switchboard data

• Voxceleb 1 and 2

For performed the following data augmentations which are the
same as in Kaldi recipe except for the compression:

Authors are in alphabetical order.
The work was supported by Czech Ministry of Interior project No.

VI20152020025 ”DRAPAK”, Google Faculty Research Award program,
Czech Science Foundation under project No. GJ17-23870Y, and by Czech
Ministry of Education, Youth and Sports from the National Programme
of Sustainability (NPU II) project ”IT4Innovations excellence in science -
LQ1602”. It was also supported by Technology Agency of the Czech Re-
public project No. TJ01000208 ”NOSICI”, European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 748097, the Marie Sklodowska-Curie cofinanced by the
South Moravian Region under grant agreement No. 665860, and by the U.S.
DARPA LORELEI contract No. HR0011-15-C-0115. The views expressed
are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

• Reverberated

• Augment with Musan noise

• Augment with Musan music

• Augment with Musan speech

• Compression using ogg and mp3 codecs

After creating a list of utterances for augmentation, a subset of
500K utterances from this list was selected and added to the training
data. Afterwards, utterances with less than 500 frames and also
speakers with less than 5 training utterance were removed. Finally,
the training data for creating training archives contained 17054
speakers.

2.1.1. VAD, Input features

We used FBANK features and energy-based VAD from Kaldi SRE16
recipe without any modification. The features are therefore 40-
dimensional FBANKs which are extracted from 25 ms windows
with 15 ms overlap. The bandwidth is limited between 20 and 3700
Hz.

2.1.2. Training archives

For creating the training archives, we used Kaldi-like archive gen-
eration for our Tensorflow implementation and therefore, for both
Kaldi and Tensorflow, the same configuration was used for generat-
ing two different sets of archives. Minimum and maximum number
of frames in each training example are 200 and 400 respectively.
Number of repeats for each speaker is 25 and maximum number of
frames per archive is 2 billion. By using this configuration, two sets
of 124 archives were generated for Kaldi and Tensorflow versions.



Table 1. ResNet50 architecture, N in the last row is the number
of speakers. The first dimension of the input shows number of filter-
banks and the second dimension indicates the number of frames.

Layer name Structure Output

Input – 40 × 200 × 1
Conv2D-1 3 × 3, Stride 1 40 × 200 × 32

ResBlock-1

 1× 1, 32
3× 3, 32
1× 1, 128

× 3, Stride 1 40× 200× 128

ResBlock-2

 1× 1, 64
3× 3, 64
1× 1, 256

× 4, Stride 2 20× 100× 256

ResBlock-3

1× 1, 128
3× 3, 128
1× 1, 512

× 6, Stride 2 10× 50× 512

ResBlock-4

 1× 1, 256
3× 3, 256
1× 1, 1024

× 3, Stride 2 5× 25× 1024

StatsPooling – 10× 1024
Flatten – 10240

Dense1 – 256
Dense2 (Softmax) – N

Total – –

2.2. ResNet

ResNet [1] based embeddings are extracted from a standard 50-layer
ResNet (ResNet50). This network uses 2-dimensional features as
input and processes them using 2-dimensional CNN layers. Inspired
by x-vector topology, both mean and standard deviation are used
as statistics. The detailed topology of the used ResNet is shown in
Table 1. The ResNet was trained using SGD optimizer for 6 epochs.

2.3. F-TDNN

For this system we use the factorized TDNN architecture proposed
in [2]. We train it with the Kaldi toolkit [3] with the settings in
the sre16/v2 recipe except that we used the data set described in
Sections 2.1.1 and 2.1.2 and that we trained the model for six epochs
instead of three.

2.4. Res-E-TDNN with Denoising

For this system, we use a modified version of E-TDNN architec-
ture [2]. In each frame-level layer of the network 768 outputs (chan-
nels) are used instead of 512. Also, based on our experience for Vox-
Celeb challenge [4], we add few residual connections in the frame-
level layers. The input of each liner layer in the frame-level part
is a summation of the output of all previous TDNN layers. So, the
first linear layer receives the input from one TDNN layer, the second
one receives it from summation of two TDNN layers and so on. We
train it with the Kaldi toolkit and data described in Section 2.3 and
we trained the model for three epochs. During extraction, each au-
dio file was pre-processed with denoising based on neural-network
autoencoder. The autoencoder, training data, and augmentation are
described in [5] and [6].

2.5. Res-E-TDNN with adversarial adaptation

In this approach we begin with a Res-E-TDNN network (see sect.
2.4) pretrained on SRE English telephone data and we apply adver-
sarial domain adaptation. Similarly to our approach described in [7],
we attach a domain discriminator (feed-forward neural network with
3 hidden layers and Leaky ReLU) which aims at discriminating be-
tween source and target domains (English and Arabic, respectively).
The x-vector extractor tries to fool the discriminator by maximizing
the binary cross entropy loss of the discriminator. The adversarial
loss encourages the extractor to encode utterances into x-vectors that
are hard to distinguish in terms of domain (i.e. language). More-
over, as the divergence between the two marginal distributions be-
comes smaller, a PLDA model trained solely on source x-vectors
can perform fairly well on the target domain without any adaptation.
Note that different from [7], we use a standard GAN (as opposed to
Wasserstein GAN) and we do not augment input features or hidden
representations with domain labels. During finetuning, the number
of source training speakers is 4254 selected from SRE 2004-2010
(English telephone only), while we augment the target domain data
with Fisher Arabic resulting in 2251 Arabic speakers. Two different
softmax layer are used (one for each domain) and their associated
cross entropy losses are added, yielding the overall speaker classifi-
cation loss.

2.6. Backend

2.6.1. Training data

All of the backends utilized the following data.

• Training set - data from Mixer collection (NIST SRE 2004-
2010) from which we kept only telephone recordings, approx-
imately 66k utterances.

• Adaptation set - SRE18 development set and 60% of the data
from SRE18 evaluation dataset. The resulting set consisted
of 8k utterances coming from 137 speakers.

• Snorm data - part of the adaptation set (5 utterances per
speaker) and SRE18 unlabeled data.

2.6.2. General pipeline

Here, we describe our general strategy for the backend training. And,
in the following sections, we discuss what modifications were made
for each particular subsystem. One of the systems from the submit-
ted fusion used Gaussian-PLDA (GPLDA) backend, the other three
utilized heavy-tailed-PLDA (HT-PLDA)[8].

For all of the systems, we start with the mean normalization.
Evaluation data were centered using the mean computed on adapta-
tion set, while the training data are centered using their own mean.
Then, we apply feature-distribution adaption (FDA) transformation
[9] for the training data. The goal of the transformation is to modify
the out-of-domain training data so that their covariance is not lower
than the covariance of the in-domain adaptation data in any direc-
tion. Then, Gaussian or heavy-tailed PLDA model is trained using
the transformed training set. And, additionally, we train ”adaptation”
model on the untransformed adaptation set. The final adapted model
was derived from the two PLDA models so that the modeled across-
speaker covariance matrix is an average of the covariance matrices
from the constituent models. Similarly, the parameters describing
within-speaker covariance matrix are also interpolated. Finally, we
applied adaptive score normalization using top 800 scoring files from
the snorm set.



2.6.3. ResNet GPLDA

When training this system, we added SRE16 evaluation data (10k
utterances from 201 speakers) to the training set. Additionally to
the centering and FDA preprocessing mentioned before, we ap-
plied LDA, reducing the dimensionality of embeddings from 256
to 250, and length normalization. Then, we trained GPLDA model
for which the size of speaker and channel subspaces was set to
150. Adaptation model is also GPDA, but the speaker and channel
subspaces are smaller. Their size was set to 50.

2.6.4. FTDNN HTPLDA

For FTDNN embedding system, we trained HTPLDA model with
the size of the speaker subspace set to 200 on the length-normalized
embeddings from the training set enlarged by adding 4 types of the
augmentations for each training utterance. Then, a smaller HTPLDA
model (speaker space of size 100) is trained on the adaptation data.
Degrees of freedom parameter for both models was set to 2.

2.6.5. Res-E-TDNN DENOISE HTPLDA

In this case, we trained HTPLDA model with the size of the speaker
subspace set to 200 on the 66k embeddings from the training set.
SRE16 evaluation data were added to the adaptation set. Adaptation
HTPLDA of the same size as the main one was trained on the result-
ing data. Degrees of freedom parameter for both models was set to
2.

2.6.6. Res-E-TDNN GAN HTPLDA

The backend training of this model practically repeats what we did
for the FTDNN. The only difference is that we don’t use length nor-
malization in this case. All of the other parameters are the same as
above.

3. CALIBRATION & FUSION

The final submission strategy was one common fusion trained on
the labeled development set created by holding out 40% of the
NIST SRE2018 CMN2 evaluation data. Each system provided
log-likelihood ratio scores that could be subjected to score normal-
ization. These scores were first pre-calibrated and then passed into
the fusion. The output of the fusion was then again re-calibrated.

Both calibration and fusion was trained with logistic regression
optimizing the cross-entropy between the hypothesized and true la-
bels on a corresponding development set. Our objective was to im-
prove the error rate on the development set. We observed very simi-
lar error rates on our development set and NIST’s progress set during
submitting our intermediate systems to the NIST leader-board.

4. SUBMISSION & RESULTS

Table 2 shows the performance of the individual systems on our in-
ternal development set as well as the performance of the final fusion
on our dev set along with the result on the progress set from the
leader-board.

5. CPU USAGE FOR SINGLE X-VECTOR SYSTEM

In single threaded setup on Intel(R) Xeon(R) CPU E5-2670 0 @
2.60GHz, the x-vector extraction time is of 8.0 times faster than

real time (FRT) (computed only on detected speech, would be 12.6
FRT computed for whole recordings including silence). Memory
consumption is 500 MB for typical utterance. Other computation
(PLDA, cosine distance, calibration, fusion) is negligible.

6. SYSTEMS DEVELOPED AT CRIM

For NIST-SRE 2019 Conversational Telephone Speech (CTS) task,
we developed speaker verification systems following two different
strategies: (i) we follow the well known x-vector setting [10] in its
Kaldi [3] implementation and improve on top of that by evaluat-
ing several data augmentation schemes. (ii) Our own Pytorch [11]
implementation of variations of x-vectors TDNNs and ResNets, on
top of which we introduce several modifications such as a multi-
task setting in which speaker recognition metric learning are per-
formed jointly to enforce discriminable features, online hard triplets
selection, entropy regularization, learning rate warm-up, and label
smoothing. We further evaluate a TDNN augmented with a pyrami-
dal pooling layer [12] over the time dimension as an alternative to
the simple statistics pooling layer in [10].

6.1. Multi-class classification based systems

Speaker recognition, i.e. multi-class classification over the set of
training speakers, has been successfully applied as an auxiliary task
for automatic speaker verification (ASV). Outputs of some inner
layer of the model trained under that setting can be then used for
PLDA training and inference, of for direct scoring using cosine sim-
ilarity, for instance. To this end, we adopted extended TDNN and
factored TDNN (F-TDNN) based x-vector extraction paradigm. As
backend, we employed PLDA.

In this case, In order to adapt x-vectors of the out-of-domain data
(i.e., PLDA training data) to the in-domain data (i.e., SRE 2019 or
SRE 2018 domain) unsupervised domain adaptation by correlation
alignment [13] has been applied. This adaptation technique works by
aligning the distributions of out-of-domain and in-domain features
in an unsupervised way. This is achieved by aligning second-order
statistics, i.e covariances.

6.1.1. Training data

Two training data set were used for training TDNN and F-TDNN
models - (1) Data corresponding to SRE’s from 04 to 10, Mixer
6, and Switchboard from approximately 5000 speaker and (2) com-
bined voxceleb 1 & 2 (excluding the voxceleb1 test set) corpora,
which sums up to approximately 7300 speakers.

6.2. Multi-task systems

We closely follow the setting introduced for ResNets in [14] which
means to augment the speaker recognition setting described above
with triplet loss minimization, performed jointly during training with
the goal of enjoying the benefits of the two approaches, i.e.: (i) the
relative easiness of training under the multi-class classification set-
ting when compared to metric learning alone, and (ii) the discrim-
inability provided by the triplet loss minimization resulting repre-
sentations. Triplet loss will be computed on top of embeddings pro-
jected on the unit sphere: yp = y

||y||2
, and for the speaker recogni-

tion term, a softmax output layer is employed so that the multi-class
cross entropy can be computed using speaker identities as class la-
bels. Training is performed so as to minimize the sum of the two
losses. Three architectures are evaluated in this case:



Table 2. Results of the single systems on our SRE19 dev set
# System ABC SRE19 dev SRE19 Leaderboard

minDCF actDCF EER (%) minDCF actDCF EER (%)

1 ResNet GPLDA 0.281 0.285 3.77 - - -
2 FTDNN HTPLDA 0.255 0.257 3.37 - - -
3 Res-E-TDNN DENOISE HTPLDA 0.312 0.314 4.30 - - -
4 Res-E-TDNN GAN HTPLDA 0.273 0.275 3.76 - - -

1+2+3+4 0.216 0.218 3.00 0.216 0.220 2.9

• modTDNN - A variation of the original x-vector TDNN with-
out dilations in the convolutional layers.

• ASPP - A TDNN augmented with an pyramidal pooling layer
[12] right before statistics pooling. Such pooling layer con-
sists in summing up the outputs of for convolutional+max.
pool layers with different kernel sizes.

• A very deep ResNet-101 modified so as to operate over the
time dimension only.

6.2.1. Training data

In the case of Multitask systems, training is performed in two steps.
We first train our models on features extracted from the data corre-
sponding to SRE’s from 04 to 10, Mixer 6, Switchboard, and Fisher
corpora, which sums up to approximately 20000 speakers. Our best
systems are thus fine tuned for the same number of iterations on the
development data comprised of SREs 12, 16, and 18 (all dev and a
small portion of eval data).

6.3. Speech features, VAD and data augmentation

Speech features correspond to 23 MFCCs (Mel-frequency Cepstral
Coefficients) obtained with a short-time Fourier transform using a
25ms Hamming window with 10 ms frame shift. For voxceleb, data
is down-sampled to 8kHz. An energy-based voice activity detector is
employed to filter out non-speech frames. Multi-condition training
data is further introduced by augmenting the original train partition
with supplementary noisy speech in order to enforce model’s robust-
ness across varying conditions. We thus created additional versions
of training recordings as similarly done in [10], i.e. by corrupt-
ing original samples adding reverberation (reverberation time varies
from 0.25s - 0.75s), as well as by adding background noise such
as music (signal-to-noise ratio, SNR, within 5-15dB), and babble
(SNR varies from 10 to 20dB). Noise signals were selected from the
MUSAN corpus [15] and the room impulse responses to simulate re-
verberation from [16]. We have also developed one system employ-
ing TDNN on the top of 23-dimensional perceptual linear prediction
(PLP) features.

6.4. Back-end

PLDA was employed for scoring trials after dimensionality reduc-
tion of embeddings using linear discriminant analysis (LDA). PLDA
is trained on embeddings from the train partition with the same aug-
mentation used for training the neural networks. The model adap-
tation scheme introduced in [17] was further evaluated and utilized
for PLDA to help on overcoming any domain shift observed across
train and evaluation data due to different recording conditions and
language mismatch. To do so, embeddings unlabelled data are then
employed for training a second PLDA model. The final back-end
is obtained by simply averaging the covariance matrices of the two

Table 3. Results of the single systems on our SRE19 dev set
System minDCF actDCF EER (%)
ASPP (MFCC) 0.412 0.415 6.6
ResNet (MFCC) 0.390 0.391 5.5
TDNN (MFCC) 0.250 0.254 3.0
TDNN (PLP) 0.276 0.282 3.2
TDNN VOX (MFCC) 0.228 0.230 2.9

PLDA models. We found the adaptation described to have different
impact in performance depending on the underlying model utilized
for generating the embeddings, and in some cases some performance
degradation was observed. We further highlight that reported results
are obtained from models that achieved the minimal validation loss
throughout training, and the evaluation data is only made available
to the models to generate the reported metrics, not being used at de-
velopment phase.

6.5. Results on our development test set

In Table 3, we present results on our SRE19 dev set obtained using
our developed single systems in terms of NIST-SRE2019 evaluation
metrics.

• TDNN VOX - In this system, TDNN is trained on multi-style
voxceleb data using MFCC features, PLDA is trained on vox-
celeb data and unsupervised PLDA adaptation is performed
on all SRE 2018 dev plus a small portion of SRE 2018 eval
data.

• ASPP (MFCC) - In this case a TDNN is augmented with
an pyramidal pooling layer [12] right before statistics pool-
ing. This system is trained on SRE’s from 04 to 10, Mixer
6, Switchboard, and Fisher corpora and then fine tuned using
SREs 12, 16, and 18 (all dev and a small portion of eval data).
Features considered here is MFCCs.

• ResNet (MFCC) - In this case ResNet-101 is trained on SRE’s
from 04 to 10, Mixer 6, Switchboard, and Fisher corpora and
then fine tuned using SREs 12, 16, and 18 (all dev and a small
portion of eval data). Features considered here is MFCCs.

• TDNN (MFCC) & TDNN (PLP) - These systems use MFCC
and PLP features, respectively. Both systems were trained
on SRE’s from 04 to 10, Mixer 6, Switchboard corpora. Ex-
tracted embeddings of out-of-domain data were adapted to
the in-domain-data using correlation alignment-based unsu-
pervised adaption technique [13].
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8. RECIPES AT BUT

8.1. ResNet50

Shuai: The model is trained on Shanghai cluster, will migrate to but cluster in a few days (My fit account will be reserved until the end of
2020); Will be updated after preparing a clean directory

The main directory could be found in /mnt/matylda3/xwangs01/projects/SRE19

• Train

– TO BE PREPARED

• Embeddings extraction

– eval resnet.sh: extract embeddings from the ResNet models.

– gen h5.sh: Convert the kaldi format xvectors to what Anya needs

8.2. F-TDNN

8.3. Res-E-TDNN + GAN

8.4. Res-E-TDNN with Denoising - Ondra Novotny

8.5. Backend - Anna Silnova

4 backend recipes are here: /mnt/matylda5/isilnova/NIST SRE 2019/CMN2/replicate sre 18/recipes
All of the needed .m files are in the same directory. The path to x-vectors is specified in the first line of the corresponding script, the

directory where to save the models, scores, logs, etc. is defined in the 3rd line.

ResNet GPLDA run plda resnet.sh

FTDNN HTPLDA run htplda ftdnn.sh

Res-E-TDNN DENOISE HTPLDA run htplda tdnn denoise.sh

Res-E-TDNN GAN HTPLDA run htplda tdnn gan.sh

8.6. Calibration/Fusion - Oldrich Plchot

9. IDEAS FOR ANALYSIS

• Pavel:try again MFCC and FBANK64

• who:what

10. RETROSPECTIVE

10.1. What was good and we want to do it next time too

• who:what

10.2. What we can do better next time

• PavelM: Data processing and list preparation takes the most of the time - start way ahead

– Shuai: We don’t want this aggressive data augmentation on the disk

– Shuai: Online data augmentation should be investigated

• who:what

• Shuai: Different pooling functions should be tried

• Shuai: More efforts targeting at the domain mismatch

• Themos: ASR-supervision.
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