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Abstract
Sequence-to-sequence automatic speech recognition (ASR)
models require large quantities of data to attain high
performance. For this reason, there has been a recent surge
in interest for unsupervised and semi-supervised training in
such models. This work builds upon recent results showing
notable improvements in semi-supervised training using
cycle-consistency and related techniques. Such techniques
derive training procedures and losses able to leverage unpaired
speech and/or text data by combining ASR with Text-to-Speech
(TTS) models. In particular, this work proposes a new
semi-supervised loss combining an end-to-end differentiable
ASR→TTS loss with TTS→ASR loss. The method is able
to leverage both unpaired speech and text data to outperform
recently proposed related techniques in terms of %WER. We
provide extensive results analyzing the impact of data quantity
and speech and text modalities and show consistent gains across
WSJ and Librispeech corpora. Our code is provided in ESPnet
to reproduce the experiments.

Index Terms: Sequence-to-sequence, end-to-end, ASR, TTS,
semi-supervised, unsupervised, cycle consistency

1. Introduction

Sequence-to-sequence (seq2seq) ASR training directly maps a
speech input to an output character sequence using a neural
network [1–3], similar to those used in machine translation [4,
5]. The model requires a considerable amount of paired speech
and text to learn alignment and classification [6, 7], which
limits its use in under-resourced domains. On the other hand,
unpaired speech and text can be obtained for most domains in
large quantities making training with unpaired data particularly
relevant for seq2seq models.

Recent works have shown that the problem of seq2seq
training in low-resource conditions can be tackled using
unpaired data. These methods can be classified into three
categories according to the type of data used. First, methods
utilizing only unpaired speech for unsupervised training. In
this category, [8] proposes an end-to-end differentiable loss
integrating ASR and TTS models by the straight-through
estimator. The work in [9] also proposes an end-to-end
differentiable loss integrating ASR and a Text-to-Encoder
(TTE) model. Both works, showed that connecting ASR with
TTS/TTE can handle unpaired speech data as well as reduce
ASR recognition errors. The second category concerns methods
leveraging unpaired text data, which focus on enhancing the
decoder component of seq2seq ASR [10] or moving the encoder

representation closer to text representation [11]. The former
approach [10] is implemented by feeding the text data to
TTE-to-ASR [10] model, where the TTE converts the text
directly to encoder representations and then is fed to the
decoder. In the latter model, an encoder component is shared
to have common representation across both speech and text
data [11]. In addition to these works, [12] used a language
model (LM) built with unpaired text-only data to jointly train
with an ASR. In the third category, both unpaired speech and
text data are exploited. Examples of this are the speech-chain
framework [13] and adversarial training schemes [14, 15]. The
former proposes a dual pipeline of ASR→TTS and TTS→ASR
systems. Here, the backpropagation only takes place in the
secondary stage of the chain. The latter utilizes, adversarial
learning objectives to match the speech and text distributions.

Outside of the speech processing area, cycle-consistency
can be related to successful progress in machine
translation [16], which derive end-to-end differentiability
by using N-best approach. Also, improvements are observed
in image processing tasks using cycle-consistency with an
adversarial objective [17].

In this paper, we borrow ideas from the above mentioned
techniques to handle unpaired data using cycle-consistency.
The basic idea of this approach is that if a model converts an
input data to output data and another model reconstructs the
input data from the output data, then the input data and its
reconstruction should be similar. We use this idea to derive a
new loss able to use both unpaired speech and text data. The
contributions of this paper are the following

• A speech-only end-to-end differentiable loss is proposed
using ASR→TTS. This improves the TTE cycle loss in
[9] and is related to the straight-through loss in [8]

• We complement this with a text-only pipeline loss using
TTS→ASR. This improves TTE backtranslation [10]
and is related to the speech-chain in [13]

• We combine this and a shallow integrated RNNLM [18,
19] to obtain a high performance on unpaired data.

Our experimental analysis using WSJ and Librispeech corpus
described in section 4 substantiate our hypothesis that unpaired
speech and text can individually improve ASR performance and
combining them provides additional gains.

2. Cycle consistency training

2.1. ASR and TTS with seq2seq models

Sequence-to-sequence ASR systems [2] model directly a
probability distribution over C-length character or phoneme
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sequence Y = {yc}Cc=1 given T -length speech features X =
{xt}Tt=1 i.e. Mel-filterbank as

pASR(Y | X) =

C∏
c

p(yc | y1:c−1,X). (1)

Each character prediction depends on the entire input and
all previously generated characters. To account for this complex
relation, a neural network with attention mechanism is used
[4]. This is composed of an encoder network, typically one or
more bi-directional LSTMs layers [20], generating an encoder
sequence H = {ht}Tt=1 as

H = encoder(X). (2)

A decoder, also modeled by one or more LSTM networks,
utilizes a matching function to select the relevant encoded
input features{ht}t

′
c
t=tc

for each step c given its internal state.
This matching function is normalized to resemble a probability
distribution over the input features and is termed attention.
Decoder internal state, attended input and previously produced
character are used to predict the current character.

When paired data is available, the seq2seq models are
trained with the cross-entropy (CE) criterion given correct
output y∗:

LASR = −log pASR(y
∗ | X) (3)

= −
∑
l=1

log pASR(y
∗
l | y∗1:l−1, X).

TTS seq2seq models use a very similar architecture, but
receive the characters as input Y = {yc}Cc=1 and predict the
speech features with a regression layer X = {xt}Tt=1. There
are some needed modifications with respect to ASR, such as the
need to predict continuous data and the end of utterance. In this
work, we used the Tacotron2 architecture, detailed in [21]. The
loss of the TTS system is divided into three terms:

LTTS = LMSE + LL1 + LBCE (4)

where the mean square error (squared L2) and L1 norms are
over a regression estimate X̂ and BCE is the binary cross
entropy loss for the end of sentence prediction. MSE and
L1 components of the loss can be interpreted as the minus
log-probability of the speech features for Gaussian and Laplace
distributions for constant scale parameters i.e.

LTTS = − log pTTS(X
∗ | Y) (5)

= −
∑
t=1

log pTTS(X
∗
t | X∗1:t−1,Y)

considering the MSE only, we have

− log pTTS(X
∗
t | X∗1:t−1,Y) ∝ ‖X∗t −g(Y,X∗1:t−1)‖2 (6)

where X̂t = g(Y,X∗1:t−1) is the Tacotron2 auto-regressive
estimate at time t.

2.2. Unsupervised training with unpaired speech data

The previous formulations concern the case in which both
paired speech X and text Y are available. In this section we
propose an improvement over recent work in [9] that provides
an unsupervised loss for ASR while being more performant. A
central problem to the ASR→TTS pipeline is the fact that the

text bottleneck eliminates a lot of information from speech e.g.
speaker identity. The work in [9] solves this by training the
TTS model to predict encoded speech, H in eq. (2), instead of
speech X directly. Since the encoded speech keeps some speech
characteristics, it is possible to define the following loss based
on the Cycle-Consistency (CC) criterion
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Figure 1: Simplified representation of the cycle-consistency
training for unpaired speech and text. The flow of the diagram
is bottom-to-top. The red dotted lines denotes the gradient
propagation and the updated parameters. Figure 1a denotes
the ASR→TTS pipeline where Yk is the kth randomly sampled
ASR output. Figure 1b shows the TTS→ASR pipeline.

LASR→TTE = EpASR(Y|X){LTTE} (7)

where LTTE is the same as LTTS but replacing X by the
encoded speech H. This loss penalizes the ASR system for
transcriptions that, once transformed back into an estimate of
the encoded speech Ĥ by the TTE, differ from the original
encoded speech H. Such loss does not require to have the
correct text output y∗ and is end-to-end differentiable.

TTE-CC has the disadvantage of having to train an specific
network to predict H. The encoded speech, may also already
eliminate some of the speech characteristics making the CC loss
less powerful. In this work, we propose to use the TTS loss
instead of the TTE loss, to realize

LASR→TTS = EpASR(Y|X){LTTS}. (8)

Aside from being computationally more intensive, this requires
solving the problem of passing speaker characteristics through
the text bottleneck, see Figure 1(a). In order to do so, inspired
by [13], we augment the TTS model with speaker vectors
obtained from a x-vector network [22]. For example, for the
MSE component of LTTS we have

LMSE = − log pTTS(X
∗ | Y, f(X)) (9)

where f implements the x-vector. Note that x-vectors are
designed to retain speaker characteristics but not general
structure of the speech signal. In that sense, the model can not
learn to copy directly X from input to output.

Similarly to [9] we use policy-gradient to back-propagate
through the expectation in the loss and update the ASR
parameters. This yields the following gradient update formula

∇θLASR→TTS ≈∑
Yn∼pASR

1

N
R(Yn,X)∇θ log pASR(Y

n | X) (10)
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for N samples. The reward R is obtained by subtracting a
bias term from the TTS loss to reduce variance R(Yn,X) =
LTTS − B(X). The bias term is calculated as the mean
value of X for each sample. In practical terms, using policy
gradient amounts to sampling multiple sentences from the ASR
distribution and backpropagating each of them as if they were
the ground truth, but weighted by the reconstruction loss.

2.3. Unsupervised training with unpaired text data

As with speech, unsupervised training of ASR using only text
and cycle-consistency is possible by using a TTS→ASR chain,
see Figure 1(b). Since our target in this work is to increase ASR
performance, the resulting computation graph is simpler than in
the ASR→TTS case. There is no need to backpropagate into
the TTS module and thus the chain can be realized by forming
a non-differentiable TTS→ASR pipeline as

LTTS→ASR = −logpASR(Y
∗ | X̂). (11)

The point estimate is obtained by providing the TTS system
with the input text Y along with randomly chosen x-vectors to
generate

X̂ = argmax
X
{pTTS(X | Y)}. (12)

Thus the pipeline can act as an autoencoder and allows training
of unpaired text only data. Using a non-differentiable pipeline
where TTS generates synthetic speech sentences for which we
only have a transcription is akin to back-translation in machine
translation [23]. The work in [10] proposes a similar idea
utilizing TTE instead of TTS. The TTS→ASR pipeline is also
used in [13].

2.4. Unsupervised training with both unpaired speech and
text data

In the case in which both paired speech and text are available,
both ASR→TTS and TTS→ASR can be trained jointly, see
figure 1. The final loss Lboth is a linear interpolation of the
loss functions defined in equations (10) and (8).

Lboth = α ∗ LASR→TTS + (1− α) ∗ LTTS→ASR (13)

where α is a hyper-parameter set by default to α = 0.5.

3. Experimental Setup

An extensive experimental setup leveraging the
Librispeech [24] and Wall Street Journal (WSJ) [25] corpora
was used in this work. For each corpus, a sub-set of the data
was used to simulate unpaired speech and text conditions.

Training utilized 83-dimensional filter-bank with pitch
features as input. The encoder-decoder network utilized
location aware attention [2]. For WSJ and Librispeech
experiments, the encoder comprises 8 bi-directional LSTM
layers [20,26] each with 320 units and the decoder comprises 1
(uni-directional) LSTM layer with 320 units. The CE objective
is optimized using AdaDelta [27] with an initial learning rate set
to 1.0. The training batch size is 30 and the number of training
epochs is 20. The learning rate decay is based on the validation
performance computed using the character error rate (min. edit
distance). ESPnet [28] is used to implement and execute all
our experiments. For TTS, Tacotron2 [21] model is used and
is configured as described in our previous work [9] differing

only with the output targets. Here, we use 83 dimensional
log-Mel filterbank features as targets and x-vectors [22] are fed
as auxiliary information to provide speaker characteristics of
each utterance. Detailed experimental setup can be obtained
from our github codebase in ESPnet. Unsupervised training
was performed after conventional supervised training of each
model. Cycle-consistency utilized five samples in Eq. 10. A
small amount of paired data was also used to regularize the
model during the unsupervised stage. For WSJ, 81 hours were
split into 2, 5, 10 and 14 hours of paired data and the remaining
67 hours was used as unpaired data. Table 1 shows the effect
of the amount of parallel data on WSJ and Librispeech using
conventional supervised training regime. The eval92 test set
was kept for evaluations. In Librispeech, the 100 hours is used
as paired data and the 360 hours set as unpaired data as in [9].

Table 1: Baseline performance of paired data (semi-supervised)
across WSJ-SI84 and Librispeech by using pre-trained and
randomly initialized ASR model on eval-92 test for WSJ and
test-clean for Librispeech

Paired data Corpus info
Name # Hours % CER % WER

WSJ

2 27.7 68.2
5 13.2 41.5
10 10.8 33.7
14 10.2 31.5

Librispeech 100 8.9 21.0

4. Analysis and Results

The initial experiments compared the performance of the TTS
loss introduced in this work, to the TTE loss from previous
work [9]. The analysis involved Librispeech setup using 100
hours of paired data with 180 and 360 hours of unpaired data
for a fair comparison. The results shows that TTS approach
improves %WER over TTE by a 2.5% relative (20.7% to
20.1%) on 360 hours of unpaired data and 2.9% relative (19.9%
to 19.4%) on 180 hours set.

4.1. Impact of amount of paired data (semi-supervision)

In this section, the model is tested with varying amounts of
unpaired data such as 14 hours and 67 hours along with certain
amount of semi-supervision such as 2, 5, 10 and 14 hours of
data. Table 2, shows the %WER obtained by using varying
amounts of unpaired speech and text data and different amounts
of paired data. The experiments are done starting from 2 hours
of parallel data and 14 hours of unpaired data. With only 2
hours of parallel data, the model %WER performance improves
from 68.2 in Table 1 to 49.8 by only aiding 14 hours of unpaired
speech and improved to 51.9 with 67 hours of unpaired speech.

Overfitting is observed in the case of unpaired speech, while
in case of text only data, the model improved consistently from
63 (pair 14 hours) to 39.6 (pair 67 hours). This showcases the
importance of text only data under very low-resource scenario.
Interestingly, including both unpaired speech and text of 14
hours, the %WER improved to 43.7 and with 67 hours of data
the model obtained 41.4 %WER. The pattern emerging here
is that, under very low-resource scenario, the model benefits
from large amounts of text. But, adding more speech only data
leads to slight degradation in performance. This pattern is not
observed with 5, 10 and 14 hours of parallel data conditions as
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increasing the amount of speech data from 14 hours to 67 hours
improved by∼1% absolute WER. With 14 hours of supervision
and 67 hours of unpaired speech, text and both, the %WER
improves to 28.0, 27.1 and 26.2 respectively.

Table 2: %WER performance analysis on varying the amount
of paired data (semi-supervision) and unpaired data on eval-92
test set using WSJ. The Type refers to type unpaired data used
and it can be either ”speech/text/both”

Unpaired data Paired data (#hrs)
#hrs Type 2 5 10 14

14 Speech 49.8 39.9 29.8 -
14 Text 63.0 43.6 34.6 -
14 Both 43.7 35.5 28.3 -
67 Speech 51.9 38.8 28.4 28.0
67 Text 39.6 36.8 29.6 27.1
67 Both 41.4 34.2 27.7 26.2

Table 3: Unsupervised ASR performance across best results in
literature. The Type refers to type unpaired data used and it can
be either ”speech/text/both”

WSJ-SI84 (parallel) + WSJ-SI284 (unpaired)
Model Type RNNLM %CER %WER

Speech chain [13] Both - 9.9 -
Adversarial [14] Both yes - 24.9
this work Both - 9.1 26.1
this work Both yes 7.8 20.3
oracle - - 5.5 16.4
oracle [29] - yes 2.0 4.8

Librispeech 100 h (parallel) + 360 h (unpaired)

Backtranslation-TTE [10] Text - 10.0 22.0
this work Text - 8.0 17.9
Crictizing-LM [12] Text yes 9.1 17.3
this work Text yes 8.0 17.0
Cycle-TTE [9] Speech yes 9.9 19.5
this work Speech yes 7.8 16.8
Adversarial-AE [15] Both yes 8.4 18.0
this work Both - 7.6 17.5
this work Both yes 7.6 16.6
oracle [9] - - 4.6 11.8

4.2. Model comparison with literature

Table 3, shows the results of using both unpaired speech and
text data from WSJ-SI284 and Librispeech 360 hours across
literature. In WSJ corpus, the model achieves a %WER of
20.3 with RNNLM and 26.1 without RNNLM. This leaves a
relative difference of 37.1% compared to oracle performance
of 16.4%. The oracle result is our baseline performance using
WSJ-SI284. Note that the performance on WSJ-SI284 is
inferior to our previously reported baseline [29]. This is due
to a difference in architecture necessary to fit ASR and TTS
models into the GPU. In case of Librispeech, the table 3 shows
that training with unpaired audio and text data can achieve a
%WER of 17.5 leading to 32.5% relative difference with the
oracle performance. Table 3 also shows that our approach
only using unpaired text gains 18.0% relative improvement over
backtranslation-TTE [10] approach. Complementary gains of
absolute 0.9% were observed by integrating RNNLM with this
approach and the result is compared with crictizing-LM [12].
The effectiveness of our approach using unpaired speech only

data is shown in table 3 by obtaining 16.8% WER. Jointly
training unpaired speech and text provided modest gains with a
%WER improvement from 16.8 to 16.6. From these results, one
can infer that training with unpaired speech only data has major
benefits over text only data in large corpus such as Librispeech.

5. Related Work

As indicated in the previous sections, the work here proposed
improvements over recent related approaches and integrated
some of them into a single loss. Back-translation style TTE [10]
synthesized encoder can be related to the TTS→ASR loss
here used, as both utilize a pipeline that generates synthetic
train data. The latter has the advantage of utilizing directly
speech and has higher performance overall. The speech-chain
framework [13] was the first work to integrate ASR and TTS
to train using unpaired speech and text. It also utilizes a
TTS→ASR pipeline loss but this is not learnt jointly with the
end-to-end differentiable ASR→TTS loss. One limitation of
the speech-chain is the fact that is not end-to-end differentiable,
having to rely in the alternate training of a TTS→ASR and
ASR→TTS loss to update both models. This limitation was
addressed in [9] proposing an end-to-end differentiable loss
for speech only and based on TTE. The work presented
here improves upon this by extending TTE to TTS with
x-vectors and combining this with a TTS→ASR point-estimate
loss. Finally [8] is similar to [9] but applies straight-through
estimators to construct end-to-end differentiable ASR→TTS
losses based on argmax and a expected loss similar to Eq. 8.

6. Conclusions

This paper presented a new approach to exploit the information
in unpaired speech and/or unpaired text to improve the
performance of seq2seq ASR systems. We show that under
low-resource conditions such as WSJ corpus the performance
improvements are relatively higher compared to corpus with
sufficient amount of data such as Librispeech. We show as well
that integrating unpaired speech and text, both as a pipeline loss
and through shallow integration with a RNN language model,
provides additional gains and competitive results. Future
work will be focused on cycle-consistency approaches where
ASR and TTS do not have matching conditions. Preliminary
experiments show that this is a limitation of current systems.
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