
A Reality Check on Inference at Mobile Networks Edge
Alejandro Cartas∗1, Martin Kocour◦1, Aravindh Raman‡1, Ilias Leontiadis⋆, Jordi Luque⋆,

Nishanth Sastry‡, Jose Nuñez-Martinez⋆, Diego Perino⋆, Carlos Segura⋆

⋆Telefonica I+D, Research, Spain, ∗University of Barcelona, Spain, ‡King’s College London, UK,
◦ Brno University of Technology, Czech Republic, 1 Joint first author while intern at Telefonica I+D

Abstract
Edge computing is considered a key enabler to deploy Artificial
Intelligence platforms to provide real-time applications such as
AR/VR or cognitive assistance. Previous works show computing
capabilities deployed very close to the user can actually reduce the
end-to-end latency of such interactive applications. Nonetheless,
the main performance bottleneck remains in the machine learning
inference operation. In this paper, we question some assumptions
of these works, as the network location where edge computing is
deployed, and considered software architectures within the frame-
work of a couple of popular machine learning tasks. Our experimen-
tal evaluation shows that after performance tuning that leverages
recent advances in deep learning algorithms and hardware, net-
work latency is now the main bottleneck on end-to-end application
performance. We also report that deploying computing capabilities
at the first network node still provides latency reduction but, over-
all, it is not required by all applications. Based on our findings, we
overview the requirements and sketch the design of an adaptive
architecture for general machine learning inference across edge
locations.

CCSConcepts •Networks→Networkmeasurement;Cloud
computing; Mobile networks.

Keywords Edge computing, Artificial Intelligence

ACM Reference Format:
Alejandro Cartas, Martin Kocour, Aravindh Raman, Ilias Leontiadis, Jordi
Luque, Nishanth Sastry, Jose Nuñez-Martinez, Diego Perino, and Carlos
Segura. 2019. A Reality Check on Inference at Mobile Networks Edge. In 2nd
International Workshop on Edge Systems, Analytics and Networking (EdgeSys
’19), March 25, 2019, Dresden, Germany. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3301418.3313946

1 Introduction
SophisticatedArtificial Intelligence (AI) enabled platforms arewidely
used by several popular real-time services like visual object detec-
tion and speech recognition. Despite their high computational and
communication requirements, these services are poised to become
a critical part of next generation applications such as augmented
and virtual reality (AR/VR) or cognitive assistance, to cite a few
examples. Such applications usually require low latency for both
inference and communication over the network, commonly in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
EdgeSys ’19, March 25, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6275-7/19/03. . . $15.00
https://doi.org/10.1145/3301418.3313946

range of few hundreds of milliseconds (e.g., cognitive assistance)
or even tens of milliseconds (e.g., AR/VR).

However, inference tasks are still compute intensive, and a low
end-to-end delay requirements mean that this inference would
need to be performed close to the user, to stay under overall end-
to-end delay requirements of such applications. Several recent
works [6, 7, 35] have shown that moving computation capabilities
and application hosting support towards the edge of the network
can significantly reduce network delays for a number of important
inference applications. However, most evaluations typically assume
that the edge is located on the node closest to the user, typically the
eNodeB [1]. Further, they either show that given current hardware,
improvement from moving to the edge is negligible for compute-
intensive applications [6, 35]. Or, they show that significant gains
can be obtained when compute resources are available [7].

In this work, we question these simplistic assumptions. First,
from a machine learning perspective, we show that performance
tuning, leveraging recent advances can lead to significantly faster
inference (§2). This decreased time budget for computation allows
increased budget for network latency even with stringent applica-
tion requirements. In practice, Mobile Network Operators (MNOs)
can use this flexibility to deploy computing capabilities at different
network sites, from eNodeB to service and packet gateways, or
MNO datacenters.

Second, it is naïve to assume uniformly rich computational re-
sources everywhere: For example, it would be extremely capital
intensive to equip every eNodeB with high-end servers. Therefore,
sites may have different processing capabilities with different de-
ployment costs, and may support different processing frameworks,
provide a given latency, and might serve a different number of
users. Also, the latency from the end user device to centralized
cloud infrastructures can vary from one MNO to another [8].

To evaluate the end-to-end latency, we select a reference network
architecture based on the network innovation testbed of a major
mobile European operator and perform a measurement analysis
for the two use cases of object detection and speech recognition
(§3). The locations we consider are part of the internal backbone of
MNOs, typically connected via bandwidth overprovisioned links.
Our results show that there is indeed a good amount of flexibil-
ity, and that the “edge” for some delay-sensitive applications can
be more central and better provisioned location than the eNodeB.
Based on our results, we advocate a novel adaptive architecture for
an edge-based Delivery Network for Applications (eDNA) that we
briefly overview (§4). eDNA uses active measurements to dynami-
cally allocate processing resources across different edge locations
while meeting application latency requirements.
2 Inference at the network edge
In this section, we first review requirements of applications that
could benefit from adding inference capabilities to the edge of the
mobile network. A wide range of applications, ranging from smart

54

https://doi.org/10.1145/3301418.3313946
https://doi.org/10.1145/3301418.3313946

EdgeSys ’19, March 25, 2019, Dresden, Germany A. Cartas, M. Kocour, A. Raman et al.

agriculture [32] to connected cars [4] have been proposed. These
applications have different needs, with some requiring only low-
frequency sampling and little computational complexity, to others
that rely on sensor networks intricately tied to a geography, and
having heavy computational or network requirements. Even the
network requirements can vary, with some (e.g., data analytics) hav-
ing heavy bandwidth requirements, whereas others (e.g., detecting
pedestrians in autonomous cars) are latency sensitive.

Our principal interest is to establish to what extent the “edge”
of today’s networks can support such diverse machine learning
inference applications. We, therefore, selected two inference tasks
– object detection and speech recognition – which form critical
building blocks in several important applications. For edge com-
puting to be practical, tasks such as these need to be supportable
within “reasonable” time budgets. In this section, we investigate
the computational latency of these inference tasks with different
kinds of hardware availabilities. In §3, we consider the network
latency imposed by different edge locations.

Based on the network design of a large European ISP, we iden-
tify a fundamental trade off when offloading tasks: edge locations
that are “more central” are likely to be better provisioned (for ex-
ample, with more expensive GPU-enabled servers) as compared
with computational facilities at the very edge of the network (e.g.,
eNodeBs). Therefore, we investigate the extent to which computa-
tional requirements can be brought down with performance tuning,
as well as the adaptability of current inference libraries to a range
of hardware capabilities.

2.1 State of the art benchmarks
Most previous works [14, 15, 20, 22] have focused on computer
vision (CV) tasks that only process single frames. [20, 22] perform
image classification on mobile devices by distributing the com-
puting load locally and on the edge. However, their experiments
required hardware such as external mobile GPUs that may not be
commonly available. In [14, 15], a personal assistant system is in-
troduced that performs image and speech recognition. Additionally,
it leverages a sophisticated natural language processing (NLP) to
accommodate a question-and-answer system. In [6, 13], a set of
simple applications make use of different CV algorithms. In partic-
ular, the Sandwich app [6] processes a video stream using a more
computational intensive task than image classification. Although
their results show competitive latencies (i.e., few seconds), the use
case does not take into account realistic network settings and most
recent algorithms (i.e., [6] uses Faster R-CNN on Caffe [18]).

2.2 Can we bring down the processing time?
Consider the task of object detection as an example. Given an image,
the task is to find the enclosing boxes of instances from a set of
possible categories. For example, enclosing boxes for all flowers
and faces in an image. Performance is measured in terms of the
resulting mean average precision (mAP) and time taken. In modern
Deep Neural Network (DNN) architectures, there is a fundamental
trade-off between the two metrics, which depends on the employed
meta-architecture and its CNN feature extractors [17]. However,
the processing latency could still be too high for real-time inference
For example, in the Sandwich app [6], the processing latency of
detecting six categories using Faster R-CNN on Caffe [18] is on the
order of a few seconds.

Figure 1. CPU computing time statistics for object detection on
1,796 frames (1 min. video) using different implementations of Tiny
YOLO

TensorFlow DarkNet
Tiny YOLO (v1) [9] Tiny YOLO (v2) [28]

mAP 57.1 23.7
FPS (GPU) - 244
#Categories 20 80
Dataset Pascal VOC [12] COCO [23]

Table 1. Description of the pre-trained object detectors used in our
experiments

We set out to improve this with a series of low-level perfor-
mance fine-tuning. Fig. 1 shows the three main steps, separated
by a blue vertical line for each improvement. As a benchmark, we
first start by using state-of-the-art object detection system YOLO
v2 [28]. Table 1 charts out the accuracy of models and number of
categories for object detection as used in Fig. 1. As can be seen,
this system is faster than Sandwich, with sub-second latencies. It
also scales well, with increased numbers of CPU cores resulting in
better performance. However, as noted before, most eNodeB edge
nodes are not equipped with 32 or 56 core machines. Investigating
the bottleneck, we find that Yolo v2 uses OpenMP, which does
not scale well on recent Intel machines. We replace this by using
TensorFlow, which by default uses the Intel Math Kernel Library
(MKL), which in turn is based on Intel’s Threading Building Blocks
(TBB) which results in massive performance improvements, even
for many fewer CPU cores. Finally, we use a version of MKL that is
especially optimised for DNNs, resulting sub-centisecond processing
times for a reasonably equipped 12-core machine.

In case of automatic speech recognition (ASR), in recent years
industry and academia have also moved towards DNN architectures
due to its higher accuracy and model training times [29]. Our ASR
component relies on a Temporal Delay DNN acoustic model, in-
cluded as nnet2 recipe in Kaldi speech recognition software [26, 27].
We trained the model for Spanish language using several internal
and publicly available databases, accounting for more than 300
hours of speech, an evolution from our previous systems in [25, 33].
Having a deep understanding of the ASR technology allows us
to tune specific components, such as the beam-search within the
Viterbi hypothesis decoding or the target lexicon, at the expense
of word accuracy. Nonetheless, word error rates obtained ensures
usability by most NLP applications such as topic detection or intent

55

A Reality Check on Inference at Mobile Networks Edge EdgeSys ’19, March 25, 2019, Dresden, Germany

Figure 2. Performance of speech recognition for isolated words in
terms of processing delays, when four CPU cores (onset) or just
one CPU core (inset) are allocated

classification and entity detection, common tasks in conversational
agents. We constrain our experiments just to CPU-based decoding.
Fig. 2 depicts number of CPU cycles assigned to a speech worker
for decoding an isolated word, a thousand in total, lasting within
[0.01, 1] seconds range. The figure reports acceptable delays for
conversational or dictation applications [16], lower than one sec-
ond, just by using one core. Furthermore, comparable delays to
those from network are also reported, that is, lower than 100ms by
using several CPU cores.

3 Network edge location
We now investigate how network edge location impacts end-to-end
latency of applications.

3.1 Experimental Setup
Network architecture We leverage the multi-site mobile testbed
of the innovation division of a large European ISP for edge de-
ployments and Amazon web services for conventional cloud-based
deployments (Fig. 3).

The setup comprises of an edge infrastructure, composed of set
of eNodeBs hosted on Intel NUC, connected via optical fiber to a
Network Function Virtualization Infrastructure (NFVI) where the
mobile core is deployed. Such NFVI represents a Central Office
Re-architected as a Datacenter (CORD) architecture, which brings
cloud agility to the current Telco central office. The central office
is connected via the transport network to the core datacenter, and
to the Internet via an edge router after traversing part of the ISP
network. Note that the eNodeB, central office and ISP datacenter
(ISP-DC) are located in three different locations in Spain. This is
representative of a rural deployment where eNodeB and Central
Office are in different locations with about 10 ms latency. We focus
on this scenario as it is more challenging and diverse than urban
environments. Indeed, in an urban deployment the eNodeB is co-
located with the Central Office (or very close); in this case the
latency between Central Office and eNodeB is negligible and all
latency results would be reduced of about 10 ms.

A Nexus-5x Android client placed inside a Faraday Cage (FC) is
used to load the application and is connected to the eNodeB through
a Universal Software Radio Peripheral (USRP B210) equipped with
an 30dBm attenuator and RF cables to reach the FC. FC is used to
avoid interference from other signals, making the measurements

reliable. Our cloud infrastructure is comprised of Amazon web
services (AWS) instances located at three different locations, based
on the distance from the edge in Spain - one location is close by
(Paris), one far away (US, Ohio) and one mid-way (Ireland) and are
hosted on Intel Xeon Platinum processors (4 Cores, 8GB Memory).

Object detection applicationWe developed a web application
for object detection that can be used on different devices for several
applications, e.g., wearable devices, mobile phones. In this appli-
cation, a (live) video stream is enriched with labels and bounding
boxes of the detected objects. NewVision [21] an android client for
object detection for visually impaired people, but it is not used for
our experiments.

Text-to-Speech application We employed the Kõnele [19] an-
droid text2speech application for speech recognition experiments.
The application records a user’s voice and displays translated text
based on trained nnet2 Kaldi online models (§2). The application
can replace a classic keyboard for typing a text and is a typical
application for cloud-assisted machine learning. For recognition
experiments, we also make use of command-line and web clients
from Kaldi-GStreamer. Both the clients accept raw audio (2 bytes
per sample at 8KHz rate) files as an input and displays transcribed
text in real time.

Figure 3. Testbed set-up

Ping application ICMP ping round-trip times (RTT) are unreli-
able under certain conditions, especially when there is a differential
treatment of ICMP traffic. To avoid this issue, we build a simple
application which sends ping-pong frames using web-sockets. A
client sends a ping message along with the timestamp to the desig-
nated server and gets a pong message with the same timestamp as
response. RTT is calculated as a difference between these times.

Assumptions and Limitations In order to generate consistent
measurements, on every node we run Ubuntu 16.04 and allocate
four cores for every container. However, we notice a variation in
processing times on different hosts, as a result of differences in
clock speed (2.9 GHz on the AWS cloud; 2.5Ghz on edge nodes).
Also it is worth noting that processing load is quite a variable factor.
While the AWS nodes just host our application, ISP-DC is deployed
in a production network and includes load from the other services
as well. Further, the testbed does not support local breakout at eN-
odeBs; latencies reported for eNodeB are inferred as the difference
in latency between eNodeB and the central office that we experi-
mentally evaluate. Also, GPUs are available at ISP datacenter and
AWS only: latencies reported for GPU processing at other locations
are inferred from those measures. Finally, we do not evaluate the
bandwidth cost of different services deployed at different network
locations. We plan to address these limitations as future work.

56

EdgeSys ’19, March 25, 2019, Dresden, Germany A. Cartas, M. Kocour, A. Raman et al.

3.2 WebSockets Ping-Pong Latency
We start measuring the round-trip times (RTT) from the mobile
client to all the listed end-points (cf. Table 2). We observe a 30%
RTT difference between the eNodeB and the Central Office. This is
a significant difference that could affect application performance if
the eNodeB is not co-located at the Central Office. Further, we notice
a 35% latency difference between Central Office and centralized
cloud infrastructures. Again this is a non negligible latency gap
that could affect user experience. The difference is more evident
when centralized cloud VMs are located in another continent (i.e.,
Ohio). Finally, ISP datacenters does not provide latency reduction
with respect to geographically close centralized cloud servers.

3.3 Inference Latency
Object Detection Fig. 4(a) shows the split of time-taken between
sending the frame and receiving the bounding box (delivery de-
lay) and the time taken to process the frames. It is quite evident
from the figure that the overall latency can be brought down to
nearly real-time (roughly 400ms). The figure also shows that except
edge deployments, the delivery delay exceeds the processing delay
(for example, by 10% in case of a Ireland server), indicating that
the processing delay plays a vital role in the overall latency. This
becomes even more evident when there are additional processing
resources. Fig 4(b) shows the overall delay can be reduced to half by
using GPU, with a better performance being a result of optimized
processing. In this case, the bottleneck is clearly the network delay.

We now focus on two examples of services leveraging object de-
tection to understand how latency impacts perceived user Quality
of Experience (QoE). First, we consider a service providing guidance
to users to achieve a given goal (e.g., sandwich preparation in [6]).
We notice that, independently from the location of the network
where processing is performed, the latency is lower than service
requirements (The service requirement for this is an upper bound of
0.6s [6], shown as a dashed line in Fig. 4(a)). In this case, processing
can be deployed either in ISP datacenters or even in centralized
clouds where the deployment cost is minimized while providing
good QoE to users. A second example is autonomous car driving,
where cars need to identify objects on the street. In this case, net-
work location and resources play a critical role. Indeed, in order
to meet the stringent requirements of the service (150ms round
trip latency [31]; shown as dashed lines in Fig. 4(b)), processing
should run on GPU installed at eNodeBs or Central Office only
when co-located with eNodeBs.
Speech Recognition We now focus on the speech recognition
task. Fig. 4(c) shows the network delay and processing time for
transcribing an audio to text using 4 CPU cores. We keep the total
audio length to 5 minutes, and send such audio to the compute
engine in a real-time fashion (by sending chunks lasting 250ms and
Kaldi-Gstremer [3]). We calculate delivery delay as average latency
in sending the audio chunk and receiving the constructed text.
Again, it is quite clear that network delay dominates processing
delay (even though the decoding of speech happens in CPU and does
not use GPU). Indeed, even when the edge is located at the eNodeB,
network delay accounts for 90.6% of total delay. The overall delay
to US is more than twice of eNodeBs/Central office, even though
the processing delay is in sub milliseconds, indicating network as a
key factor.

eNodeB Central
Office

ISP-
CDN Paris Ireland Ohio

(US)

RTT (ms) 28.13
±3.66

41.15
±2.82

62.57
±8.74

64.10
±6.37

77.40
±2.33

151.17
±7.48

Table 2. Round-trip time from mobile client to different network
locations

In order to evaluate latency impact on user QoE, we take into
consideration that interacting with an intelligent voice-based assis-
tant (e.g., Siri/Alexa) located at the network edge would require the
client transmitting voice samples to a bot in the edge cloud; and the
bot transmitting voice packets back which are then played out on
speakers by the client. Thus, the network latency required for a flu-
ent and sophisticated two way conversation with such bots would
be similar to a VoIP conversation between two humans in today’s
networks. Note that this is a lower bound on the delay requirement
as the inference task at the bot would also need to perform speech
recognition (which we consider here) and also both natural lan-
guage understanding and synthesis (which are task dependent, and
not considered by us). Following [34], we take the maximum delay
allowed to be 250ms. We notice service requirements are met only
if processing is deployed within the MNO network. However, the
service does not require to deploy processing in a specific loca-
tion, and MNO can thus perform processing placement to minimize
deployment cost.
Takeaway:We empirically verify that network latency is currently
the main bottleneck in end-to-end latency in applications performing
machine learning inference. We also show that deployment of process-
ing at first network node is not required by all services, and MNOs
can leverage other network locations or centralized cloud servers for
some use cases.

4 System design
Based on previous findings, we develop an architecture for scalable
edge processing. We first motivate our design by discussing the
key requirements needed to be satisfied both from an application
perspective as well as an infrastructure administration perspective.
Then we describe the architecture itself.

4.1 System requirements
To meet the requirements of applications such as the ones discussed
in Sec. 2, and considering findings of Sec. 2-3 we require:
Autoscaling The system should scale automatically (in the order
of milliseconds) to allocate and deallocate resources as required
by the workload. Furthermore, we require a lightweight system
deployable in a variety of edge locations, ranging from eNodeBs
with low-end hardware to multi-core rackable servers with GPUs.
Real-time processing Application requests should be satisfied
instantaneously e.g., the system cannot leverage request batching
to perform inference scalably.
Multi user sharing As the number of users increase, it will be-
come difficult, if not impossible, to serve each user with a separate
edge computing instance, especially for inference-based applica-
tions because sophisticated and accurate machine learning models
can require large memories.

Also, for the diversity of inference applications we consider,
we require the ability to process both audio and video streams.
As shown in Table 3, the main existing approaches fall short in

57

A Reality Check on Inference at Mobile Networks Edge EdgeSys ’19, March 25, 2019, Dresden, Germany

(a) Video Frame Latency (CPU) (b) Video Frame Latency (GPU) (c) Speech Frame Latency (CPU)

Figure 4. Overall Latency (stacked as frame delivery and processing delays) for object detection and speech recognition in various locations
in the network. Dashed lines stand for the stringent latency requirements for corresponding applications. Frame time for speech correspond
to audio chunks of 250ms

Feature Gabriel Kaldi Lucida/
DJNN Serverless eDNA

Real time Yes Yes No Yes Yes
Multi user No Yes Yes Yes Yes
Autoscaling No No No Yes Yes
Video stream Yes No Yes No Yes
Audio stream No Yes Yes No Yes

Table 3. Existing architectures compared to eDNA

one or more aspects: Gabriel [6, 13] uses a VM-based offloading
framework that supports video processing efficiently, but being
VM-based, cannot be shared across multiple users. It also does not
support audio. Lucida [15, 24] and DJNN & Tonic [10, 14] collec-
tively support a large number of applications including image and
speech recognition. However, they scale by using batch processing
and are therefore not real time. Also, they are optimized for large
warehouse-scale computers, and face problems on more modest
hardware. Kaldi-Gstremer server [3] does efficient speech recog-
nition but is not designed for real time autoscaling, but research
purposes, nor does it support video. However, we use it as a building
block for our speech recognizer application and also as a starting
point for our object detection.

Serverless computing [5] is an emerging paradigm for deploying
autoscaling cloud applications under dynamic workload require-
ments. Further, recent work suggests that this approach may need
tweaking to support network intensive applications [2, 30]. Sand [2]
is a recent proposal that by creating fine-grained application sand-
boxing mechanisms that decrease startup times, and using the
sequentiality of edge functions to improve resource utilisation.

4.2 eDNA: (Edge) Delivery Network for Applications
Fig. 5 shows our architecture. Similar to Kaldi [3] and Sand [2],
eDNA has a centralCompute Engine based around amaster/worker
architecture. Each audio or video service is wrapped as aDocker [11]
container. Workers are responsible for processing either audio
or video stream and can be chained according to the processing
pipelines described in Sec. 2.2. Each physical machine has one mas-
ter that maintains list of available workers on that machine, and

Figure 5. Design of eDNA architecture

can run either in the same container or inside a separate container
on remote servers accessible from the worker’s host. Building on
Kaldi, master-client and master-worker connections use full-duplex
communication over WebSockets.

Our improvements over Kaldi and Sand come from two core
elements: a measurement server (MS) and the orchestrator. The MS
maintains a database of network locations or hosts where each
service can be provided (eg., a service requiring a GPU may need to
be in one particular location; a service which needs to be close to a
particular user may be constrained geographically, etc.). It also takes
a network-wide view and collects and stores real-time information
about available resources, which are then used by the orchestrator
for creating a service function chain to suit the application needs.
The MS is built using the Python Flask microframework and uses
MongoDB for data storage and retrieval.

The orchestrator keeps track of the client application’s require-
ments, and performs load balancing, assigning a given client to
a given master; increasing or decreasing the number of workers
associated with each master (depending on resource availability on
physical hosts), and managing the resource allocation within each
container by starting new processes or shutting down unused ones
to suit the current mix of service requirements from clients.
Service flow. Our architecture follows a client-server model. The
client (e.g., an object detection or speech recognition application)
initiates communication, by retrieving the static content items of

58

EdgeSys ’19, March 25, 2019, Dresden, Germany A. Cartas, M. Kocour, A. Raman et al.

the service from the application server, and contacting the orches-
trator to register the user for the given service. The orchestrator
redirects the user to the best network location or host matching its
service requirements, based on resource availability. The orchestra-
tor may also scale the resources allocated to the service container
of that host and/or initiate or shut down processes as needed. The
client then registers itself with the master of the host selected by
the orchestrator. The master then retrieves an available worker
from its list and assigns it to the user. Once the connection is suc-
cessfully established, the client sends the content (e.g., image to
be recognised or audio file to be transcribed) to the worker, which
then accomplishes the task and returns the answer to the client.
Takeaway: eDNA achieves autoscaling by dynamically scaling
the resources allocated to container. There are also no machine learn-
ing model startup costs as the model is loaded into memory when the
container starts, allowing real-time processing. It scales to mul-
tiple users, and remains lightweight, using (typically) a single
container per service and one process per user. It can therefore run on
low end hardware but can also leverage higher end hardware without
architectural changes.

5 Conclusion
In this paper we revisited some assumptions made by previous
works focusing on machine learning inference and edge computing.
Specifically, by means of experiments, we show recent advances
in Machine Learning, especially on Deep Learning, has enabled
inference in few tens/hundreds of milliseconds even for computing
intensive applications (e.g., object detection). As a consequence,
we showed network latency is now the main bottleneck in end-to-
end latency especially when GPU are used. Further, we highlight
not all interactive applications require deployment at first network
hop. Indeed, some services can be deployed in centralized cloud
infrastructures, while others can be served from any location inside
the network of Mobile Operators.

Based on these findings, we argue operators should dynamically
take advantage of heterogeneous deployment, from less expen-
sive network locations (i.e., Central Office, ISP datacenters or even
centralized cloud services), to highly distributed nodes close to
users. Further we advocated and designed a novel architecture for
dynamic resource/function allocation in such heterogeneous de-
ployments. This work is a first step towards an understanding of
machine learning workloads in heterogeneous edge infrastructures
that we plan to extend along multiple direction. First, we plan to
consider more applications, machine learning functions and net-
work topologies to fully understand different trade-offs. Second, we
plan to design and implement algorithms for the automatic orches-
tration of machine learning functions across heterogeneous edge
deployment. Orchestration algorithms will be implemented on the
top of existing open source tools, and will drive the definition of
metrics to be monitored by the measurement server. Finally, we
plan to release the code of eDNA as open source once finalized.

Acknowledgments
The work is partially supported by the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) via the Internet of Silicon
Retinas Project, Grant No. EP/P022723/1.

References
[1] 3GPP. TS23.501, V15.3.0 (2018-09), Technical Specification Group Services and

System Aspects; Study on Architecture for the 5G System; Stage 2, Sept. 2018.
[2] I. E. Akkus, R. Chen, I. Rimac, M. Stein, et al. SAND: Towards high-performance

serverless computing. In Proceedings of the USENIX ATC, 2018.
[3] T. Alumäe. Full-duplex Speech-to-text System for Estonian. In Baltic HLT 2014,

Kaunas, Lithuania, 2014.
[4] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, D. J. Poole, L. K.

Tran, and C. T. Volinsky. Connected cars in cellular network: A measurement
study. In Proceedings of the 2017 IMC, pages 235–241. ACM, 2017.

[5] I. Baldini, P. Castro, K. Chang, P. Cheng, et al. Serverless Computing: Current
Trends and Open Problems, pages 1–20. Springer Singapore, Singapore, 2017.

[6] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, et al. An Empirical Study of Latency
in an Emerging Class of Edge Computing Applications for Wearable Cognitive
Assistance. In Proceedings of the SEC 2017, New York, NY, USA. ACM.

[7] J. Cho, K. Sundaresan, R. Mahindra, et al. ACACIA: Context-aware Edge Comput-
ing for Continuous Interactive Applications overMobile Networks. In Proceedings
of the CoNEXT ’16, pages 375–389, New York, NY, USA, 2016. ACM.

[8] CloudHarmony. Transparency for the cloud. https://cloudharmony.com/.
[9] Daniyal Shahrokhian. Tensorflow implementation of You Only Look Once.

https://github.com/dshahrokhian/YOLO_tensorflow.
[10] DjiNN and Tonic. DNN as a service. http://djinn.clarity-lab.org.
[11] Docker, Inc. Docker: Enterprise container platform. https://www.docker.com.
[12] M. Everingham, L. Van Gool, C. K. I. Williams, et al. The PASCAL Vi-

sual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[13] K. Ha, Z. Chen, W. Hu, W. Richter, et al. Towards Wearable Cognitive Assistance.
In Proceedings of the MobiSys ’14, pages 68–81, New York, NY, USA, 2014. ACM.

[14] J. Hauswald, Y. Kang, M. A. Laurenzano, et al. DjiNN and Tonic: DNN As a
Service and Its Implications for Future Warehouse Scale Computers. SIGARCH
Comput. Archit. News, 43(3):27–40, June 2015.

[15] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, et al. Sirius: An Open End-to-End
Voice and Vision Personal Assistant and Its Implications for Future Warehouse
Scale Computers. SIGPLAN Not., 50(4):223–238, Mar. 2015.

[16] T. Holtgraves, S. Ross, C. Weywadt, and T. Han. Perceiving artificial social agents.
Computers in Human Behavior, 23(5):2163 – 2174, 2007.

[17] J. Huang, V. Rathod, C. Sun, M. Zhu, et al. Speed/Accuracy Trade-Offs for Modern
Convolutional Object Detectors. In Proceedings of the CVPR 2017, July 2017.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, et al. Caffe: Convolutional Architec-
ture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.

[19] K. Kaljurand. Kõnele (v1.6.78). http://kaljurand.github.io/K6nele, 2018.
[20] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, et al. Neurosurgeon: Collaborative

Intelligence Between the Cloud and Mobile Edge. In Proceedings of the ASPLOS
’17, pages 615–629, New York, NY, USA, 2017. ACM.

[21] M. Kocour, M. Gabonay, K. Mihalíková, and T. Juřica. Newvision (v1.0). https:
//gitlab.com/xkocou08/newvision, 2018.

[22] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, et al. DeepX: A
Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices.
In Proceedings of the IPSN 2016, pages 1–12, April 2016.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, et al. Microsoft coco: Common objects
in context. In Computer Vision – ECCV. Springer International Publishing, 2014.

[24] Lucida. Speech and vision based intelligent personal assistant. https://github.
com/claritylab/lucida.

[25] J. Luque, C. Segura, A. SÃąnchez, M. Umbert, and L. A. Galindo. The role of
linguistic and prosodic cues on the prediction of self-reported satisfaction in
contact centre phone calls. In Proc. Interspeech 2017, pages 2346–2350, 2017.

[26] V. Peddinti, D. Povey, and S. Khudanpur. A time delay neural network architecture
for efficient modeling of long temporal contexts. In Proc. Interspeech, 2015.

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-
mann, P. Motlíček, Y. Qian, P. Schwarz, J. Silovský, G. Stemmer, and K. Veselý.
The Kaldi Speech Recognition Toolkit. In Proc. of IEEE ASRU, 2011.

[28] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. arXiv preprint
arXiv:1612.08242, 2016.

[29] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85 – 117, 2015.

[30] A. Singhvi, S. Banerjee, Y. Harchol, A. Akella, et al. Granular Computing and
Network Intensive Applications: Friends or Foes? In Proceedings of the Workshop
HotNets-XVI, pages 157–163, New York, NY, USA, 2017. ACM.

[31] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.
nature, 381(6582):520, 1996.

[32] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. N. Sinha, A. Kapoor,
M. Sudarshan, and S. Stratman. FarmBeats: An IoT Platform for Data-Driven
Agriculture. In NSDI, pages 515–529, 2017.

[33] K. Veselý, C. Segura, I. Szöke, J. Luque, and J. Cernocký. Lightly supervised vs.
semi-supervised training of acoustic model on luxembourgish for low-resource
automatic speech recognition. In Proc. Interspeech, 2018.

[34] VOIP. Qos. https://www.voip-info.org/qos/, 2018.
[35] W. Zhang, B. Han, and P. Hui. On the Networking Challenges of Mobile Aug-

mented Reality. In Proceedings of the Workshop on VR/AR Network ’17, pages
24–29, New York, NY, USA, 2017. ACM.

59

https://cloudharmony.com/
https://github.com/dshahrokhian/YOLO_tensorflow
http://djinn.clarity-lab.org
https://www.docker.com
http://kaljurand.github.io/K6nele
https://gitlab.com/xkocou08/newvision
https://gitlab.com/xkocou08/newvision
https://github.com/claritylab/lucida
https://github.com/claritylab/lucida
https://www.voip-info.org/qos/

	Abstract
	1 Introduction
	2 Inference at the network edge
	2.1 State of the art benchmarks
	2.2 Can we bring down the processing time?

	3 Network edge location
	3.1 Experimental Setup
	3.2 WebSockets Ping-Pong Latency
	3.3 Inference Latency

	4 System design
	4.1 System requirements
	4.2 eDNA: (Edge) Delivery Network for Applications

	5 Conclusion
	Acknowledgments
	References

