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Abstract
This paper presents a simplified version of the previously pro-
posed diarization algorithm based on Bayesian Hidden Markov
Models, which uses Variational Bayesian inference for very fast
and robust clustering of x-vector (neural network based speaker
embeddings). The presented results show that this clustering
algorithm provides significant improvements in diarization per-
formance as compared to the previously used Agglomerative
Hierarchical Clustering. The output of this system can be fur-
ther employed as an initialization for a second stage VB diariza-
tion system, using frame-wise MFCC features as input, to ob-
tain optimal results.
Index Terms: Speaker Diarization, Variational Bayes, HMM,
x-vector, DIHARD

1. Introduction
Diarization is the task of determining speaker turns in an audio
conversation. That is, given an audio conversation, a diariza-
tion system must infer the number of speakers speaking in the
audio and find when each of them is speaking. In last years,
the interest for diarization tasks has grown in the community.
After a rather long break since the last editions of diarization
evaluations [1], new diarization challenges are being organized
like the DIHARD series [2, 3], the Fearless Step Challenge [4]
or the VoxCeleb Evaluation [5]. Even the last edition of the
NIST Speaker Recognition Evaluation included conditions that
required diarization systems [6].

Driven by the success of x-vector embeddings in the related
Speaker Recognition (SR) task [7], x-vector based diarization
works keep emerging in the community [8, 9, 10]. Usually,
these systems make a coarse segmentation of the input conver-
sation into 1.5-2 second chunks and extract an x-vector for each
of the segments, which are then clustered using Agglomerative
Hierarchical Clustering (AHC) [8] or other clustering methods
[9]. The x-vector based systems have proven to be very ro-
bust for the diarization task. Nevertheless, the segmentation
step needed for the x-vector extraction sets the granularity (or
time resolution) of the system outputs, which calls for an extra
re-segmentation step to refine the timing of speaker changes.

In our previous works, we have presented the diariza-
tion system based on Variational inference in Bayesian Hid-
den Markov Model (HMM) with Eigenvoice priors [11, 12].
This diarization system (which is often referred to as Varia-
tional Bayes (VB) diarization) has been established as the state-
of-the-art method. In fact, in the last DIHARD challenge [2],
which was designed to foster research on “hard” diarization
conditions, the two best performing systems were based on a
cascade of two diarization systems: In the first stage, x-vectors
were clustered using AHC with Probabilistic Linear Discrimi-
nant Analysis (PLDA) metric [13]. In the second stage, the out-
put of the x-vectors based system was used as an initialization
for our Bayesian HMM based system, which offers a principled

way of robustly clustering the standard speech features (MFCC)
with better time resolution.

The x-vector based initialization allows to benefit from the
discriminative power of the NNs based embeddings. However
the simple AHC used in previous works for the x-vector clus-
tering might be sub-optimal, as it cannot recover from hard de-
cision mistakes made during the clustering process. In this pa-
per, we propose to use the Bayesian HMM also for the x-vector
clustering. The VB inference used for this model avoids making
any hard decisions. Instead, it iteratively refines the soft proba-
bilistic alignment of x-vectors to speakers and re-estimates the
speaker specific x-vector distributions (i.e. speaker models).
The inference is able to determine the number of speakers in
the recording. It also takes into account the uncertainty in the
speaker model estimates (i.e. we cannot be very certain about
speaker distributions estimated from only few x-vectors), which
also contributes to the robustness of the resulting x-vector clus-
tering. Experiments to show the effectiveness of the clustering
method are carried out on the DIHARD dataset [14].

The Bayesian HMM used for the x-vector clustering (i.e.
the first stage of the cascade described above) can be seen
as a simplified version of our original Bayesian HMM [11]
as applied to the MFCC features in the second stage: In the
original model, the speaker distributions were modeled using
i-vector-like subspace constrained Gaussian Mixture Models
(GMMs) [15]. The simplified version presented here derives
the speaker models directly from a PLDA model pretrained on
x-vectors (i.e. speakers specific x-vector distributions are as-
sumed to be Gaussian). The work [16] also used a Bayesian
GMM to cluster i-vectors, but it did not used pretrained PLDA
to facilitate the speaker clustering. Our model can also be seen
as a simpler and more practical variant of the VB-GMM intro-
duced in [17], where we further introduce scaling parameters
controlling the VB inference that are important for good per-
formance. Further, our model is a VB-HMM which allows for
modeling speaker turn duration. Also, we use it to cluster x-
vectors rather than i-vectors.

Finally, another motivation for replacing the AHC with the
Bayesian HMM clustering is that having both stages of our di-
arization system implemented using the same framework will
open up the possibility to integrate both stages into single prob-
abilistic model, which could benefit from jointly modeling both
the discriminative x-vectors and fine grained MFCC features.

2. The VB diarization model
This section provides an overview of the Bayesian HMM di-
arization Model introduced in our previous works [11, 12]. A
short summary of the complete model is given to provide the
foundation for the next section, where a simplified variant of
the model suitable for the x-vector clustering is proposed. For
a more complete description of the model, we refer the reader
to [11, 12].
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The VB diarization model is a Bayesian HMM, where the
states corresponds to speakers, the transition between states rep-
resent the speaker turns, and the speaker distributions are mod-
eled by GMMs with parameters constrained by eigenvoice pri-
ors like in i-vector [15] and JFA [18] models. This allows us
to represent the distribution of speaker s by means of a low di-
mensional latent vector ys.

The HMM has a one-to-one correspondence between the
HMM states and speakers.1 The HMM model is ergodic (i.e.
transitions between all speakers are possible), where the (initial)
number of states is chosen to be at least the highest number of
speakers we would expect to appear in a conversation.

The HMM topology and transition probabilities model the
speaker turn durations (see Figure 1 for an example with 3
speaker states): Ploop is a tunable parameter, which corresponds
to the probability of staying on the same state (speaker). For
high frame rate features such as MFCCs, this is typically set to a
value close to one to naturally model the speaker turns. For each
frame, we leave the current state with probability 1−Ploop and
we transition to new state of speaker s with probability πs. The
probabilities πs also control the selection of the initial HMM
state. The probabilities πs are inferred from the input conversa-
tion using the iterative VB updates and, thanks to the automatic
relevance determination (ARD) [19] principle, the values πs for
any redundant speaker states tend to converge to zero. This al-
lows to infer the number of speakers in the input conversation.

s1

s2s3

1− Ploop

1− Ploop

1− Ploop

Ploop

Ploop
Ploop

π1

π2

π3

Figure 1: HMM model for 3 speakers with 1 state per speaker,
with a dummy non-emitting (initial) state.

Each speaker (or HMM state) specific distribution is mod-
eled using a subspace constrained GMM as in the i-vector ex-
tractor model [15] used for speaker recognition: The model as-
sumes that the speaker specific GMMs are all related to a single
UBM model, and they share the component weights wubm

c and
covariance matrices Σubm

c . For a speaker s, its super-vector of
concatenated means μs = [μT

s1μ
T
s2 . . .μ

T
sC ]

T is constrained to
live in a low-dimensional subspace

μs = μubm +Vys (1)

around the origin given by the UBM mean super-vector μubm,
spanned by the Total Variability matrix V. The matrix V is
pre-trained on a large amount of data in the same way as for
the i-vector extraction [15] and is shared among all the speaker
models. To estimate the speaker specific distributions, we only
need to infer the low dimensional vectors ys, which can be seen
as coordinates of the speaker models in the low-dimensional
space. This allows us to robustly estimate speaker models even
from small amounts of speech. In our Bayesian model, ys are
treated as latent random variables with standard normal prior

1An extension with multiple states per speaker is described in [11],
which allows for minimum speaker turn duration modeling.

p(ys) = N (ys;0, I). (2)

Let us state the diarization problem formally for our model.
Let Y = {y1,y2, ...,yS} be the set of all speaker vectors.
Let X = {x1,x2, ...,xT } be the sequence of observed vec-
tors (i.e. MFCC features) and Z = {z1, z2, ..., zT } the corre-
sponding sequence of latent variables defining the hard align-
ment of speech frames to HMM states. To address the SD task,
the speaker distributions ys and latent variable Z are jointly es-
timated (together with the πs probabilities) given the input se-
quence X. In order to find the most likely alignment Z, we need
to infer the posterior distribution p(Z|X) =

∫
p(Z,Y|X)dY.

Since the evaluation of this integral is intractable, we use Varia-
tional Bayes and mean field approximation [19] to approximate
the posterior p(Z,Y|X) ≈ q(Z,Y) = q(Z)(Y) and the so-
lution to the diarization task is taken as the most likely align-
ment according to inferred distribution q(Z). We search for
such q(Z,Y) that minimizes the Kullback-Leibler divergence
DKL(q(Z,Y)‖p(Z,Y|X)). This is equivalent to maximizing
the standard VB objective – the Evidence Lower Bound Objec-
tive (ELBO), which takes the following form for our model:

L̂ (q(X,Y)) = FAEq(Y,Z) [ln p(X|Y,Z)]

+ FBEq(Y)

[
ln

p(Y)

q(Y)

]
+ Eq(Z)

[
ln

p(Z)

q(Z)

]
.

(3)

The term p(X|Y,Z) is the likelihood of the observation se-
quence X evaluated using the HMM model described above
given fixed speaker models Y and alignment Z. The prior on
possible alignments p(Z) is defined as in standard HMMs in
terms of the transition probabilities and the prior on the speaker
modes p(Y) =

∏
s p(ys).

The VB inference iteratively estimates the distributions
q(Y) and q(Z) and parameters πs using the update formulas,
which can be derived from ELBO (3) using (variational) deriva-
tives as detailed in [12]. For the space constraints, we do not
provide the update formulas here. Instead, we kindly refer the
reader to [11, 12] or directly to our python implementation of
this inference [20].

In (3), we modified the ELBO by scaling the first two terms
by constant factors FA and FB . The theoretically correct values
for these factors are FA = FB = 1. However, choosing differ-
ent values gives us finer control over the inference, which can be
used to improve diarization performance: The Acoustic scaling
factor FA is introduced to counteract the assumption of statis-
tical independence between observations by scaling down the
log likelihood of the observations.2 The speaker regularization
coefficient FB weighs the second term of the ELBO in (3), the
Kullback-Leibler divergence between the approximate speaker
posterior and the speaker prior DKL(q(Y)‖p(Y)). This term
can be seen as a regularization term penalizing the complexity
of the speaker models, which allows us to control the number of
speakers inferred from the input utterance (a high value of FB

results in the VB inference dropping more speaker models). For
a more detailed interpretation and analysis of these parameters
we refer the reader to [12].

3. Simplified Variational Bayes Diarization
The Bayesian HMM described in the previous section was de-
signed to be applied on the fine-grained MFCCs. In this section
we will focus on using the same model for clustering x-vectors.

2Note that in [11] this factor corresponds to the statScale parameter
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Since the PLDA was found effective for modeling x-vectors
in speaker recognition, we will use the same model for model-
ing the speaker distributions in our VB HMM model. Let us
consider the simplified PLDA model [21], which assumes that
the distribution of speaker means

ms = m+Vys, (4)

where ys is again a latent vector with standard normal prior and
where the speaker specific distribution of x-vectors

p(xt|ys) = N (xt;ms,Σwc), (5)

where Σwc is the within speaker covariance matrix shared by
all speaker models.

This model is equivalent to the one used to model speaker
distributions in our VB diarization system under the assump-
tion that the speaker specific distribution can be modeled us-
ing only a Gaussian distribution (in contrast to the GMM). In
other words, we can use exactly the same model and the same
inference as described in the previous section, with the follow-
ing simplified setup: the number of GMM components for the
speaker models is set to one. The PLDA mean m is used in
place of the UBM mean μubm. The V matrix from the PLDA
model is used as the eigenvoice matrix, and the covariance ma-
trix of the single UBM component is set to Σwc.

Further, since the x-vectors come from a coarse segmen-
tation in our experiments, we found that the optimal value for
Ploop = 0, which effectively degrades the Bayesian HMM into
a Bayesian GMM. Nevertheless, treating the model as an HMM
may be useful in the future when working with x-vectors of
higher frame-rate.

4. x-vector extraction
Our x-vector system is built based on the Kaldi recipe [22], but
with some modifications on the data preparation. Voxceleb [23]
training and Voxceleb2 [24] development sets are combined to
generate the training set for the x-vector extractor. The data
augmentation procedure described in [7] is adopted to increase
the amount and diversity of the training data. The final training
set contains around 6 million speech sessions from 7146 speak-
ers. The utterances are further cut into segments of 2s for the
neural network training. 64-dimensional filter banks (Fbanks)
are used for the x-vector system, with an energy-based voice
activity detector (VAD) to remove silence.

The standard time-delay neural network (TDNN) described
in [7] is employed, which consists of 5 time delay layers and
two dense layers. The embeddings are extracted after the first
dense layer with a dimensionality of 512.

The PLDA model is trained using the same Voxceleb train-
ing set as the NN, but with the length of segments for x-vector
extraction set to 3s. x-vectors are centered and whitened using
DIHARD 2018 development data, and then length normalized.

The x-vectors for the speaker diarization clustering stage
are extracted with a 1.5s sliding window and a window shift of
0.75s, then centered and whitened and length normalized in the
same way as for the PLDA training data.

5. Experimental setup
5.1. Evaluation datasets

The experiments are evaluated on the DIHARD I dataset. This
dataset was created for the DIHARD challenge [2], the first of
a yearly series of challenges designed to foster research on di-
arization in hard conditions. The dataset includes utterances

coming from several sources (YouTube, court rooms, meet-
ings, etc.) [14]. The corpus consists of 164 development and
172 evaluation recordings, containing around 14h and 17h of
speech, respectively.

5.2. Baseline AHC

The baseline clustering approach follows the method described
in [25] as implemented in [22]. The method is based on AHC,
which uses PLDA metric as the similarity measure between the
embeddings. The full clustering process goes as follows: For
each input conversation, x-vectors are extracted for 1.5s win-
dows with 0.75s overlap. A conversation dependent PCA is es-
timated and the x-vectors are projected so as to keep only a 10%
of the total variability. PLDA similarity measure (i.e. log like-
lihood ratio between same-speaker and different-speaker hy-
potheses) is computed between the projected x-vectors. For
each clustering step, the weighted average of the PLDA scores
is used as similarity measure between clusters. The threshold
used as stopping criteria for the AHC is fine-tuned on the devel-
opment set.

5.3. Setup for the VB Diarization systems

5.3.1. VB clustering of x-vectors
In [11, 12], we have also introduced a parameter controlling
the VB inference called downsamplingFactor, which effectively
constrains the model in such a way that each consecutive se-
quence of downsamplingFactor observations has to be gener-
ated by the same HMM state. Given that the x-vectors already
come from a coarse segmentation, this parameter is set to one
(effectively not used) for the x-vector clustering. As described
in Section 3, the Ploop parameter is set to 0 for this version of
the model. The PLDA model used in this clustering is exactly
the same trained for the AHC system.

To initialize the inference, the speaker labels were gener-
ated by simply grouping N number of consecutive x-vectors
and assigning the same speaker label to each group. The N
value, as well as the other parameters of the VB algorithm,
namely FA and FB , were tuned for best performance on the
development set.

5.3.2. Framewise MFCC VB diarization
For the VB diarization system used in the second stage of the
cascade of systems, the following configuration is used: The
Weighted Prediction Error (WPE) [26] method was used to re-
move late reverberation from the audio signal. As features, stan-
dard MFCCs are extracted from 16kHz speech. We employ
19 MFCC plus Energy plus first order deltas. Neither mean
nor variance normalization are applied in the feature extraction.
We use a gender-independent UBM-GMM, with 1024 diagonal-
covariance Gaussian components. The dimensionality of the
speaker latent variable ys is 400. The UBM-GMMs and the
total variability matrix are trained using the VoxCeleb2 dataset,
which amounts to 2025h of speech [24].

The parameters for the diarization system, namely: down-
samplingFactor, Ploop, FA and FB were tuned for best perfor-
mance on the development set.

5.4. Evaluation metric

Diarization Error Rate (DER) as defined by NIST [1] is used to
evaluate the system. As is the standard practice, we use the or-
acle speech activity labels – we drop the silence parts from the
signal– so that only speaker errors are accounted for in the DER,
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(missed speech and false alarm speech errors are not taken into
account). We evaluate the system with no collar and we evalu-
ate the overlap speech regions, as it was done in the DIHARD
challenge [2].

6. Results
6.1. Clustering of x-vectors (first stage)

Table 1 shows results attained with the different clustering ap-
proaches on the DIHARD development and evaluation sets.
Note that the results for the dev set are overoptimistic, as the
threshold for stopping the AHC (for AHC) and the parameters
of the VB inference (for VB clustering) are optimized on the
same development set. The numbers show that the simplified
VB performs significantly better than the AHC approach.

Table 1: DER results attained with the different clustering meth-
ods on the dev and eval sets of the DIHARD I dataset.

Clustering Dev Eval
AHC 18.88 25.23
VB clustering 17.10 24.26

To further evaluate the quality of both clusterings, we also
analyze the number of speakers found per recording. Figures 2
and 3 show the histograms for the real number of speakers per
conversation on the dev and eval sets, and the histograms for the
number of speakers found by both clustering approaches.

Figure 2: Histogram of the real number of speakers per record-
ing on the DIHARD development dataset, and the histograms
for the number of speakers found with the clustering approaches

Figure 3: Histogram of the real number of speakers per record-
ing on the DIHARD evaluation dataset, and the histograms for
the number of speakers found with the clustering approaches

The figures reveal that both systems tend to over-cluster,
ending with less number of speakers per conversation than what
the real distribution shows. When analyzing these results, it

was found that for some of the very challenging domains (i.e.
SEEDLINGS, VAST) the systems perform so poorly that better
DER rates are often obtained when reporting a single speaker
per conversation. This suggests that the over-clustering ten-
dency might come as a side effect of tuning the systems for opti-
mal DER. Nevertheless, the over-clustering is more pronounced
for the PLDA AHC than for the simplified VB clustering ap-
proach, which denotes that the latter uses a better criterion for
inferring the number of speakers per conversation.

6.2. Framewise MFCC VB diarization (second stage)

For the second stage of our diarization pipeline, we use the out-
put of the previous clustering as initialization for the VB di-
arization model. To build the input, the assignment of x-vectors
to speakers obtained from the first clustering stage is taken, and
upsampled to build a matrix of frame-wise speaker assignments.

When trying to optimize results with the final VB diariza-
tion, a similar trend as the one described in [25] was observed:
when letting the VB diarization fully converge, the DER would
get worse. This denotes that the x-vectors are in fact more dis-
criminative as features than the frame by frame MFCCs used
as input for the VB diarization. As suggested in the mentioned
work [25], early stopping was employed, performing a single
iteration of the VB diarization.

Table 2: DER results attained with the different clustering meth-
ods on the dev and eval sets of the DIHARD I dataset.

Clustering Dev Eval
AHC + second stage VB 18.09 24.55
VB clustering + second stage VB 16.29 23.43

Table 2 shows the results obtained after the final diarization
stage. The full VB diarization framework obtains, as far as we
know, the best results published for the DIHARD dataset.

7. Conclusions
In this paper we have introduced a simplified version of the VB
diarization system to perform fast and effective x-vector clus-
tering. The proposed approach has proven to be useful, outper-
forming the state-of-the-art AHC clustering approach.

The fact that both stages of our diarization system can be
now implemented using the same Bayesian HMM framework
opens up the possibility to integrate both stages into single prob-
abilistic model. Such model, which we plan to investigate in
future, could benefit from jointly modeling both the discrimina-
tive x-vectors and fine grained MFCC features.
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