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Abstract

This paper is a post-evaluation analysis of our efforts in
VOiCES 2019 Speaker Recognition challenge. All systems in
the fixed condition are based on x-vectors with different features
and DNN topologies. The single best system reaches minDCF
of 0.38 (5.25% EER) and a fusion of 3 systems yields minDCF
of 0.34 (4.87% EER). We also analyze how speaker verification
(SV) systems evolved in last few years and show results also on
SITW 2016 Challenge. EER on the core-core condition of the
SITW 2016 challenge dropped from 5.85% to 1.65% for sys-
tem fusions submitted for SITW 2016 and VOiCES 2019, re-
spectively. The less restrictive open condition allowed us to use
external data for PLDA adaptation and achieve additional small
performance improvement. In our submission to open condi-
tion, we used three x-vector systems and also one system based
on i-vectors.

1. Introduction
Text-independent speaker verification (SV) field has already
embraced Deep neural networks (DNN) for modeling in every
stage and approaches such as end-to-end modelling and DNN
embeddings became a new state-of-the-art. Domain adapta-
tion and especially the need for a large amount of training data
are still a challenge and unlike with generative models, we see
significant gains from data augmentation, simulation and other
techniques designed to overcome lack of training data.

We present an analysis of a SV system based on DNN em-
beddings (x-vectors) [1] and i-vectors [2] for far-field data in
VOiCES 2019 challenge [3]. We also analyze the evolution
of the SV systems submitted to Speakers In The Wild (SITW)
2016 challenge [4] till today. We show the differences in per-
formance of the previous state-of-the-art based on i-vectors and
current x-vector systems and at the same time we analyze the
impact of different sampling frequency, training data and fea-
ture extraction on performance of the SV system for far-field
data represented in SITW and VOiCES benchmarks.

Since our submissions back in 2016 for the SITW chal-
lenge and now for VOiCES were both very successful and can
be considered state-of-the-art at the time, we are in a position
to claim that in the last three years, there has been an enor-
mous improvement in the performance of SV systems, espe-
cially for mostly English and far-field data. This progress was
possible not only because of the new techniques like x-vectors,
but thanks to the availability of large training sets like the VOX-
CELEB databases [5, 6] which suits these new approaches very
well.

The main objective of this paper is not only to provide a
description of our submission to the VOiCES challenge but also
to provide an analysis of the evolution of the SV state-of-the-art
in last few years.

2. Experimental Setup
2.1. Training data, Augmentations
We used VOXCELEB 1 and 2 datasets spanning 7146 speak-
ers spread over 166 thousand sessions (distributed in 1.2 mil-
lion speech segments totalling 450 hours of speech. For train-
ing both i-vector extractor and probabilistic linear discriminant
analysis (PLDA), we concatenated all segments which belong to
a single session. For training the x-vector DNN, we used orig-
inal speech segments together with their augmentations. The
augmentation process was based on the Kaldi recipe1 and it re-
sulted in additional 5 million segments belonging to following
categories:

• Reverberated using RIRs2

• Augmented with Musan3 noise
• Augmented with Musan music
• Augmented with babel noise obtained from Musan US-

GOV speech part and Voxceleb 2 test part 4

2.1.1. Retransmitted NIST SRE10 close talk data

In order to adapt our systems towards the far-field microphone
data, we made use of our dataset of retransmitted audio [7]
in the open condition track. Speaker verification part of this
database has been benchmarked in [8]. A subset 5 of NIST
2010 Speaker Recognition evaluations (SRE) dataset was re-
played by Adam audio A7X studio monitor in numerous rooms
and acoustic conditions. In each room, multiple speaker posi-
tions were considered – sitting speaker, standing speaker and
non-standard position (pointed to the ceiling, lying on the floor
etc.). In addition to naturally occurring noise such as AC, vents,
or common street noise coming through windows, noise source
(radio receiver) was present in some sessions.

The corrupted audio was always simultaneously recorded
by 31 microphones placed within the rooms. Synchronicity was
governed by proprietary recording hardware.

The original dataset consists of 932 utterances with 30sec
durations 6. There are 459 recordings from 150 female speakers
and 473 recordings from 150 male speakers. The whole set was
retransmitted in 5 rooms. Changes of the loudspeaker positions
in some of the rooms resulted in 9 recording sessions.

1https://github.com/kaldi-asr/kaldi/tree/
master/egs/sre16/v2

2http://www.openslr.org/resources/28/rirs_
noises.zip

3http://www.openslr.org/17/
4We could not use the whole MUSAN for babble noise, because it

uses LibriSpeech and this was against the challenge rules.
5We used mainly telephone recordings recorded over close talk mi-

crophones
6The original files have duration of 5 or 3 minutes, but we take only

30 sec chunks to limit overall retransmission time.
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2.2. Development and Evaluation data
2.2.1. SITW Challenge
SITW database (for more detailed description see [4]) is a
large collection of real data exhibiting speech from individu-
als recorded in a wide array of challenging acoustic and envi-
ronmental conditions. SITW include multi-speaker audio from
both professionally edited interviews e.g. red carpet interviews,
question and answer session in an auditorium etc., as well
as more casual conversational multi-speaker audio in which
backchannel, laughter, and overlapping is observed. Each in-
dividual also has raw, unedited camcorder or cellphone footage
in which they speak, potentially with other speakers. All au-
dio files do not contain any artificially added noise, reverbera-
tion or other artifacts. The audio of SITW was extracted from
open-source media. Evaluation data consists of 180 speakers
(2883 audio files). We report only results on core-core con-
dition where audio files contain a continuous speech segment
from a single speaker. The amount of enrollment speech is be-
tween 6-240 seconds.

2.2.2. VOiCES Challenge
The VOiCES from a distance challenge[3] focus on benchmark-
ing and further improving state-of-the-art technologies in the
area of speaker recognition and automatic speech recognition
(ASR) for far-field speech. The data from the challenge is
based on the recently released corpus Voices Obscured in Com-
plex Environmental Settings (VOiCES)[9], where noisy speech
was recorded in real reverberant rooms with multiple micro-
phones. Noise sources include babble, music, or television. The
database uses LibriSpeech [10] as source data for retransmis-
sion. Two sets were released for benchmarking the systems:

• Development data with 196 speakers, 15904 files (256
enrollment, 15648 test) providing 20k target and 3.98M
non-target trials.

• Evaluation data with 100 speakers, 11392 files (328 en-
rollment, 11069 test) providing 36k target and 3.57M
non-target trials.

2.3. Input features
We use different features for several systems with following set-
tings:

• Kaldi MFCC - 16kHz, frequency limits 20-7600Hz,
25ms frame length, 40 filter banks, 30 coefficients + en-
ergy

• HTK MFCC - 16kHz, frequency limits 0-8kHz, 25ms
frame length, 30 filter banks, 24 coefficients + en-
ergy [11]

• Kaldi PLP - 16kHz, frequency limits 20-7600Hz, 25ms
frame length, 40 filter banks, 30 coefficients

• Kaldi FBank - 16kHz, frequency limits 20-7600Hz,
25ms frame length, 40 filter banks

• SBN - 8kHz, 80 dimensional stack bottleneck features
(SBN) trained on Fisher English, more details in [12].

Kaldi MFCCs, PLPs and FBanks are subjected to short time
mean normalization over 3sec window. For the HTK MFCC, we
apply also short time variance normalization.

2.4. Voice Activity Detection
We used two VAD approaches:

VAD-Energy is an energy-based VAD from Kaldi SRE16
recipe.

VAD-NN The NN which produces per-frame posterior
probabilities for speech and non-speech classes that are later

post-processed to create continuous speech segments was
trained on the 8kHz Fisher English [13].

3. i-vector Systems
The system is based on gender independent i-vectors [2, 14].
HTK MFCCs with deltas and double deltas together with SBN
feature vectors were extracted from recordings (SBNs were ex-
tracted from audio downsampled to 8kHz). Final feature vec-
tor is a concatenation of both as they proved to perform very
well in NIST SRE [15]. This system uses VAD-NN. Univer-
sal background model (UBM) contained 2048 Gaussian compo-
nents and the i-vector subspace dimensionality was set to 600.
UBM, i-vector extractor and PLDA were trained only on clean
data.

For the purpose of PLDA training we preprocessed all train-
ing, enrollment and test data by the dereverberation system
based on single-channel weighted prediction error (WPE) [16]
to suppress effects of room acoustic conditions.

4. x-vector Systems
All x-vectors used VAD-Energy from Kaldi SRE16 recipe7.
The systems were trained with Kaldi toolkit [18] using SRE16
recipe with modifications described below:

• Using different feature sets (MFCC, PLP, FBANK)
• Training networks with 9 epochs (instead of 3). We did

not see any considerable difference with 12 epochs.
• Using modified example generation - we used 200

frames in all training segments instead of randomizing it
between 200-400 frames. We also have changed genera-
tion of the training examples so that it is not random and
uses almost all available speech from all training speak-
ers.

• The x-vector DNN was trained on 1.2 million speech
segments from 7146 speakers plus additional 5 million
segments obtained with data augmentation. We gener-
ated around 700 Kaldi archives such that each of them
contains exactly 15 training examples from each speaker
(i.e. around 107K examples in each archive).

• The architecture of the network for x-vector extraction
is shown in Table 1. There are 2 topologies - ”standard”
and ”BIG”.

5. Backend
5.1. Heavy-tailed PLDA
Only our final i-vector system for open condition used HT-
PLDA backend [19]. It was trained on concatenated audio
files from VOXCELEB 1 and 2.Length normalization, center-
ing, LDA, reducing dimensionality of vectors to 300, followed
by another length normalization were applied to all i-vectors.
All i-vectors were centered using the mean computed on train-
ing data. We fixed the size of the speaker subspace to 200. De-
grees of freedom parameter was set to infinity at the training
time and to 2 at scoring time. Finally, we performed adaptive
score normalization as described in Section 5.4. We did not use
any augmented data for HT-PLDA training on i-vectors.

5.2. Gaussian PLDA
For all x-vector based systems as well as for most i-vector based
systems we trained Gaussian PLDA backend. As in the case of

7We did not find a significant impact on performance when using
different VAD within the x-vector paradigm and it seems that simple
VAD from Kaldi performs very well for x-vectors in various channel
conditions.
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Table 1: x-vector topology proposed in [17]. K in the first layer indicates different feature dimensionalities, T is the number of training
segment frames and N in the last row is the number of speakers.

Layer Standard DNN BIG DNN
Layer context (Input) × output Layer context (Input) × output

frame1 [t− 2, t− 1, t, t+ 1, t+ 2] (5 × K) × 512 [t− 2, t− 1, t, t+ 1, t+ 2] (5 × K) × 1024
frame2 [t] 512 × 512 [t] 1024 × 1024
frame3 [t− 2, t, t+ 2] (3 × 512) × 512 [t− 4, t− 2, t, t+ 2, t+ 4] (5 × 1024) × 1024
frame4 [t] 512 × 512 [t] 1024 × 1024
frame5 [t− 3, t, t+ 3] (3 × 512) × 512 [t− 3, t, t+ 3] (3 × 1024) × 1024
frame6 [t] 512 × 512 [t] 1024 × 1024
frame7 [t− 4, t, t+ 4] (3 × 512) × 512 [t− 4, t, t+ 4] (3 × 1024) × 1024
frame8 [t] 512 × 512 [t] 1024 × 1024
frame9 [t] 512 × 1500 [t] 1024 × 2000

stats pooling [0, T ] 1500 × 3000 [0, T ] 2000 × 4000
segment1 [0, T ] 3000 × 512 [0, T ] 4000 × 512
segment2 [0, T ] 512 × 512 [0, T ] 512 × 512
softmax [0, T ] 512 × N [0, T ] 512 × N

HT-PLDA, we used concatenated data from VoxCeleb 1 and 2
for training. In this case, we train the backend only on x-vectors
extracted from the original utterances augmented with reverber-
ation and noise. X-vectors extracted from the non-augmented
files were not used for backend training. Centering, LDA di-
mensonality reduction to 250 dimensions followed by length
normalization was applied to x-vectors. All data were centered
using the training data mean. Speaker and channel subspace
size was set to 250 (i.e full rank). Same as in the case of HT-
PLDA, we applied adaptive score normalization described in
Section 5.4.

5.3. Adaptation (ADAPT)
For open condition, we used 280k files of BUT retransmitted
data (see Section 2.1.1) to perform domain adaptation by model
interpolation. That is, we train smaller G-PLDA model on re-
transmitted data, size of both speaker and channel subspaces
was fixed to 150. The final adapted model is derived from the
two G-PLDA models so that the modeled within- and across-
speaker covariance matrices are a weighted combination of the
covariance matrices from the constituent models. Similarly, the
model means are also interpolated. Interpolation weights are set
to 0.6 for the original model and 0.4 for the adaptation one. The
systems which use this adaptation are denoted ADAPT in the
Table 2.

5.4. Score normalization
We used adaptive symmetric score normalization (adapt S-
norm) which computes an average of normalized scores from
Z-norm and T-norm [14, 20]. In adaptive version [20, 21, 22],
only part of the cohort is selected to compute mean and vari-
ance for normalization. Usually X top scoring or most similar
files are selected, and we set X to be 400 for all experiments.
The cohort is created from PLDA training data and consists of
approximately 15k files (two files per speaker).

5.5. Calibration and Fusion
Each system provided log-likelihood ratio scores that could be
subjected to score normalization. These scores were first pre-
calibrated and then passed into the fusion. The output of the
fusion was then again re-calibrated. Calibration and fusion was
trained on the labeled VOiCES development data [3, 9] by the
means of logistic regression optimizing the cross-entropy be-
tween the hypothesized and true labels. The parameters opti-
mized during the fusion were single scalar offset and the scalar
combination of system weights.

6. Results and Analysis
In this section we provide not only an analysis of our final sub-
mission, but we also look at various system designs and archi-
tectures that represent the evolution in SV state-of-the-art since
2016 (at least for wideband distant microphone data). You can
view our analysis as a story which has 3 acts - telephone vs.
youtube/microphone data, i-vector vs. x-vector architecture and
8kHz vs 16kHz bandwidth. All the results are in the Table 2.
First part of the table (line 1 to 6) shows i-vector based systems
trained on narrowband data. We start with a ”conventional”
system trained on telephone data from NIST SRE evaluations
which has 20.4% EER on the VOiCES evaluation set. Systems
2 to 5 in the Table show effect of using different training data
for i-vector extractor and PLDA. We are distinguishing between
telephone NIST data and VOXCELEB data which are closer to
the target domains of VOiCES and SITW challenges. The best
results are obtained when both i-vector extractor and PLDA, are
trained only on VOXCELEB data (system 5). In system 6, we
can observe an effect of using MFCCs concatenated with SBNs
which is still our favorite approach to consider when using i-
vectors. We see an improvement on the SITW and VOiCES
dev, but almost no improvement on VOiCES eval.

Second part of the Table 2 shows 16kHz MFCC (rows 7-9)
and PLP systems (rows 10-12) which performs about the same.
Comparing systems 5 and 7 or 6 and 8 we can see a very nice
improvement when switching from 8kHz to 16kHz. We run
WPE as preprocessig of the PLDA training data, enrollment and
test data for systems 9 (MFCC) and 12 (PLP) to deal with the
reverberated data in the challenge. By comparing systems 8 and
9 for MFCC or 11 and 12 for PLP we see that there is a small
but consistent improvement on all conditions from using WPE.

Third part of the Table 2 brings x-vectors into the game.
At first we can see a dramatic 40% relative improvement when
comparing i-vector (system 5) to 8kHz x-vector (system 13).
Switching from 8kHz x-vector (13) to 16kHz x-vector (14)
gives us another almost 30% relative improvement.

Comparing systems 14 and 15 shows the impact of chang-
ing the x-vector DNN topology and its size which is shown in
the right part of the Table 1. Bigger DNN provides 5% relative
improvement over the standard size in system 14. Rows 16 and
17 are the same x-vector architecture as 14, except the different
input features - FBANK and PLP, respectively. System based on
FBANK features has a slight edge over the PLPs and MFCCs.

Next block of the Table 2 (systems 18-20) shows how adap-
tive score normalization (s-norm) helps. There is a consistent
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Table 2: Analysis of the systems on SITW and VOiCES challenges.

# System Name/Configuration SITW core-core VOiCES dev VOiCES evl
MinDCF EER MinDCF EER MinDCF EER

1 8kHz MFCC ivec&PLDA(NIST) 0.705 11.2 0.910 14.5 0.975 20.4
2 8kHz MFCC ivec(NIST), PLDA(NIST+VOXCELEB) 0.571 7.33 0.895 12.4 0.957 16.8
3 8kHz MFCC ivec(NIST)&PLDA(VOXCELEB) 0.543 6.32 0.898 11.7 0.944 15.6
4 8kHz MFCC ivec&PLDA(NIST+VOXCELEB) 0.560 7.21 0.901 11.7 0.952 16.7
5 8kHz MFCC ivec&PLDA(VOXCELEB) 0.524 5.87 0.870 10.7 0.928 15.2
6 8kHz MFCC+SBN ivec&PLDA(VOXCELEB) 0.481 4.99 0.836 9.60 0.917 15.2

7 16kHz MFCC ivec&PLDA(VOXCELEB) 0.371 4.40 0.587 6.18 0.787 11.5
8 16kHz MFCC+SBN ivec&PLDA(VOXCELEB) 0.334 3.62 0.516 5.65 0.744 12.0
9 16kHz WPE MFCC+SBN ivec&PLDA (VOXCELEB) 0.330 3.36 0.475 5.03 0.703 11.2

10 16kHz PLP ivec&PLDA(VOXCELEB) 0.360 3.96 0.583 6.81 0.782 12.0
11 16kHz PLP+SBN ivec&PLDA(VOXCELEB) 0.336 3.50 0.532 5.60 0.761 11.9
12 16kHz WPE PLP+SBN ivec&PLDA (VOXCELEB) 0.325 3.38 0.492 5.00 0.699 11.2

13 8kHz MFCC xvec&PLDA (VOXCELEB) 0.298 2.73 0.494 4.68 0.749 9.87
14 16kHz MFCC xvec&PLDA (VOXCELEB) 0.213 1.90 0.260 2.04 0.481 6.04

15 16kHz MFCC xvecBIG&PLDA (VOXCELEB) 0.194 1.71 0.219 1.76 0.435 5.72
16 16kHz FBANK xvec&PLDA (VOXCELEB) 0.203 1.70 0.191 1.62 0.417 5.65
17 16kHz PLP xvec&PLDA (VOXCELEB) 0.200 1.85 0.206 1.81 0.438 5.79

18 16kHz MFCC xvecBIG&PLDA (VOXCELEB) + snorm 0.177 1.77 0.163 1.29 0.399 5.31
19 16kHz FBANK xvec&PLDA (VOXCELEB) + snorm 0.188 1.80 0.141 1.20 0.376 5.24
20 16kHz PLP xvec&PLDA (VOXCELEB) + snorm 0.191 1.92 0.163 1.44 0.380 5.36

21 16kHz FBANK xvec&PLDA (VOXCELEB) + ADAPT + snorm 0.202 1.99 0.146 1.13 0.365 4.90
22 16kHz PLP xvec&PLDA (VOXCELEB) + ADAPT + snorm 0.195 2.11 0.157 1.31 0.365 4.99

23 VOiCES2019 Fusion Fixed = 18+19+20 - submission 0.174 1.65 0.122 1.04 0.338 4.86
24 VOiCES2019 Fusion Fixed - no snorm 0.191 1.50 0.171 1.44 0.390 5.27
25 VOiCES2019 Fusion Open = 12+18+21+22 - submission 0.174 1.73 0.120 1.00 0.322 4.69

26 SITW2016 8kHz MFCC+SBN ivec&PLDA(NIST) [23] 0.560 7.72 0.817 11.0 0.918 17.2
27 SITW2016 16kHz MFCC ivec&PLDA(NIST) [23] 0.713 9.34 0.767 9.21 0.892 16.2
28 SITW2016 16kHz PLP ivec&PLDA(NIST) [23] 0.688 9.22 0.795 10.0 0.892 16.3
29 SITW2016 - fusion 26+27+28 - submission BUT [23] 0.503 5.85 0.602 6.98 0.782 12.6

improvement over the systems without s-norm (15-17). Fusion
of these three systems (18-20) form our primary submission
(system 23) to the fixed condition. We have also run a poste-
valuation fusion with the same systems without s-norm (15-17)
which is show in row 24. There is a clear benefit of using s-
norm for VOiCES challenge.

Fusion for the open condition is the row 25 and there is
a negligible improvement over the fixed condition fusion in the
row 23, despite having small gains with adaptation in individual
systems (compare systems 19 and 21 for FBANK and 20 to 22
for PLP).

Last part of the Table 2 is about the system we developed
for the SITW 2016 challenge. We took the same three systems
and their fusion that we had back in 2016 and evaluated them on
VOiCES dataset to see where we moved during the last 3 years.
There are two main reasons why our current results are much
better. First, from the technological point of view, it is the intro-
duction of the x-vector model and the second reason is the avail-
ability of the VOXCELEB dataset that is large both in terms of
amount of speakers and audio. It is also important to note that
VOXCELEB contains mostly English microphone data which
well matches the conditions of both VOiCES and SITW chal-
lenges and therefore brings substantial improvements.

7. Conclusion
BUT participated in both SITW and VOiCES challenges and
therefore we are in a position to compare what happened in the
3 years time period in the main stream of the speaker verifi-
cation state-of-the-art. Conveniently, the domains of the two

challenges are very similar, which makes our analysis on both
datasets relevant and interesting. Our submission to SITW back
in 2016 reached 5.85% EER, while now the best fusion reached
1.65% which is an enormous improvement especially consider-
ing the fact that we did not specifically targeted performance
on the SITW this time. When comparing the same systems
on the VOiCES challenge, the performance is 12.6% EER and
4.86% EER for the system from 2016 and for the current sys-
tem, respectively, which is more than 50% relative improve-
ment. The improvement comes from the new technology based
on DNN (x-vector) and also from releasing new data (VOX-
CELEB) which are close to the target domain.
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