
Available online at www.sciencedirect.com

Computer Speech & Language 59 (2020) 22�35

www.elsevier.com/locate/csl
End-to-end DNN based text-independent speaker recognition for

long and short utterances

Johan Rohdin*, Anna Silnova, Mireia Diez, Old�rich Plchot, Pavel Mat�ejka, Luk�a�s Burget,
Ond�rej Glembek

Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Bo�zet�echova 2, Brno 61266, Czech Republic

Received 16 November 2018; received in revised form 2 April 2019; accepted 2 June 2019

Available online 8 June 2019
Abstract

Recently several end-to-end speaker verification systems based on deep neural networks (DNNs) have been proposed. These

systems have been proven to be competitive for text-dependent tasks as well as for text-independent tasks with short utterances.

However, for text-independent tasks with longer utterances, end-to-end systems are still outperformed by standard i-vector +

PLDA systems. In this work, we present an end-to-end speaker verification system that is initialized to mimic an i-vector + PLDA

baseline. The system is then further trained in an end-to-end manner but regularized so that it does not deviate too far from the ini-

tial system. In this way we mitigate overfitting which normally limits the performance of end-to-end systems. The proposed sys-

tem outperforms the i-vector + PLDA baseline on both long and short duration utterances.

� 2019 Elsevier Ltd. All rights reserved.
Keywords: Speaker verification; DNN; End-to-end; Text-independent; i-vector; PLDA

1. Introduction

In recent years, there have been many attempts to take advantage of Deep Neural Networks (DNNs) in

speaker verification. This is motivated by large performance improvements brought by DNNs to many

other pattern recognition tasks such as speech recognition (Dahl et al., 2012) and face recognition (Schroff

et al., 2015).

The initial attempts of using DNNs in speaker recognition aimed at replacing or improving one of the compo-

nents of an i-vector + PLDA system (feature extraction, calculation of sufficient statistics, i-vector extraction or

PLDA) with a neural network. For example, by using DNN bottleneck features instead of conventional MFCC

features (Lozano-Diez et al., 2016), DNN acoustic models instead of Gaussian mixture models for extraction

of sufficient statistics (Lei et al., 2014), DNNs for either complementing PLDA (Novoselov et al., 2015;

Bhattacharya et al., 2016) or replacing it (Ghahabi and Hernando, 2014).
* Corresponding author.

E-mail address: rohdin@fit.vutbr.cz (J. Rohdin).

https://doi.org/10.1016/j.csl.2019.06.002

0885-2308/ 2019 Elsevier Ltd. All rights reserved.

mailto:rohdin@fit.vutbr.cz
https://doi.org/10.1016/j.csl.2019.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2019.06.002&domain=pdf
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csl.2019.06.002&domain=pdf
https://doi.org/
https://doi.org/
http://www.elsevier.com/locate/csl


J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 23
More ambitiously, several DNN based systems that take the frame level features of an utterance as input and

directly produce an utterance level representation have been proposed over the last years (Variani et al., 2014; Hei-

gold et al., 2016; Zhang et al., 2016; Snyder et al., 2016; Bhattacharya et al., 2017; Snyder et al., 2017a). The utter-

ance level representation is usually referred to as an embedding. The embedding is obtained by means of a pooling

mechanism, for example taking the mean, over the framewise outputs of one or more layers in the DNN (Variani

et al., 2014), or by the use of a recurrent DNN (Heigold et al., 2016). In the initial work (Variani et al., 2014), pooling

(mean) was applied only in testing phase. In training the objective was frame level classification of speaker identity.

In order to do speaker verification, the embeddings (referred to as d-vectors) were extracted and subjected to cosine

scoring.

Ideally the DNNs should however be trained directly for the speaker verification task, i.e., binary classification of

two utterances as a target or a non-target trial (Heigold et al., 2016). Moreover, all parameters of the system should

ideally be trained jointly. Such systems are known as end-to-end systems and have been proven competitive for text-

dependent tasks (Heigold et al., 2016; Zhang et al., 2016) as well as text-independent tasks with short test utterances

and an abundance of training data (Snyder et al., 2016). On text-independent tasks with longer utterances, direct

end-to-end optimization of speaker verification systems has unfortunately proven to be difficult (Snyder et al.,

2016). One reason for this could be overfitting on the training data. A second reason could be that end-to-end systems

have typically been trained on short segments even when long segments are used in testing. This reduces the memory

requirements in training and reduces the risk of overfitting but introduces a mismatch between the training and test

conditions.

Due to the difficulties in building end-to-end systems for text-independent speaker verification on longer utteran-

ces, much of the recent research on DNN based speaker verification have focused on approaches similar to the d-vec-

tor approach. That is, using DNNs only for extracting embeddings and then use these embedding in a standard

backend such as PLDA (Bhattacharya et al., 2017; Snyder et al., 2017a). In particular, the Kaldi (Povey et al.,

2011b) recipe for producing embeddings (referred to as x-vectors) have shown excellent performance in many stan-

dard benchmarks (Snyder et al., 2017a; 2018). There are two important differences between the x-vector and d-vec-

tor recipe. First, the x-vector DNN is trained on short (2�4s) segments whereas the d-vector recipe, as mentioned

above, is trained on frames. Second, the x-vector recipe uses, in addition to the mean, also the standard deviation for

producing the utterance level representation.

In our recent work (Rohdin et al., 2018), we showed that it is possible benefit from end-to-end training if we

constrain the system to not deviate too much from a standard i-vector + PLDA system. To this end, we developed

an end-to-end speaker verification system that is initialized to mimic an i-vector + PLDA baseline. The system

consists of a DNN module for extraction of sufficient statistics (f2s), an DNN module for extraction of i-vectors

(s2i) and finally, a discriminative PLDA (DPLDA) model (Burget et al., 2011; Cumani et al., 2013) for producing

scores. These three modules are first developed individually so that they mimic the corresponding part of the i-

vector + PLDA baseline. After the modules have been trained individually they are combined and the system is

further trained in an end-to-end manner on both long and short utterances. During the end-to-end training, we reg-

ularize the model parameters towards the initial parameters so that they do not deviate too far from them. In this

way the system is prevented from becoming too different from the original i-vector + PLDA baseline which

reduces the risk of overfitting.

This paper is an extension of our previous work (Rohdin et al., 2018). Here, we provide a more thorough motiva-

tion for why end-to-end training (with binary cross-entropy) is an appealing way to build speaker verification sys-

tems, despite the difficulties in building end-to-end systems for text-independent speaker verification, and despite

the the excellent performance of the x-vector recipe. Further, we will provide detailed analysis of the design and per-

formance of the individual blocks of our proposed end-to-end architecture aiming to aid future research on end-to-

end speaker verification.

The remainder of the paper is organized as follows. In Section 2, we discuss the background and motivation for

end-to-end training. We will argue that end-to-end training (using binary cross-entropy) is the most reasonable way

to train a speaker verification system and moreover the system should ideally be trained on segments of the same

durations as expected in the test data. Then, in Section 3, we present the proposed end-to-end architecture. In Sec-

tion 4, we present experimental results. In Section 5, we analyze the different parts of the proposed system more in

detail. Finally, in Section 6, we concluded the paper. The main contribution in this paper compared to our previous

work (Rohdin et al., 2018) is the analysis and discussion in Sections 2 and 5.



24 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
2. Motivation for end-to-end training

In this section we aim to motivate the use of end-to-end training with binary cross-entropy as loss function. The

term end-to-end training is, as far as we know, not precisely defined but it usually refers to the following

1. All the parameters of the system should be trained jointly.
“

1 B

enr
2.
 The task in training and evaluation is the same.
3.
 The training objective should be the same as, or at least very similar to, the evaluation metric.
It is easy to motivate why joint training of all the model parameters should be beneficial. Consider for example an

embedding extractor and a PLDA backend. A PLDA backend assumes certain properties of the distribution of the

embeddings (Gaussianity, independence of speaker and channel effects etc.). If the embedding extractor and backend

are trained individually somehow, the embedding extractor has no way to know that it should try to produce embed-

dings that fulfill the assumptions of the PLDA model even when it might have been easy for it to do so.

It is also fairly easy to motivate why the task in training1 and testing should be the same. For example, in the case

of speaker verification, if the durations of the training utterances are shorter than the durations of the test utterances,

the covariance of the training and testing embeddings will be different, leading to suboptimal verification scores.

Why the training objective ideally should be the same as the evaluation metric can be explained in two steps.

First, in training we minimize the average cost of the training trials according to some cost function, c. Under reason-

able circumstances given by statistical learning theory (Vapnik, 1998), this procedure will lead to an expected cost of

the (unseen) test trials, according to the same cost function c, that becomes lower the larger the training set is. In

other words, the training will eventually find the parameters, u that optimize c on test data. Second, the optimal

parameters u may depend on the choice of evaluation metric (cost function). For example, in speaker verification the

most common evaluation metric is the Detection Cost Function (DCF). This evaluation metric only cares about

whether the score from the speaker verification system is on the correct side of a threshold which depends on the

parameters of the specific DCF. If we optimize the system to produce scores that are optimal for some specific

threshold, they will not necessarily be optimal for another threshold.

Therefore, in general the only way that we can be sure to obtain the model parameters that optimize our desired

cost function on the test set, is to use the same cost function in training. Of course, this is not a sufficient condition

for finding the optimal model parameters. For example in addition, the training and test data should follow the same

distribution, the training algorithm should not get stuck in a local minimum and the amount of training data needs to

be large enough. In fact, it should be noted that for smaller amount of training data, it is possible that other training

objectives could give better values of the parameters. For example, it has been shown that (if possible) training by

generative maximum likelihood results in better model performance than cross-entropy for small amounts of training

data (Ng and Jordan, 2002). As far as we know, no one have presented any arguments that other popular training

objectives in speaker verification such as triplet loss (Schroff et al., 2015) would be better than cross-entropy for

small amounts of training data though. In speaker verification, the cost function of interest is usually the detection

cost function (DCF) at some specific operating point (combination of cost of false alarm, cost of false rejection and

probability of a target trial). Cross-entropy is however an average of all possible operating points (Br€ummer and

du Preez, 2006) and may therefore still be suitable as training objective when a DCF is the cost function of interest.

3. Proposed end-to-end DNN architecture

In this section we describe the proposed end-to-end architecture. The system is depicted in Fig. 1. We devote one

subsection to the features to statistics module, one subsection for the statistics to i-vectors module, one subsection to

the DPLDA module, and finally one subsection for describing the combination of the three modules. In Section 5,

we analyse these components more in detail. Note that as in most previous work on end-to-end speaker verification,

e.g., Heigold et al. (2016) and Snyder et al. (2016), we do not include feature extraction in the end-to-end pipeline.

This is mainly because the computational load of training on the frame-level is high in an end-to-end system. The
y “training” we mean building the non-speaker specific parts of the system (UBM, i-vector extractor, PLDA, DNNs etc.), as opposed to

ollment” by which we mean building speaker specific models for the speakers we want to recognize.



Fig. 1. Block diagram of the End-to-End system. Part A corresponds to the UBM that converts features to GMM responsibilities. By adding the

next two blocks we obtain first order statistics (f2s). Part B (s2i) simulates the i-vector extraction followed by LDA and length normalization.

Parameters in solid line blocks are meant to be trained, while outputs of the dashed blocks are directly computed.

J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 25



26 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
problem of overfitting is most likely smaller at the frame level since the number of frames compared to trainable

parameters is high so apart from computational issues including feature extraction in the end-to-end pipelines should

be doable in principle.

3.1. Features to sufficient statistics

The first module of the end-to-end system translates a sequence of feature vectors into a vector of zeroth and first

order statistics. We will denote this module as f2s. This module consists, of a network that predicts a vector of

GMM responsibilities (posteriors) for each frame of the input utterance (Block A in Fig. 1), followed by a layer pool-

ing the frames into sufficient statistics. The network that predicts responsibilities consists of four hidden layers with

sigmoid activation functions and a softmax output layer. All hidden layers have 1500 neurons while the output layer

has 2048 elements which corresponds to the number of components in our baseline GMM-UBM. We train this net-

work with stochastic gradient descent (SGD) to optimize the categorical cross-entropy with the GMM-UBM posteri-

ors as targets.

As input to the network, the acoustic features described in Section 4.2 are preprocessed as follows. For

each frame, a window of 31 frames around the current frame (i.e., +/� 15 frames) is considered. In order to

reduce the input dimension to the network as well as the amount of redundant information due to correlation

between nearby frames, the temporal trajectory of each feature coefficient within the context window is

weighted by a Hamming window and projected into first 6 DCT bases (including C0). This results in a

6� 60 ¼ 360-dimensional input to the network for each frame. This preprocessing step has previously proven to

be effective for acoustic modeling (Karafi�at et al., 2014). It should be noted that expanding the features should in

principle not be necessary in order to predict the GMM-UBM posteriors since these are calculated from original

features. However, by using the expanded features, we hope that we can gain further improvements in the end-to-

end training.

Once the network predicting responsibilities is trained, we add one more layer that outputs a vector of first order

sufficient statistics for the whole utterance. The input to this layer is a matrix of frame-by-frame responsibilities

coming from the previous softmax layer and a matrix of original acoustic features without any preprocessing. This

layer is not trained but designed in such way that it exactly reproduces the standard calculation of sufficient statistics

used in i-vector extraction. The reason for not using the expanded features for the first order statistics is that it would

lead to a supervector with very large dimension which would be too computationally demanding to use as input to

the next module.
3.2. Sufficient statistics to i-vectors

The second module of the end-to-end system is trained to mimic the i-vector extraction from the sufficient statis-

tics (Block B in Fig. 1). We will denote this module as s2i. The input sufficient statistics are first normalized with

the UBM mean and variance and then converted into MAP adapted supervectors (Reynolds et al., 2000),

Fi ¼
eFi

r þ Ni

ð1Þ

where eFi is the normalized first order statistics for Gaussian i in the UBM, Ni is the corresponding zeroth order

statistics calculated by the f2s module, and r is a relevance factor which is set to 16 in this work. To over-

come the computational problems that would arise when using 122,880 dimensional supervectors as input to

the subsequent DNN, the supervectors were reduced by PCA (estimated on many utterances from the training

data) into a 4000 dimensional space. The DNN consists of two 600 dimensional hidden layers, with hyper-

bolic tangent (tanh) activation functions. The last layer of the DNN is designed to produce length normalized

250 dimensional i-vectors. As training objective, we use the average cosine distance between DNN outputs

and LDA reduced and length-normalized reference i-vectors. The DNN is trained with SGD and L1 regulari-

zation. Note that we do not update the UBM means and variances since they are just used for feature normali-

zation. Nor do we update the PCA matrix because its many parameters would make this very computationally

demanding as well as implicating a high risk of overfitting.



J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 27
3.3. i-vectors to scores (DPLDA)

The final component of the end-to-end system should, given two i-vectors fi and fj, produce a log-likelihood ratio

(LLR) score for the same speaker and different speaker hypotheses. For this, we use a discriminative PLDA

(DPLDA) (Burget et al., 2011; Cumani et al., 2013) model. The DPLDA model is based on the fact that, given the

two i-vectors, the LLR score for the (generative) PLDA model (Ioffe, 2006) is given by

sij ¼ fT
i Lfj þ fT

j Lfi þ fT
i Gfi þ fT

j Gfj þ ðfi þ fjÞTcþ k; ð2Þ
where the parameters L, G , c and k can be calculated from the parameters of the PLDA model (see Burget et al.,

2011 for details). The idea of DPLDA is to train L, G , c and k directly for the speaker verification task, i.e., given

two i-vectors, tell whether they are from the same speaker or not. This is achieved by forming trials (usually all pos-

sible) from the training data and optimizing a loss function that encourages sij to be high for same speaker trials and

low for different speaker trials. Typically, cross-entropy or the Support Vector Machine (SVM) objective is used. In

this work we use cross-entropy, which since sij is an LLR, takes the form

xent ¼
X

i;j:i 6¼j;tij¼1

Ptar

N1

log 1þ exp � sij þ log
Ptar

1�Ptar

� �� �� �

þ
X

i;j:tij¼�1

1�Ptar

N�1
log 1þ exp sij þ log

Ptar

1�Ptar

� �� �
ð3Þ

where tij equals 1 for same speaker trials and�1 for different speaker trials, N1 and N�1 is the number of same speaker and

different speaker trials, respectively, and Ptar is the prior probability of a same speaker trial in our desired application.

Let the parameters L, G, c and k be collected in a vector u. Let, eu be the parameter vector obtained from a genera-

tively trained PLDA model. In our experiments, we initialize u with eu and, during training, regularize it by adding

RðuÞ ¼ r k u�eu k 2 ð4Þ
(except for the parameter k) to the training objective.

Normally, DPLDA is trained iteratively using full batches, i.e., each update of the model parameters is calculated

based on all training data. Whenever the DPLDA model is trained individually, we train it in this way. However, for

an end-to-end system this would require too much memory and computational time. As is common for neural net-

works, we therefore calculate each update of the model parameters based on a minibatch, i.e., a randomly selected

subset of the training data. Contrary to the individual training of f2s and s2i, we use the ADAM optimizer (Kingma

and Ba, 2014) since it may be more robust to different learning rate requirements of the different modules compared

to standard SGD. We half the learning rate whenever we see no improvement in CPrm
min on the development set after

an epoch (defined to be 200 batches).

Due to the fact that the training trials are formed by combining training utterances, it is not obvious how to opti-

mally select the data for minibatches. In our experiments, we use the following procedure:

1. For each speaker, randomly group his/her utterances into pairs.2
p

2 I

airs
2.
 For each minibatch, randomly select (without replacement) N pairs and use all trials that can be formed from the

corresponding utterances. If the last pair is selected, repeat Step 1.
3.4. End-to-end system

After the individual components described in the previous subsections have been trained individually, they are

combined to an end-to-end system. During end-to-end training we then regularize model parameter not deviate too

far from those of the individually trained components, similarly to how we regularize the DPLDA model not to devi-

ate too far from the generatively trained PLDA model in Eq. (4).
f a speaker has only one utterance, this utterance will be used as a “pair”. If a speaker has another uneven number of utterances, one of the

will be given three utterances.



28 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
Unfortunately, combining the modules as they are leads to large memory requirements of the end-to-end system.

This happens mainly for two reasons. First, contrary to the individual training of the modules, the PCA projection

now needs to be part of the network in order for the f2s and s2i modules to be connected. The memory on the GPUs

used in the experiments is up to 8GB3, so the PCA matrix with 122880£ 4000 parameters uses about 25% of the

available memory. Second, the f2s now needs to process all frames from many different utterances in one batch to

obtain the sufficient number of trials for the DPLDA module. If the three modules are combined as they are, we can

use only approximately 2 utterances per minibatch which is not sufficient for effective training (see Section 5.3 for

more discussion about this).

To mitigate the problem of the large PCA matrix we will, before doing the complete end-to-end training, train

only the s2i DNN and the DPLDA model jointly. As for the individual training of s2i, we can use pre-calculated

input that includes the PCA projection since this input is fixed as long as f2s is not updated. To mitigate the large

memory requirements of the f2s module, we modify the training procedure to keep less intermediate results in mem-

ory. Specifically, in usual DNN training, the input is first forward propagated through the network to get the output

of each layer. These outputs are stored in memory and used during backpropagation to obtain the derivative of the

loss with respect to each model parameter. For the part of f2s that calculates responsibilities (Block A in Fig. 1), this

results in Nð1500þ 1500þ 1500þ 1500þ 2048Þ variables to store in memory, where N is the total number of

frames. This is much more than in subsequent modules (after pooling the frames into sufficient statistics, F and N)
because in this part of the network the layer outputs are per frame whereas in subsequent modules the layer outputs

correspond to the whole utterance. Thus, in order to reduce the memory usage, we calculate the sufficient statistics

for one utterance at the time and discard all the layer outputs from Block A once the sufficient statistics for the utter-

ance have been calculated. When the sufficient statistics for all utterances have been obtained, we continue the for-

ward propagation in the normal way, keeping all outputs in memory. During backpropagation, we recalculate the

outputs when needed. This is achieved in a similar way as in scan_checkpoints4. This trick allows us to use mini-

batches of 75 pairs (N) instead of approximately 2.

4. Experiments

4.1. Datasets

We followed the design of the PRISM (Ferrer et al., 2012) dataset in the sense of splitting the data into training

and test sets. The PRISM set contains data from the following sources: NIST SRE 2004�2010 (also known as

MIXER collections), Fisher English and Switchboard. During training of the end-to-end system initialization, we

used the female portion of the NIST SRE’10 telephone condition (condition 5) to independently tune the perfor-

mance of the blocks A and B in Fig. 1.

We report results on three different datasets:

� The female part of the PRISM language condition5 that is based on original (long) telephone recordings from
u

3

4

5

tte
NIST SRE 2005�2010. It contains trials from various languages, including the cross-language trials.

�
 The short lang condition (also containing only female trials) is derived from the PRISM language condition by

taking multiple short cuts from each original recording. Durations of the speech in the cuts reflect the evaluation

plan for NIST SRE’16 � more precisely we based our cuts on the actual detected speech in the SRE’16 labeled

development data. We chose the cuts to follow the uniform distribution:

� Enrollment between 25 and 50 s of speech
� Test between 3 and 40 s of speech
Th

ht

Fo

ra
We split the resulting set into two equally large disjoint sets where speakers do not overlap. We used one part as

our dev set for tuning the performance of the DPLDA and the end-to-end system. The other part was used for
e brand of the GPU varies.

tp://www.deeplearning.net/software/theano/library/scan.html

r detailed description, please see section B, paragraph 4 of Ferrer et al. (2012). We gave priority to evaluate the performance for a variety of

nce durations and languages instead of for the two genders because we did not expect the conclusions to differ for different genders.

http://www.deeplearning.net/software/theano/library/scan.html


J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 29
evaluation only. It should be noted that, for simplicity, we test only on single-enrollment trials unlike in our

SRE’16 system description where we include multi-enrollment trials (Plchot et al., 2017).

� A
dditionally, we report the results on the single-enrollment trials of the NIST SRE’16 evaluation set (both males

and females).

4.2. Generative and discriminative baselines

As features we used 60-dimensional spectral features (20 MFCCs, including C0, augmented with their D andDD
features). The features were short-term mean and variance normalized over a 3 s sliding window.

Both PLDA and DPLDA are based on i-vectors (Dehak et al., 2011) extracted by means of UBM with 2048 diag-

onal covariance components. Both UBM and i-vector extractor with 600 dimensions are trained on the training set.

For training our generative (PLDA) and discriminative (DPLDA (Burget et al., 2011)) baseline systems, we used

only telephone data from the training set and we also included short cuts derived from portion of our training data

that come from non-English or non-native-English speakers. The duration of the speech in cuts follows the uniform

distribution between 10 and 60 s. The cuts comprise of 22,766 segments out of total 85,858. Finally, we augmented

the training data with labeled development data from NIST SRE’16.

PLDA: We used the standard PLDA recipe, when i-vectors are mean (mean is calculated using all training data)

and length normalized. Then, the Linear Discriminant Analysis (LDA) is applied prior to PLDA training, decreasing

dimensions of i-vectors from 600 to 250. We did not perform any additional domain adaptation or score normaliza-

tion. We also filtered the training data in such a way that each speaker has at least six utterances which reduces it to

the total of 62,994 training segments.

Discriminative PLDA: The DPLDA baseline model was trained on the full batch of i-vectors by means of the

Limited-memory Broyden�Fletcher�Goldfarb�Shanno (LBFGS) algorithm, optimizing the binary cross-entropy

on the training data. We used the dev set to tune the parameter r used for L2 regularization given by Eq. (4).

All i-vectors were mean (mean was calculated using all training data available) and length normalized. After the

mean normalization, we performed LDA, decreasing the dimensionality of vectors to 250. As an initialization of

DPLDA training, we used a corresponding PLDA model. During the DPLDA training, we set the prior probability

of target trials to reflect the SRE’16 evaluation operating point (exactly in the middle between the two operating

points of SRE’16 DCF (NIST, 2016)).

x-vector: It may also be worth comparing the end-to-end system to x-vectors (Snyder et al., 2017a). However, a

systematic comparison of the x-vector recipe and the end-to-end system is unfortunately complicated. The standard

x-vector recipe is implemented in the Kaldi toolkit (Povey et al., 2011a). Kaldi uses a special natural gradient-like

optimizer as well as several heuristics to find good model parameters (Povey et al., 2015). For a meaningful compar-

ison, we therefore need to exclude differences related to the optimization procedure. In Kaldi it is, as far as we

know, not easy to implement the memory tricks discussed in Section 3.4 so we cannot run our end-to-end system in

Kaldi. Therefore we implemented the x-vector recipe in Tensorflow. We followed the same data setup as in Novotn�y
et al. (2018) (Embedding III, PLDA N), which like the experiments in this paper, is based on the PRISM dataset.

4.3. Experimental results

We report results in equal error rate (EER) as well as in the average minimum detection cost function for two

operating points (CPrm
min ). The two operating points are the ones of interest in the NIST SRE’16 (NIST, 2016), namely

the probability of target trials being equal to 0.01 and 0.005. Table 1 shows the results for the two baselines, the end-

to-end system as well as systems where only some stages of the baseline have been replaced by a DNN. Row 1 and

Row 2 show the results for the PLDA and DPLDA baseline, respectively. The DPLDA performs better than genera-

tively trained PLDA on all sets. This is consistent with our previous findings on NIST SRE’16 (Plchot et al., 2017).

Row 3 shows the results when the UBM is replaced with the f2s DNN. The i-vector extractor and PLDA model

are trained as in the baseline but on the output of the f2s DNN. It is noticeable that the f2s DNN performs better than

the UBM which it is supposed to mimic. The reason for this seems to be that the f2s DNN is capable of learning a

more robust model that generalizes better to the unseen data than the UBM, mainly because it uses a larger context.

See Section 5.1 for details.



Table 1

Overall results, CPrm
min and EER. Modules marked with a ‘*’ are trained jointly. Other modules are trained

sequentially.

SRE16 Short lang PRISM lang

System name stats i-vector PLDA CPrm
min EER CPrm

min EER CPrm
min EER

0 x-vector � � � 0.999 16.996 0.611 8.353 0.356 3.379

1 Baseline UBM i-extractor Gen. 0.988 17.645 0.699 10.303 0.411 3.902

2 Baseline DPLDA UBM i-extractor Discr. 0.975 16.902 0.616 9.462 0.360 3.461

3 f2s DNN i-extractor Gen. 0.980 16.809 0.687 9.866 0.394 3.713

4 s2i UBM DNN Gen. 0.988 16.686 0.788 11.141 0.430 4.584

5 f2s-s2i DNN DNN Gen. 0.982 16.226 0.780 11.523 0.432 4.616

6 f2s-s2i-DPLDA DNN DNN Discr 0.953 15.091 0.597 9.328 0.300 3.426

7 s2i-DPLDA_joint DNN DNN* Discr.* 0.936 15.166 0.586 8.599 0.287 3.123

8 f2s-s2i-DPLDA_joint DNN* DNN* Discr.* 0.936 15.170 0.587 8.661 0.287 3.125

30 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
Row 4 shows the performance when i-vector extractor is replaced by the s2i DNN. The input is the original statis-

tics from the UBM and a PLDA model is trained on the output. We can see that, except for SRE’16, the performance

degrades to some extent compared to the baseline (Row 1). Row 5 shows the results when we train a s2i module on

the output from the f2s module instead of the statistics from the UBM. Again, we observe a small degradation com-

pared to using a standard i-vector extractor (Row 3). Interestingly, when we further change from generative trained

PLDA to DPLDA, the model performs better than both baselines. This suggests that the output from the s2i can well

discriminate between speakers but may not well fulfill the PLDA model assumptions so that generative training does

not work well.

After individual training of all blocks, we proceed with joint training of the s2i and DPLDA modules, using L2

regularization (tuned on the dev set) towards the parameters of the initial models. For this we use a batch size (N in

Section 3.4) of 5000 pairs. As can be seen in the Row 7 of Table 1, the joint training of the two modules improves

the performance on all data sets. We notice that in the joint training of the s2i and DPLDA modules, the regulariza-

tion have very little impact on the DPLDA model. This is because it is already optimized for the output of the s2i

module and at least initially, should not change at all.

Finally, the last row shows the performance when all modules are trained jointly. For this training, we can only

use N ¼ 75 as discussed in Section 3.3 but since this is quite slow, we use N ¼ 10. As can be seen, the performance

is almost unchanged from the previous row. There are three possible reasons for this. First, the minibatches might be

too small for stable training. Second, with the f2s being well initialized and the subsequent modules already being

trained to fit its output, the model may be stuck in a local minimum. Third, the f2s is in its current design quite con-

strained. It only estimates the responsibilities but cannot modify the features that are used to calculate the statistics.

These issues will be studied in future work.

In summary, the final system achieved relative improvements with respect to the DPLDA baseline of 3.9%, 4.7%

and 20.4% in CPrm
min on SRE16, short lang and PRISM lang, respectively. In EER, the relative improvements were

10.2%, 8.5%, and 9.7%.

Comparing with the x-vector system, we see that the end-to-end system is better than the x-vector in CPrm
min . In

terms of EER, the differences between the systems are smaller. The x-vector system is better on short lang and the

end-to-end system is better on the other two sets. It is reasonable that we see a larger advantage for the end-to-end

system in CPrm
min since this is more close to our training objective than what EER is. In relation to these results, it

should be mentioned that for the standard Kaldi SRE16 x-vector recipe (Snyder et al., 2017b), the EER is 14.192%

and CPrm
min is 0.991 for SRE166. This recipe uses data in training that is included in the PRSIM set so we cannot evalu-

ate it on short lang or PRISM lang. It should also be noted that recently, large improvements (mainly by means of

more data augmentation) of the x-vector recipe have been presented (Snyder et al., 2018). However, results for the

SRE16 single session trials without backend adaptation were not provided. Our end-to-end system is computation-

ally more demanding than the x-vector recipe and would most likely have to be modified before it can take advantage

of substantially larger amounts of training data.
6 Note that this recipe normally uses the SRE16 unlabeled for centering the test data and for adapting the PLDA backend and we do not do that

here. Also note that in this study we are considering only the single session trials.



J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 31
5. Analysis and discussion

In this section, we analyze and describe the design considerations of the different blocks of the model more in

detail. When designing the components, we either choose an architecture that we, based on experience, were confi-

dent would be good enough for our purpose (e.g. DPLDA for the “i-vector to scores” module) or did some initial

experiments with individual component to find an architecture that seemed to be good enough for our purpose (e.g.,

the f2s and the s2i) module. We did not tune the architectures based on end-to-end training.

5.1. Architectures for f2s network

We did several experiments in order to choose optimal architecture for the f2s module. As discussed in Sec-

tion 3.1, we trained only the part of the module that predicts a vector of responsibilities for each frame. The last layer

of the whole f2s network is kept fixed for all of our experiments. Table 2 presents the results for some of architec-

tures we tried for the trainable part of the f2s unit. In this subnetwork, we varied the number of hidden layers as well

as experimented with adding contextual information to the input of the network. The results indicate that all of the

tested architectures can successfully mimic the original UBM statistic extraction and that increasing the context win-

dow can even provide slight performance improvement compared to the baseline system. Using the 60 dimensional

features as input to a 2 layer f2s DNN gave similar performance as the UBM (CPrm
min equal to 0.268 and 0.270, respec-

tively, on SRE’10, condition 5) whereas the large context features gave substantial improvement (CPrm
min equal to

0.254). For the final end-to-end system we decided to use the most complex architecture out of all tried; it corre-

sponds to the second line of the Table 2. Even though the f2s module does not seem to take any advantage from

more complex architecture, we hoped that the end-to-end network could utilize the contextual information and com-

plex dependencies in the first module to improve overall performance.

5.2. Architectures for s2i network

We carried out several experiments to find the optimal architecture for the s2i module. All experiments presented

in this section use two 600 dimensional hidden layers, as this was found to provide optimal performance. The output

layer has either 250 or 600 dimensions depending on whether the reference i-vectors have been reduced by LDA or

not.

We first analyzed the effect of reducing the MAP adapted supervector to different dimensionalities. Dimensional-

ities from 4000 to 8000 provided comparable performance, whereas reducing the supervector dimension below 4000

harmed the performance, specially in terms of CPrm
min . Therefore, we reduced the supervector dimensionality to 4000

in the remaining experiments.

Next, we explored different preprocessing techniques of the reference i-vectors in combination with different out-

put layers of the module. As preprocessing techniques, we explored length-normalization and within-class-covari-

ance normalization (WCCN). As output layers, we compared whether a length-normalization (LN) output layer was

preferable to a linear output layer (LO). When performing these experiments, a linear output layer had to be used first

for around 5 iterations and then switched to the LN layer in order to allow convergence. The results are presented in
Table 2

Architectures for f2s. Results are on

NIST SRE’10, cond. 5, females, CPrm
min

and EER. The numbers in the archi-

tecture refers to input dimension,

#layers £ layer size and output

dimension.

Architecture EER CPrm
min

Baseline (no DNN) 2.37 0.270

DNN (360_4£ 1500_2048) 2.17 0.253

DNN (360_2£ 1500_2048) 2.20 0.254

DNN (60_2£ 1500_2048) 2.27 0.268



Table 3

Combinations of different reference i-vector

preprocessing and output layers for s2i mod-

ule. Results on NIST SRE’10, cond. 5,

females, CPrm
min and EER. LO ! LN indicates

that the model was initially trained with LO,

then with LN.

ivec prep. Output Layer EER CPrm
min

Baseline (no DNN) � 2.40 0.294

LN LO 2.86 0.318

LN LO ! LN 2.82 0.302

WCCN + LN LO 2.76 0.299

WCCN + LN LO ! LN 2.59 0.292

32 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
Table 3. We can see that using the LN output layer enhances performance. Further, we see that preprocessing the ref-

erence i-vectors with WCCN improves the performance. In the remaining experiments we use WCNN+LN for i-vec-

tor preprocessing and a LN output layer.

In the final set of experiments we analyze the system performance when using different training objectives: (1)

minimizing the mean square error between reference i-vectors and the ones produced by the DNN. (2) Minimizing

cosine distance between both sets of i-vectors. (3) Maximizing the PLDA scores obtained by scoring reference and

produced vectors with a PLDA system trained on the reference i-vectors. We also experimented with reference i-vec-

tors that were reduced by LDA (to 250 dimensions) before being length-normalized as well as with different regular-

ization methods. The results for these experiments are shown in Table 4. It is clear that using LDA for preprocessing

reference i-vectors is helpful. The differences between the different objective functions were marginal. Between reg-

ularization methods, L1 provided better overall gains. In the end-to-end system we decided to use the cosine distance

objective with LDA and L1 regularization. For simplicity, we did not use the PLDA objective.

5.3. Minibatch design and sizes

As mentioned in Section 3.3, it is not obvious how to optimally select the data for minibatches. Contrary to typical

DNN training scenarios, the training data in the speaker verification scenario are statistically dependent due to the

fact that the training trials are formed by combining training utterances (Rohdin et al., 2016). Statistically dependent

trials provide less information about the optimal model parameters than independent ones, i.e., they are less useful

for training. In this aspect, minibatches should therefore ideally consist of independent trials. However, two more

aspects need to be considered. First, selecting a set of trials to form a minibatch is not computationally efficient,

instead we should select a set of utterances and use all possible trials. For example, instead of using (A�B) and

(C�D) in a minibatch, where (X�Y) indicates a trial from the utterances X and Y, we should use all the trials

(A�B), (A�C), (A�D), (B�C), (B�D), (C�D). This is because all the utterances A, B, C, and D need to be propa-

gated through the f2s and s2i module anyway, and because the DPLDA model can very efficiently utilize all possible

trials from a set of i-vectors (Cumani et al., 2013).
Table 4

Training objectives for s2imodule. Results on

NIST SRE’10, cond. 5, females, CPrm
min and

EER.

Obj. Function LDA REG EER CPrm
min

Mean square error No � 2.59 0.292

Mean square error Yes � 2.57 0.283

Cosine distance No � 2.56 0.290

Cosine distance Yes � 2.55 0.284

Cosine distance Yes L1 2.43 0.281

Cosine distance Yes L2 2.50 0.284

PLDA Yes L1 2.36 0.284



Table 5

Effect of minibatch size. Results in CPrm
min on development set

and training lost of the final model on the training set, L.

Training method Batch size L2: 1.0 L2: 0.1

CPrm
min L CPrm

min L

LBFGS » 85k 0.554 0.203 0.566 0.128

ADAM 10 0.576 0.287 0.670 0.301

”. 20 0.558 0.282 0.558 0.258

”. 50 0.540 0.253 0.537 0.236

”. 100 0.546 0.244 0.549 0.206

”. 500 0.544 0.231 0.568 0.173

”. 1000 0.546 0.225 0.562 0.160

”. 2500 0.552 0.217 0.568 0.146

”. 5000 0.557 0.213 0.565 0.136

J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 33
The second aspect to consider is that target and non-target trials should be reasonably balanced in the minibatch.

The method we used in the experiments (described in Section 3.3) results in minibatches that have few target trials

per minibatch. An approach that results in more target trials per minibatch is to let the minibatches consist of all

utterances from a few number of speaker. Although this results in more target trials, these trials are statistically

dependent since the same speaker and utterances are used in several of the trials. Our initial experiments suggest that

this approach is worse than the one we used in this work.

In Table 5, we present an analysis on how the training is affected by the minibatch size. We consider two metrics.

First, CPrm
min on the dev set. Second, the training loss on the whole training set for the final model. The results are given

for the case of L2 regularization 1.0 (the optimal) and 0.1. We can see that the minibatch size needs to be several thou-

sand in order for the resulting L to be comparable to the L obtained by training with full batches (LBFGS). This holds

especially for the weaker regularization. Fortunately, CPrm
min (on the dev set) converges faster than L which suggest that

even though we do not manage to optimize the model as well as with LBFGS, it is sufficient from the performance

point of view. However, this may not be the case for more complicated models or data sets. In these experiments we

checked L after each epoch (defined to be 20 batches, i.e., less than in the end-to-end experiments) and halved the learn-

ing rate if it did not improve. The reason we used L as halving criteria instead of CPrm
min was that these experiments were

intended to show how well minibatch training can optimize the model compared to using full batches.

6. Conclusions

We have developed an end-to-end speaker verification system that outperforms an i-vector+PLDA baseline on

three different datasets having utterances from many different languages and of both long and short durations. The

system was constrained to behave similar to an i-vector + PLDA system. In this way we mitigated overfitting which

normally limits the performance of end-to-end systems. This was a conservative approach and it is possible that less

constrained systems can perform better. However, our main motivation for this work was to show that it is possible

to take advantage from end-to-end training in text-independent speaker recognition on both long and short utteran-

ces. In this paper we present a more detailed motivation and analysis of the system compared to our previous publi-

cations. We hope that this work can serve as motivation for future research on end-to-end training of text-

independent speaker recognition systems. For the system presented in this study, we found that joint training of all

its three modules is difficult due to large memory requirements. However, joint training of two modules was effec-

tive. In future work we therefore want to develop more effective strategies for joint training of all three modules or

apply end-to-end training on lighter architectures. It should also be noted that the proposed system is designed single

enrollment sessions, and extending it to deal with multiple enrollment sessions is an important future work.

Acknowledgments

The work was supported by European Union’s Horizon 2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement No. 748097, the Marie Sklodowska-Curie cofinanced by the South Moravian



34 J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35
Region under grant agreement No. 665860, Google Faculty Research Award program, Czech National Science

Foundation (GACR) projects “NEUREM3” No. 19-26934X and No. GJ17-23870Y, Technology Agency of the

Czech Republic project No. TJ01000208 “NOSICI”, by a contract with NTT Corporation and by Czech Ministry of

Education, Youth and Sports from the National Programme of Sustainability (NPU II) project “IT4 Innovations

excellence in science - LQ1602”.
References

Bhattacharya, G., Alam, J., Kenny, P., 2017. Deep speaker embeddings for short-duration speaker verification. Interspeech 2017, pp. 1517–1521.

Bhattacharya, G., Alam, J., Kenny, P., Gupta, V., 2016. Modelling speaker and channel variability using deep neural networks for robust speaker verifica-

tion. In: Proceedings of the 2016 IEEE Spoken Language Technology Workshop, SLT 2016, San Diego, CA, USA, December 13�16, pp. 192–198.

Br€ummer, N., du Preez, J., 2006. Application-independent evaluation of speaker detection. Comput. Speech Lang. 20 (2�3), 230–275.

Burget, L., Plchot, O., Cumani, S., Glembek, O., Mat�ejka, P., Br€ummer, N., 2011. Discriminatively trained probabilistic linear discriminant analy-

sis for speaker verification. In: Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 4832–4835. doi: 10.1109/ICASSP.2011.5947437.

Cumani, S., Br€ummer, N., Burget, L., Laface, P., Plchot, O., Vasilakis, V., 2013. Pairwise discriminative speaker verification in the i�vector

space. ieeetr_aslp 21 (6), 1217–1227. doi: 10.1109/ICASSP.2011.5947442.

Dahl, G.E., Yu, D., Deng, L., Acero, A., 2012. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE

Trans. Audio Speech Lang. Process. 20 (1), 30–42. doi: 10.1109/TASL.2011.2134090.

Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P., 2011. Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech

Lang. Process. PP (99). doi: 10.1109/TASL.2010.2064307.

Ferrer, L., Bratt, H., Burget, L., Cernocky, H., Glembek, O., Graciarena, M., Lawson, A., Lei, Y., Matejka, P., Plchot, O., et al., 2012. Promoting

robustness for speaker modeling in the community: the prism evaluation set. https://code.google.com/p/prism-set/.

Ghahabi, O., Hernando, J., 2014. Deep belief networks for i-vector based speaker recognition. In: Proceedings of the 2014 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1700–1704. doi: 10.1109/ICASSP.2014.6853888.

Heigold, G., Moreno, I., Bengio, S., Shazeer, N., 2016. End-to-end text-dependent speaker verification. In: Proceedings of the 2016 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5115–5119. doi: 10.1109/ICASSP.2016.7472652.

Ioffe, S., 2006. Probabilistic linear discriminant analysis. ECCV (4), pp. 531–542.

Karafi�at, M., Gr�ezl, F., Vesel�y, K., Hannemann, M., Szo��ke, I., �Cernock�y, J., 2014. But 2014 babel system: analysis of adaptation in nn based sys-

tems. In: Proceedings of Interspeech 2014. International Speech Communication Association, pp. 3002–3006.

Kingma, D.P., Ba, J., 2015. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations, (ICLR) 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings http://arxiv.org/abs/1412.6980,https://dblp.org/rec/bib/journals/corr/

KingmaB14 .

Lei, Y., Scheffer, N., Ferrer, L., McLaren, M., 2014. A novel scheme for speaker recognition using a phonetically-aware deep neural network. In:

Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1695–1699. doi: 10.1109/

ICASSP.2014.6853887.

Lozano-Diez, A., Silnova, A., Mat�ejka, P., Glembek, O., Plchot, O., Pe�s�an, J., Burget, L., Gonzalez-Rodriguez, J., 2016. Analysis and optimization of

bottleneck features for speaker recognition. In: Proceedings of Odyssey 2016. International Speech Communication Association, pp. 352–357.

Ng, A., Jordan, M., 2002. On Discriminative vs. Generative classifiers: a comparison of logistic regression and naive Bayes. In: Dietterich, T.,

Becker, S., Ghahramani, Z. (Eds.), Advances in Neural Information Processing Systems (NIPS). MIT Press, pp. 841–848.

NIST, 2016. The 2016 NIST speaker recognition evaluation plan (sre16). https://www.nist.gov/file/325336.

Novoselov, S., Pekhovsky, T., Kudashev, O., Mendelev, V.S., Prudnikov, A., 2015. Non-linear PLDA for i-vector speaker verification. In: Pro-

ceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 214–218.

Novotn�y, O., Plchot, O., Matejka, P., Mosner, L., Glembek, O., 2018. On the use of x-vectors for robust speaker recognition.

Plchot, O., Mat�ejka, P., Silnova, A., Novotn�y, O., Diez, M., Rohdin, J., Glembek, O., Br€ummer, N., Swart, A., Jorr�ın-Prieto, J., Garc�ıa, P.,
Buera, L., Kenny, P., Alam, J., Bhattacharya, G., 2017. Analysis and description of ABC submission to NIST SRE 2016. Interspeech 2017,

pp. 1348–1351. Stockholm, Sweden.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J.,

Stemmer, G., Vesely, K., 2011. The kaldi speech recognition toolkit. In: Proceedings of the IEEE 2011 Workshop on Automatic Speech Rec-

ognition and Understanding. IEEE Signal Processing Society.IEEE Catalog No.: CFP11SRW-USB.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., et al., 2011. The

kaldi speech recognition toolkit. In: Proceedings of the IEEE 2011 workshop on automatic speech recognition and understanding. IEEE Signal

Processing Society.

Povey, D., Zhang, X., Khudanpur, S., 2015. Parallel training of deep neural networks with natural gradient and parameter averaging. In: Proceed-

ings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7�9, 2015, Workshop Track.

Reynolds, D.A., Quatieri, T.F., Dunn, R.B., 2000. Speaker verification using adapted gaussian mixture models. Dig. Signal Process. 10, 19–41.

Rohdin, J., Biswas, S., Shinoda, K., 2016. Robust discriminative training against data insufficiency in PLDA-based speaker verification. Comput.

Speech Lang. 35, 32–57.

Rohdin, J., Silnova, A., Diez, M., Plchot, O., Matejka, P., Burget, L., 2018. End-to-end DNN based speaker recognition inspired by i-vector and

PLDA. In: Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4874–4878.

http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0001
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0002
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0002
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0002
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0003
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0003
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0003
http://dx.doi.org/10.1109/ICASSP.2011.5947437
http://dx.doi.org/10.1109/ICASSP.2011.5947442
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1109/TASL.2010.2064307
https://code.google.com/p/prism-set/
http://dx.doi.org/10.1109/ICASSP.2014.6853888
http://dx.doi.org/10.1109/ICASSP.2016.7472652
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0011
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0012
https://dblp.org/rec/bib/journals/corr/KingmaB14
https://dblp.org/rec/bib/journals/corr/KingmaB14
http://dx.doi.org/10.1109/ICASSP.2014.6853887
http://dx.doi.org/10.1109/ICASSP.2014.6853887
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0015
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0015
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0015
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0015
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0016
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0016
https://www.nist.gov/file/325336
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0018
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0018
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0019
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0019
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0020
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0021
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0021
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0021
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0022
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0022
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0022
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0023
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0023
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0023
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0024
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0025
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0025
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0026
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0026


J. Rohdin et al. / Computer Speech & Language 59 (2020) 22�35 35
Schroff, F., Kalenichenko, D., Philbin, J., 2015. Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Snyder, D., Garcia-Romero, D., Povey, D., Khudanpur, S., 2017. Deep neural network embeddings for text-independent speaker verification. Inter-

speech 2017.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S., 2018. X-vectors: Robust dnn embeddings for speaker recognition.

Snyder, D., Ghahremani, P., Povey, D., Garcia-Romero, D., Carmiel, Y., Khudanpur, S., 2016. Deep neural network-based speaker embeddings for

end-to-end speaker verification. In: Proceedings of the 2016 IEEE Spoken Language Technology Workshop (SLT), pp. 165–170. doi: 10.1109/

SLT.2016.7846260.

Snyder, D., et al., 2017. Kaldi sre16 x-vector recipe. https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2. Accesed: 2017-11.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley-Interscience.

Variani, E., Lei, X., McDermott, E., Moreno, I.L., Gonzalez-Dominguez, J., 2014. Deep neural networks for small footprint text-dependent

speaker verification. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

4052–4056. doi: 10.1109/ICASSP.2014.6854363.

Zhang, S.X., Chen, Z., Zhao, Y., Li, J., Gong, Y., 2016. End-to-end attention based text-dependent speaker verification. In: Proceedings of the

2016 IEEE Spoken Language Technology Workshop (SLT), pp. 171–178. doi: 10.1109/SLT.2016.7846261.

http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0027
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0027
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0028
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0028
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0029
http://dx.doi.org/10.1109/SLT.2016.7846260
http://dx.doi.org/10.1109/SLT.2016.7846260
https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
http://refhub.elsevier.com/S0885-2308(18)30363-2/sbref0032
http://dx.doi.org/10.1109/ICASSP.2014.6854363
http://dx.doi.org/10.1109/SLT.2016.7846261

	End-to-end DNN based text-independent speaker recognition for long and short utterances
	1. Introduction
	2. Motivation for end-to-end training
	3. Proposed end-to-end DNN architecture
	3.1. Features to sufficient statistics
	3.2. Sufficient statistics to i-vectors
	3.3. i-vectors to scores (DPLDA)
	3.4. End-to-end system

	4. Experiments
	4.1. Datasets
	4.2. Generative and discriminative baselines
	4.3. Experimental results

	5. Analysis and discussion
	5.1. Architectures for f2s network
	5.2. Architectures for s2i network
	5.3. Minibatch design and sizes

	6. Conclusions
	Acknowledgments
	References


