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Abstract

In this report, we describe the submission of Brno University
of Technology (BUT) team to the VoxCeleb Speaker Recogni-
tion Challenge (VoxSRC) 2019. We also provide a brief anal-
ysis of different systems on VoxCeleb-1 test sets. Submitted
systems for both Fixed and Open conditions are a fusion of
4 Convolutional Neural Network (CNN) topologies. The first
and second networks have ResNet34 topology and use two-
dimensional CNNs. The last two networks are one-dimensional
CNN and are based on the x-vector extraction topology. Some
of the networks are fine-tuned using additive margin angular
softmax. Kaldi FBanks and Kaldi PLPs were used as features.
The difference between Fixed and Open systems lies in the used
training data and fusion strategy. The best systems for Fixed
and Open conditions achieved 1.42 % and 1.26 % ERR on the
challenge evaluation set respectively.

VoxCeleb Speaker Recognition Challenge, Deep Neural
Networks, ResNet, x-vector, PLDA, Cosine distance

1. Introduction

As mentioned in the abstract, this document describes the Brno
University of Technology (BUT) team submissions for the Vox-
Celeb Speaker Recognition Challenge (VoxSRC) 2019. This
was the first challenge using VoxCeleb dataset. The chal-
lenge has two separate tracks: Fixed and Open. In the Fixed
condition, participants can only use the development part of
VoxCeleb-2 as training data while in the Open condition, they
can use any data that they want.

Based on the success of Deep Neural Network (DNN)
based embedding in speaker recognition, all of our systems are
DNN based. One-dimensional Convolutional Neural Network
(CNN) in a well-known x-vector extraction topology [1] was
our first system for this task. We did several changes in the x-
vector topology such as using more neurons and adding residual
connections for enhancing its performance.

The second approach to DNN based embedding extrac-
tion uses well known ResNet34 topology where several 2-
dimensional CNNs are used in a very deep structure. Using
residual connections in the ResNet helps the robustness of its
training; this network has achieved very good performance in
various tasks.

The rest of this document is organized as follows: in Sec-
tion 2, we first describe the setup for the challenge. In Sec-
tion 3, the systems based on x-vector and ResNet34 DNN will
be explained. Backends and fusion strategies are outlined in
Section 4 and finally the results and analysis are presented in
Section 5.

2. Experimental Setup
2.1. Training data, Augmentations

For all fixed systems, we used development part of
VOXCELEB-2 dataset [2] for training. This set has 5994 speak-
ers spread over 145 thousand sessions (distributed in approx.
1.2 million speech segments). For training DNN based em-
beddings, we used original speech segments together with their
augmentations. The augmentation process was based on the
Kaldi recipe1 and it resulted in additional 5 million segments
belonging to the following categories:

• Reverberated using RIRs2

• Augmented with Musan3 noise
• Augmented with Musan music
• Augmented with Musan babel

For Open condition, we tried to add more data to the
VoxCeleb-2 development set. We first added the development
part of VoxCeleb-1 with around 1152 speakers. The PLP-
based systems were trained using this setup (i.e. VoxCeleb
1+2). For other open systems, we also used 2338 speakers
from LibriSpeech dataset [3] and 1735 speakers from Deep-
Mine dataset [4]. For all training data, we first discarded ut-
terances with less than 400 frames (measured after applying the
VAD). After that, all speakers with less than 8 utterances (in-
cluding augmentation data) were removed.

2.2. Development datasets

We use the development data provided by the organizers4. In-
stead of using all the 6 trial lists, we only report our results on
the cleaned versions: cleaned VoxCeleb1, cleaned Voxceleb1-E
(extended) and cleaned Voxceleb1-H (hard). VoxCeleb1 test set
is denoted as Voxceleb1-O (O for “original”).

2.3. Input features

We use different features for several systems with the following
settings:

• 30-dimensional Kaldi PLP - 16kHz, frequency limits
20-7600Hz, 25ms frame length, 40 filter-bank channels,
30 coefficients

• 40-dimensional Kaldi FBank - 16kHz, frequency limits
20-7600Hz, 25ms frame length, 40 filter-bank channels

Kaldi PLPs and FBanks are subjected to short time mean
normalization with a sliding window of 3 seconds.

1https://github.com/kaldi-asr/kaldi/tree/
master/egs/sre16/v2

2http://www.openslr.org/resources/28/rirs_
noises.zip

3http://www.openslr.org/17/
4http://www.robots.ox.ac.uk/˜vgg/data/

voxceleb/vox2.html
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Table 1: x-vector topology proposed in [5]. K in the first layer indicates different feature dimensionalities, T is the number of training
segment frames and N in the last row is the number of speakers.

Layer Standard DNN BIG DNN
Layer context (Input) × output Layer context (Input) × output

frame1 [t− 2, t− 1, t, t+ 1, t+ 2] (5 ×K) × 512 [t− 2, t− 1, t, t+ 1, t+ 2] (5 ×K) × 1024
frame2 [t] 512 × 512 [t] 1024 × 1024
frame3 [t− 2, t, t+ 2] (3 × 512) × 512 [t− 4, t− 2, t, t+ 2, t+ 4] (5 × 1024) × 1024
frame4 [t] 512 × 512 [t] 1024 × 1024
frame5 [t− 3, t, t+ 3] (3 × 512) × 512 [t− 3, t, t+ 3] (3 × 1024) × 1024
frame6 [t] 512 × 512 [t] 1024 × 1024
frame7 [t− 4, t, t+ 4] (3 × 512) × 512 [t− 4, t, t+ 4] (3 × 1024) × 1024
frame8 [t] 512 × 512 [t] 1024 × 1024
frame9 [t] 512 × 1500 [t] 1024 × 2000

stats pooling [0, T ] 1500 × 3000 [0, T ] 2000 × 4000
segment1 [0, T ] 3000 × 512 [0, T ] 4000 × 512
segment2 [0, T ] 512 × 512 [0, T ] 512 × 512
softmax [0, T ] 512 ×N [0, T ] 512 ×N

3. DNN based Systems
All Deep Neural Network (DNN) based embeddings used
Energy-based VAD from Kaldi SRE16 recipe5. For this chal-
lenge, we use two different embeddings:

3.1. x-vectors

The first one is the well-known TDNN based x-vector topology.
All its variants were trained with Kaldi toolkit [6] using SRE16
recipe with the following modifications:

• Using different feature sets (PLP, FBANK)
• Training networks with 6 epochs (instead of 3). We did

not see any considerable difference with more epochs.
• Using modified example generation - we used

200 frames in all training segments instead of random-
izing it between 200-400 frames. We have also changed
the training examples generation so that it is not random
and uses almost all available speech from all training
speakers.

• We used a bigger network [7] with more neurons in
TDNN layers. Table 1 shows a detailed description of
the network.

• The BIG-DNN in Table 1 was used for two PLP-based
systems (i.e. systems 4 and 7 in Table 3). For other
TDNN-based networks, we found that adding residual
connections to the frame-level part of the network im-
proves their performance. Therefore, other TDNN based
networks used residual connections.

3.2. ResNet34

The second DNN embedding is based on the well-known
ResNet34 topology [8]. This network uses 2-dimensional fea-
tures as input and processes them using 2-dimensional CNN
layers. Inspired by x-vector topology, both mean and standard
deviation are used as statistics. The detailed topology of the
used ResNet is shown in Table 2. We named the embedding ex-
tracted from ResNet as “r-vector”. All ResNet networks were
trained using SGD optimizer for 3 epochs using PyTorch. Simi-
larly as in our previouos work in TensorFlow [9], we found that
L2-Regularization is useful here too.

5We did not find a significant impact on performance when using
different VAD within the DNN embedding paradigm and it seems that
a simple VAD from Kaldi performs very well for DNN embedding in
various channel conditions.

Table 2: The proposed ResNet34 architecture. N in the last
row is the number of speakers. The first dimension of the input
shows number of filter-banks and the second dimension indi-
cates the number of frames.

Layer name Structure Output

Input – 40 × 200 × 1
Conv2D-1 3 × 3, Stride 1 40 × 200 × 32

ResNetBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 , Stride 1 40× 200× 32

ResNetBlock-2
[
3× 3, 64
3× 3, 64

]
× 4, Stride 2 20× 100× 64

ResNetBlock-3
[
3× 3, 128
3× 3, 128

]
× 6, Stride 2 10× 50× 128

ResNetBlock-4
[
3× 3, 256
3× 3, 256

]
× 3, Stride 2 5× 25× 256

StatsPooling – 10× 256
Flatten – 2560

Dense1 – 256
Dense2 (Softmax) – N

Total – –

3.3. Fine-tuning networks with additive angular margin
loss

Additive angular margin loss (denoted as ‘AAM loss’) was pro-
posed for face recognition [10] and introduced to speaker veri-
fication in [11]. Instead of training the AAM loss from scratch,
we directly fine-tune a well-trained NN supervised by normal
Softmax. To be more specific, all the layers after the embedding
layer are removed (for both the ResNet and TDNN structure),
then the remaining network is be fine-tuned using the AAM
loss. For more details about AAM loss, see [10] and [11], s
is set to 30 and m is set to 0.2 in all the experiments.

4. Backend
4.1. Gaussian PLDA

We used 500k randomly-selected utterances from VoxCeleb 2
for training the PLDA backend. We train it on embeddings ex-
tracted from the original utterances only, no augmented data
was used for training the backend. X-vectors were centered us-



ing the training data mean. Then, we applied LDA not reducing
the dimensionality of the data. Finally, we did length normal-
ization. Speaker and channel subspace size was set to 312.

4.2. Cosine distance

For ResNet embedding extractor (r-vectors) fine-tuned with ad-
ditive angular margin loss, we performed simple cosine dis-
tance scoring. There was no preprocessing of the 256 or 160-
dimensional embeddings except for centering. The centering
mean was computed on 500k original VoxCeleb 2 utterances
(the same data we used for training GPLDA).

4.3. Score normalization

For the cosine distance scoring, we used adaptive symmetric
score normalization (adapt S-norm) which computes an average
of normalized scores from Z-norm and T-norm [12, 13]. In its
adaptive version [13, 14, 15], only part of the cohort is selected
to compute mean and variance for normalization. Usually X top
scoring or most similar files are selected; we set X to 300 for
all experiments. We created the cohort by averaging x-vectors
for each speaker in PLDA training data. It consisted of 5994
speaker models.

4.4. Calibration and Fusion

4.4.1. Fixed condition

As we did not have any data to train the fusion on for fixed
condition, we performed the fusion by computing the weighted
average of the scores of four selected systems. The weights
were hand-picked based on the performance of the individual
systems. Also, the weights were used to compensate for the dif-
ference of the range of the scores for different backends. In par-
ticular, the highest weights of 0.4 were given to the two ResNet
embedding with the cosine distance scoring systems. The other
two systems had equal weights of 0.1.

4.4.2. Open condition

For the open condition, we trained the fusion on the Vox-
Celeb1 O trials. The scores of all systems were first pre-
calibrated and then passed into the fusion. The output of the
fusion was then again re-calibrated. Calibration and fusion was
trained by the means of logistic regression optimizing the cross-
entropy between the hypothesized and true labels. The param-
eters optimized during the fusion were single scalar offset and
the scalar combination of system weights.

5. Results and Analysis
The results of the systems that went into final fusion are dis-
played in Table 3. The first section of the table (lines 1-4) cor-
responds to the systems eligible for the fixed condition, they
have seen only VoxCeleb2 dataset during the training. As our
final submission for the fixed condition, we used the fusion of
these four systems. The results of the fusion are shown in line 8
of Table 3. The performance of that system on the evaluation
data was 1.42 % EER. It is interesting to note, that our previous
submission was a fusion of two systems, in particular systems
1 and 3, and the performance on the evaluation set was 1.49%
EER. So, there was a marginal improvement from including two
more components into the final fusion but the results did not im-
prove dramatically. Also, one can notice that we could not gain
much by training the fusion with logistic regression (system 9)

instead of computing a simple weighted average (system 8).
The second section of Table 3 shows the results of the indi-

vidual systems trained for the open condition. The systems were
trained using both VoxCeleb1 and 2 as well as LibriSpeech and
DeepMine databases for systems 5 and 6. One should remember
that when looking at the performance of these systems on Vox1-
E and Vox1-H conditions. Good results are explained by the
fact that embedding extraction networks saw the test data during
training. As the final submission, we used the fusion of these
three systems and also included one of the fixed (ResNet160)
systems. The result of the Vox1-O condition of the fusion can-
not be completely reliable since we trained the fusion param-
eters on it. The final performance of our fusion for the open
condition on the evaluation set was 1.26 % EER.

Another thing to note is that our submissions for the fixed
and open conditions were very similar. The main difference was
in additional training data used for the open condition systems,
which we believe is the reason for improved performance of the
open fusion compared to the fixed one.
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