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ABSTRACT

SpecAugment is a newly proposed data augmentation method
for speech recognition. By randomly masking bands in the
log Mel spectogram this method leads to impressive perfor-
mance improvements. In this paper, we investigate the usage
of SpecAugment for speaker verification tasks. Two differ-
ent models, namely 1-D convolutional TDNN and 2-D con-
volutional ResNet34, trained with either Softmax or AAM-
Softmax loss, are used to analyze SpecAugment’s effective-
ness. Experiments are carried out on the Voxceleb and NIST
SRE 2016 dataset. By applying SpecAugment to the original
clean data in an on-the-fly manner without complex off-line
data augmentation methods, we obtained 3.72% and 11.49%
EER for NIST SRE 2016 Cantonese and Tagalog, respec-
tively. For Voxceleb1 evaluation set, we obtained 1.47% EER.

Index Terms— speaker embedding, on-the-fly data aug-
mentation, speaker verification, specaugment

1. INTRODUCTION

In the last few years, the state-of-the-art embeddings for
speaker recognition have shifted from the so-called i-vectors[1]
produced by generative shallow models towards embeddings
produced by discriminatively trained deep neural networks
(DNN) [2, 3, 4, 5, 6, 7, 8, 9]. Such deep speaker embeddings
models do not make as strong assumptions about the data
distribution as i-vectors but require, on the other hand, much
more data in order to be trained accurately.

One way to deal with the large training data requirements
of DNNs is by data augmentation. Typically, data augmen-
tation means that corrupted versions of the training data are
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created (for example by adding noise) and used as additional
training data. By artificially increasing the amount and vari-
ability of the training data augmentation can reduce the risk of
overfitting as well as mitigate the effects of domain mismatch
between the training and evaluation data.

Data augmentation has proven to improve the training
of DNNs in a large variety of tasks, for example, image
recognition[10, 11] and speech recognition[12, 13]. For
speaker recognition, data augmentation was shown to be very
effective for training DNN based speaker embedding extrac-
tors in the Kaldi x-vector [8] recipe. In that work, noise,
reverberation, music and babble were used to augment the
original training data. This has become the most popular data
augmentation strategy for deep speaker embedding learning.

Despite its effectiveness, this approach has disadvantages.
First, it is unclear whether the choice of augmentations should
depend on the application. Should we, for example, include
babble noise in the training data if babble is not expected in
the application? Second, this data augmentation strategy is
troublesome (though not impossible) to do on-the-fly, i.e., to
do during the training instead of before it. On-the-fly data
augmentation greatly improves the flexibility of the training
as well as saves disk space. Therefore, it is desirable to find
simpler augmentation approaches that are not based on any
specific corruption categories and that easily can be applied
on-the-fly.

Recently, one approach for simple on-the-fly augmenta-
tion called spectral augmentation (SpecAugment) was pro-
posed for speech recognition, where it showed very promising
results[14]. In this paper, we apply this approach to speaker
recognition. We investigate its effect on different architec-
tures and loss functions for both 8K telephone data (NIST
SRE16) and 16K video data (Voxceleb).

2. SPECAUGMENT

SpecAugment is a simple data augmentation method for
speech recognition proposed by Google in [14]. The aug-
mentation is directly applied to the feature inputs of a neural
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network, which means it can be easily used as an on-the-fly
augmentation method. To increase the system’s robustness to
possible loss of frequency or small segments of speech, the
following deformations on the log mel features are adopted:

• Frequency masking: f consecutive frequency channels
[f0, f0 + f) will be masked (i.e., set to 0), where f is
first chosen from a uniform distribution from 0 to F ,
where F is a predefined hyper-parameter and f0 is ran-
domly chosen from [0, ν − f), ν is the number of fre-
quency channels (the feature dimension)

• Time masking: t consecutive frames [t0, t0 + t) will
be masked, where t is first chosen from a uniform dis-
tribution from 0 to T , where T is a predefined hyper-
parameter and t0 is randomly chosen from [0, τ − t), τ
is the length of the feature sequence (number of frames)

In [14], a third deformation method called “time warping”
was proposed. In our initial experiments, this method was not
effective and therefore will not be considered in this paper.
It should be noted that with F = 0, frequency masking is
equivalent to drop-out[15] of one unit in the input layer.

3. EXPERIMENTS

In this section, we investigate the effect of SpecAugment on
different models with different training criteria and compare
it with the standard Kaldi style augmentation. Experiments
are carried out on Voxceleb and NIST SRE 16.

3.1. Models

To better show the impact of SpecAugment on the deep
speaker embedding learning, two typical DNN architectures,
TDNN and ResNet34 are used in our experiments. These two
architectures are nowadays used by most of the researchers
for speaker embedding learning[8, 7] to achieve state-of-
the-art results. A second reason why we choose these two
architectures is that the TDNN uses 1-D convolution and the
ResNet34 uses 2-D convolution and it is interesting to ex-
amine the effect of the SpecAugment on these two different
models.
TDNN: For the TDNN system, we follow the standard x-
vector structure[8], which is shown in table 1. Five time delay
layers are used for frame-level feature learning, followed by
a statistics pooling layer, aggregating the frame-level features
to segment-level representations. The output from the layer
“segment1” is extracted as speaker embeddings.
ResNet34: For the ResNet34 system, we follow the stan-
dard 34-layer ResNet architecture[16]. This network uses
2-dimensional features as input and processes them using 2-
dimensional convolution. Inspired by x-vector topology, both
mean and standard deviation are used as statistics. The de-
tailed topology of the used ResNet is shown in Table 2, the
output of “Dense” layer is used as the speaker embedding.

Table 1. Architecture of TDNN based speaker embedding
extractor, T denotes the sequence length, N is the number of
speakers [8]

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 200 × 512
frame2 {t− 2, t, t+ 2} 1536 × 512
frame3 {t− 3, t, t+ 3} 1536 × 512
frame4 {t} 512 × 512
frame5 {t} 512 × 1500

stats pooling [0, T ] 1500 × 3000
segment1 {0} 3000 × 512
segment2 {0} 512 × 512
projection {0} 512 × N

Table 2. Architecture of ResNet34 based speaker embedding
extractor. T denotes the sequence length, N is the number of
speakers.

Layer name Structure Output

Input – 40 × T × 1
Conv2D-1 3 × 3, Stride 1 40 × T × 32

ResNetBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 , Stride 1 40× T × 32

ResNetBlock-2
[
3× 3, 64
3× 3, 64

]
× 4, Stride 2 20× T

2
× 64

ResNetBlock-3
[
3× 3, 128
3× 3, 128

]
× 6, Stride 2 10× T

4
× 128

ResNetBlock-4
[
3× 3, 256
3× 3, 256

]
× 3, Stride 2 5× T

8
× 256

StatsPooling – 10× 256
Flatten – 2560

Dense – 256
Projection – N

3.2. Loss Functions

To train a good speaker embedding extractor, proper train-
ing criterion should be selected. In this paper, Softmax and
Additive Angular Margin Softmax (AAM-Softmax) will be
investigated.

Softmax: As a commonly used classification loss for
training the speaker discriminative DNNs, Softmax loss can
be formulated as:

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑c
j=1 e

WT
j xi+bj

(1)

whereN is the batch size, c is the number of classes. xi ∈ Rd
denotes the i-th input of samples to the projection layer and
yi is the corresponding label index. W ∈ Rd×c and b ∈ Rc
are the weight matrix and bias in the projection layer.
AAM-Softmax: To explicitly enforce the similarity for intra-
class samples and the diversity for inter-class samples, several
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variants based on the Softmax loss function have been pro-
posed, including the Angular Softmax[17, 9], Additive Mar-
gin Softmax loss (AM-Softmax)[18] and Additive Angular
Softmax (AAM-Softmax) loss[19]. A thorough comparison
of different loss functions was carried out in our previous
paper[20]. Here, we chose the best-performing of them,
namely the AAM-Softmax, which is defined as

LAAM-Softmax = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

Z
(2)

where Z = es(cos(θyi,i+m)) +
∑c
j=1,j 6=i e

s(cos(θj,i)), θj,i is
the angle between the column vector Wj and xi, where both
Wj and xi are normalized. s is a scaling factor and m is a
hyperparameter controling the margin.

3.3. Data preparation

We follow the standard Kaldi recipe, which first removes all
the silent frames using an energy-based voice activity detec-
tor (VAD), and then cut the obtained utterances to chunks
with duration ranging from 2s to 4s. 40-dimensional Fbanks
are extracted as features. For the kaldi augmentation base-
line, besides the clean training utterances, we follow the kaldi
recipe and consider the following different 4 corruption cate-
gories: 1) Reverberated using RIRs, 2) Augmented with Mu-
san noise, 3) Augmented with Musan music, and 4) Aug-
mented with Musan babel. Then a subset of the augmented
data with similar size of the clean data is combined with the
original dataset, resulting in a final training set which size is
approximately doubled compared to the original data.

3.4. Experimental setups

Both the TDNN and ResNet models are trained using the
stochastic gradient descent (SGD) optimizer with momentum
set to 1e− 4. The learning rate is initially set to 0.1 and grad-
ually reduced to 5e − 5 along the training process. For the
AAM-Softmax used in the Voxceleb experiments, s is fixed
to 40, the margin hyper-parameter m is initially set to 0.1 and
gradually increased to 0.4 along the training process. The hy-
perparameters for the frequency masking, F , and for the time
masking, T , are set to 25 and 5, respectively for all the exper-
iments.

3.5. Experiments on NIST SRE

Following the standard settings in the literature, the training
data consists of the SWBD portion and SRE portion, while
the former includes Switchboard phases 2,3 and Switchboard
Cellular 1,2, and the latter contains the NIST SRE 2004-2010.
The x-vector extractors are trained on the SWBD and SRE
pooled data, while the PLDA is trained only on the SRE por-
tion. The standard SRE16 evaluation set is used to measure
the performance of the proposed system, which consists of

Tagalog and Cantonese subsets. The unlabeled SRE16 por-
tion is used for the unsupervised PLDA adaption.

3.5.1. Results and Analysis

From our empirical results on NIST SRE 16, the best systems
are always obtained using the Softmax loss, AAM-Softmax
led to much worse results. Thus we only report the Softmax
results for the SRE16 evaluation set.

Table 3. Results on SRE 2016 evaluation set, TM, FM and
TFM denote time masking, frequency masking and doing
both time and frequency masking, respectively. kaldi denotes
the augmentation method in the kaldi recipe as described in
Section 3.3.

System Configuration Cantonese Tagalog
Arch. Data Aug EER minDCF EER minDCF

T
D

N
N

no 5.81 0.469 15.34 0.830
kaldi 4.62 0.372 13.35 0.765

spec aug (TM) 5.84 0.448 14.9 0.817
spec aug (FM) 5.91 0.459 14.92 0.809

spec aug (TFM) 5.77 0.454 14.95 0.809

R
es

N
et

34
no 4.26 0.371 12.91 0.845

kaldi 4.24 0.370 12.18 0.742
spec aug (TM) 4.10 0.361 12.72 0.845
spec aug (FM) 4.06 0.356 12.28 0.819

spec aug (TFM) 3.97 0.352 12.02 0.806
2x epochs (TFM) 3.72 0.354 11.49 0.795

As shown in Table 3, systems based on ResNet34 outper-
form the TDNN systems by a large margin. For the TDNN
model, although some improvements can be observed with
SpecAugment compared to the baseline with no augmenta-
tion, there is still a performance gap between the systems us-
ing SpecAugment the Kaldi augmentation.

For the ResNet34 based systems, the results show that
Kaldi augmentation only slightly improves the system’s per-
formance. We can observe that the SpecAugment is more
suited to the ResNet34 architecture as here, we achieve fur-
ther improvements compared to the Kaldi augmentation. It
is now interesting to note that both systems based on kaldi
augmentation and SpecAugment are trained with the same
amount of epochs, but as the Kaldi style augmentation ap-
proximately doubles the size of the training data, it is not a
completely fair comparison. We have equalized the amount
of training examples for the system based on the on-the-fly
SpecAugment by doubling the number of training epochs.
By doing this, we have reached 3.72% and 11.49% EER
on Cantonese and Tagalog, respectively via simple online
data augmentation. Without PLDA adaptation, the results for
Kaldi augmentation is better than for SpecAugment( e.g., for
ResNet34, the average EER of Cantonese and Tagalog was
10.5% for Kaldi augmentation whereas for SpecAugment it
was 12.3%). Probably Kaldi augmentation deals better with
domain mismatch since it introduces larger variability to the
training data.
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Table 4. Results on Voxceleb Dataset, TM, FM and TFM denote time masking, frequency masking and doing both time and
frequency masking, respectively. kaldi denotes the augmentation method in the kaldi recipe as described in Section 3.3, systems
trained with AAM-Softmax use cosine scoring as the backend, the remaining ones use PLDA as the backend.

System Configuration voxceleb1 O voxceleb1 E voxceleb1 H
Arch. Loss function Data Aug EER minDCF EER minDCF EER minDCF

TDNN

Softmax

no 3.00 0.322 3.01 0.348 5.26 0.493
kaldi 2.54 0.301 2.83 0.314 4.88 0.462

spec aug (TM) 2.89 0.311 2.85 0.327 4.92 0.472
spec aug (FM) 2.68 0.311 2.85 0.331 4.97 0.469

spec aug (TFM) 2.59 0.288 2.77 0.314 4.83 0.450

AAM-Softmax

no 2.27 0.280 2.51 0.291 4.31 0.415
kaldi 2.07 0.258 2.35 0.274 4.11 0.400

spec aug (TM) 2.31 0.261 2.39 0.272 4.13 0.406
spec aug (FM) 2.07 0.266 2.35 0.272 4.07 0.408

spec aug (TFM) 1.96 0.238 2.31 0.265 4.02 0.396

ResNet34

Softmax

no 1.94 0.219 1.89 0.235 3.24 0.323
kaldi 1.74 0.216 1.78 0.209 3.07 0.306

spec aug (TM) 1.85 0.240 1.86 0.229 3.19 0.318
spec aug (FM) 1.62 0.215 1.82 0.218 3.14 0.310

spec aug (TFM) 1.68 0.236 1.800 0.217 3.08 0.309

AAM-Softmax

no 1.76 0.198 1.79 0.196 3.04 0.275
kaldi 1.54 0.156 1.55 0.174 2.73 0.259

spec aug (TM) 1.59 0.171 1.67 0.185 2.91 0.275
spec aug (FM) 1.47 0.188 1.64 0.187 2.84 0.257

spec aug (TFM) 1.52 0.201 1.58 0.183 2.68 0.274

3.6. Experiments on Voxceleb

Our systems (both NN and PLDA) are trained on the Vox-
celeb2 development set. This set contains 5994 speakers with
1092009 utterances. For the evaluation, we use the standard
Voxceleb1 dataset and report results on cleaned trial lists
which can be found online.1

3.6.1. Results and Analysis

For the experiments on the voxceleb dataset, besides differ-
ent model architectures, different loss functions introduced in
Section 3.2 are also considered. As shown in Table 4, and
as for the SRE16 evaluation set, ResNet34 consistently out-
performs the TDNN systems. On Voxceleb2, we can further
observe that training with AAM-Softmax consistently out-
performs the standard Softmax. We speculate that the rea-
son for such a good performance of the AAM-Softmax can
be a consistency between the training and evaluation data as
there is most likely no domain mismatch between the Vox-
celeb1 and Voxceleb2 datasets. We have not observed this
gain from AAM-Softmax during the experiments with NIST
SRE2016 and neither during NIST SRE2019, both of which
impose challenging domain mismatch between the available

1http://www.robots.ox.ac.uk/˜vgg/data/voxceleb/
vox2.html

training data and the actual evaluation set. Finally, when fo-
cusing on the effect of the SpecAugment, we can observe
that now there is not a performance gap between SpecAug-
ment and Kaldi augmentation for the TDNN system. With the
systems based on ResNet34, we also achieve similar perfor-
mance to the Kaldi style augmentation both for the SoftMax
and AAM-Softmax training criterions.

4. CONCLUSION

In this paper, we investigated the usage of the SpecAugment
method for speaker recognition. We provided the experimen-
tal analysis with two state-of-the-art NN architectures for
speaker embedding extraction: the TDNN with 1-D convolu-
tion and Resnet34 with 2-D convolution. We experimented
with different loss functions such as Softmax and AAM-
Softmax and carried out the experiments on two different
datasets of different domains, the Voxceleb1 and the NIST
SRE16. We show that this simple online data augmentation
method can achieve state-of-the-art results: for NIST SRE
2016, we obtained 3.72% and 11.49% EER for Cantonese
and Tagalog, respectively. For the Voxceleb1 evaluation set,
we achieved 1.47% EER.
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