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ABSTRACT

Self-supervised ASR-TTS models suffer in out-of-domain data con-
ditions. Here we propose an enhanced ASR-TTS (EAT) model that
incorporates two main features: 1) The ASR—TTS direction is
equipped with a language model reward to penalize the ASR hy-
potheses before forwarding it to TTS. 2) In the TTS—ASR direc-
tion, a hyper-parameter is introduced to scale the attention context
from synthesized speech before sending it to ASR to handle out-of-
domain data. Training strategies and the effectiveness of the EAT
model are explored under out-of-domain data conditions. The results
show that EAT reduces the performance gap between supervised and
self-supervised training significantly by absolute 2.6% and 2.7% on
Librispeech and BABEL respectively.

Index Terms— cycle-consistency, self-supervision, sequence-to-
sequence, speech recognition

1. INTRODUCTION

The application of the sequence-to-sequence architecture [1] to ASR
and TTS models paved way to perform self-supervised training by
simple integration of ASR and TTS. Recent works on self-supervised
training [2, 3, 4, 5] leveraging unpaired speech and text have shown
higher performance compared to other unsupervised training ap-
proaches. Most of the research in self-supervised ASR is done in
effectively integrating ASR and TTS such that it is differentiable [6]
and easily trainable. However, ASR and TTS are exploited in dis-
connected fashion by synthesizing speech using TTS [7, 8, 9] and
improving ASR through data augmentation. These techniques focus
on the synthesis part and rely on text only data from unpaired sets to
improve recognition performance. The work in [10] also improves
ASR performance, by using a language model as a hypothesis scorer
and applying self-training techniques over the resulting corrected
pseudo-labels. In [11], the authors apply self-supervision through
pre-training with the help of a BERT model to improve ASR perfor-
mance with unpaired data. BERT has also been used as a effective
pre-training technique with contrastive loss in [12] by training in
self-supervised fashion.

A recent work [13] on semi-supervised sequence-to-sequence
ASR has applied consistency training and has shown effectiveness
with unlabeled speech data. Our previous work called ASR-TTS [4]
used cycle-consistency training with REINFORCE and showed gains
on standard speech datasets. However, our experiments with other
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corpora showed that the model suffers under the out-of-domain data
condition and has further room for improvement in-terms of training
and architecture.

In this work, we investigate methods to improve the robustness
of the cycle-consistency approach in limited data and out-of-domain
scenarios. The contributions can be itemized as follows

* We incorporate a pre-trained RNNLM regularization term in
the ASR REINFORCE loss for speech only (SO) training,
increasing its robustness to bad latent ASR hypotheses.

* We introduce a hyper-parameter for text-only (TO) training,
to attenuate the influence of the ASR encoder by scaling the
attention-encoded context. This allows us to reduce the focus
on acoustic information when the latent speech quality is poor,
effectively alternating between ASR and a more language-
model-like behaviour.

* We incorporate latest training strategies and architectures such
as data augmentation and data annealing. The TTS module
is also built using the Transformer architecture, which shows
higher robustness and memory efficiency. Multi-head attention
is used as ASR encoder layers to attain additional gains and
for reduced model complexities.

* We show that these techniques greatly improve performance
and particularly attain the target goal achieving good perfor-
mance in limited data and out-of-domain scenarios with cycle
consistency techniques.

We call this improved model enhanced ASR-TTS (EAT). Experi-
ments are conducted on Librispeech and the BABEL-Pashto datasets
and show the efficacy of our EAT model. Results are further compared
with state-of-the-art (SotA) results in literature.

2. PRELIMINARIES

Our previous work, ASR-TTS [4] is a self-supervised training system
built to handle both speech only (SO) and text only (TO) data using
a cycle-consistency training regime. ASR-TTS training approach
containing two pipelines: 1) ASR—TTS pipeline to train using SO
dataset 2) TTS— ASR pipeline to train using TO dataset. The SO data
x is fed to ASR—TTS pipeline to reconstruct « as . The pipeline is
trained with an expected loss (approximated through REINFORCE).
The text only data y is fed to the TTS—ASR pipeline to predict
the text ¢ and is trained with a cross-entropy loss objective. Both
pipelines act as auto-encoders allowing to perform self-supervised
training on either SO dataset D2 or TO dataset DY,. The ASR archi-
tecture used in our ASR-TTS model is built using an RNN based
sequence-to-sequence model and the Tacotron is used for TTS.
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3. ENHANCED ASR-TTS (EAT)

The EAT proposed in this work includes two main modifications to
our previous work [4], first on SO and other on TO training in the

ASR-TTS model.
- l - LM penalty
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Fig. 1. Speech Only (SO) data training using ASR — TTS pipeline
with LM penalty.

3.1. Adding a RNNLM penalty for regularization

The ASR—TTS cycle-consistent SO training objective used in [4]

Ls0 = Eppanvxo {Lrrs(X | Y)}, )

is the expected TTS negative log-likelihood L1rs(X | Y) for the
latent ASR hypotheses Y. Note that this likelihood is teacher-forced
i.e. the ground truth is used for the auto-regressive component. One
limitation of this approach is that cycle-consistency may not be restric-
tive enough to avoid erroneous hypotheses for Y, making training
less robust. To solve this, we incorporate a S-weighted negative log
likelihood of a RNN language model to equation (1) as shown in
figure 1 and yielding

Lso = Ep,nyx){Lrrs(X | Y) + 8Lum(Y)}, 2

which plays a regularization role similar to the Kullback-Leibler
term in Variational Auto-encoders (VAEs) [14]'. The expectation is
approximated with REINFORCE [15].

3.2. Making TTS—ASR robust to out-of-domain

The TTS— ASR cycle-consistent TO training objective from [4] ex-
hibits a major weakness when training with out-of-domain data. TTS
is less robust to out-of-domain data and generates poor log-Mel filter-
bank (fbank) frames in this condition. In this pipeline, features X are
predicted by TTS as

X = arg m}%X{pTTS(X | Y)} (3)

encoded in the ASR encoder as H = Encoder(X), and sent to the
attention component to obtain the attention context vector ¢; as

= Z archy 4
t

"Note the similarity with the Evidence Lower Bound (ELBO) log p(z) >
Eq(y|e){logp(z | y) + logp(y) —logq(y | »)}

where ¢ and [ denote the time step and token id respectively. The final
loss is then given by

L

— Z log Decoder(cz, yi—1) (5)
1

ﬁTo = —]ngASR(Y* | X) =

50

et - SR
0 200 400 600 _ 800 1000
AN i ! f [} Al

# log-Mel filter-banks

# frames

Fig. 2. Plot of log-Mel filter-bank features. The top plot shows the
features predicted by TTS during TTS—ASR training. The plot in
the middle shows the features predicted by TTS during ASR—TTS
training. The bottom figure shows the ground-truth of the log-Mel
filterbank (fbank) features.

The top plot in figure 2 shows the reconstructed fbank features
of Librispeech using a TTS pre-trained with WSJ data. Comparing
the top and middle plots, corresponding TTS—ASR and ASR—TTS
training respectively, one can see a clear difference in prediction error.

The primary reason behind this is that the ground truth is available
in ASR—TTS to perform teacher-forcing. Whereas in TTS—ASR,
this is not available for TTS and thus the reconstructed output deviates
from the ground truth. Even the segments of speech and silence are
wrongly predicted in the TTS—ASR pipeline.

Ct
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«
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Fig. 3. Text only (TO) data training with inclusion of attention context
scaling by o in TTS— ASR pipeline

In EAT, we mitigate this robustness issue by scaling the attention
context vector in the ASR module by a hyper-parameter «

=« Z aithy (6)
t

also shown in figure 3. If o = 0, no encoder features are used
and the ASR model just behaves as a language model. This prevents
the erroneous TTS generated features to provide a misleading signal,
while still allowing to backpropagate into the ASR decoder. The
value of « is chosen heuristically based on the difference in domains
between data used to train TTS and the TO data. The final loss, used
both for speech only and text only data (ST), is given by summing
the loss functions LsT = Lso + Lo of the above pipelines.
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3.3. Improvements in architecture and training
3.3.1. Model Architecture

The ASR and TTS architecture in the EAT model is meticulously
designed as it plays a major role in attaining improved performance.
The motivation is to keep the model light-weight and simple to easily
fit in GPU memory during training.

ASR: The ASR component in EAT model is equipped with lo-
cation based multi-head attention component [16]. Instead of RNN
layers in encoder, self-attention layers are used to reduce model com-
plexity. The decoder is built with RNN layers as before, since the
transformer decoder is harder to implement with our training ob-
jective. In our experiments, we use 2 VGG layers followed by 6
self-attention layers each with 800 dimensions. The encoder output
is sent to attention component with 10 heads and 512 dimensions. 10
convolution channels with 100 filters are used in this attention to be
location specific. Adadelta is used and trained with batch size 20.
Our experiments shows that multi-head attention and self-attention
layer based encoder provided performance gains.

TTS: Transformer based TTS [17, 18] is used in this work, as
we found in our experiments that Transformer consumes less mem-
ory and is effective in out-of-domain condition when compared to
Tacotron architecture [17]. The TTS is multi-speaker based and han-
dles each speaker input by providing an x-vector [19] as speaker
embedding. The Transformer architecture contains 6 encoder and
decoder layers each with 1536 units respectively. The attention com-
ponent contains 4 attention heads, each with 384 attention dimension.
2 pre-net layers with 256 units and 5 post-net layers with 256 channels
are used. The output frames reduction factor is set to 1 as all frames
are required during self-supervised training. Speaker embeddings
are added to the encoder output before sending to the decoder. The
pre-training of transformer TTS is done using its standard optimizer
with 10000 warmup steps for 100 epochs.

3.3.2. Data Augmentation

In ASR-TTS, simple Gaussian noise is used as augmentation to
stabilise the training and it provided minor gains but was inconsistent
across datasets. In this work, the EAT model is trained with the
specaugment [20] approach. The frequency mask and time mask are
applied using a window width of 30 consecutive log-Mel frequency
channels and 40 consecutive time steps respectively. The recognition
performance of the EAT model with specaugment is shown in table 2.
Specaugment approach attains consistent gains using self-supervised
training with SO and ST (SO + TO) data. No augmentation is done
during training with TO data.

in general investors are a conservative lot
these days she says (ground-truth)

in general investors are a conservative lat
these days she says (baseline)

in deneral investors are a conservative lot
these days she say (ASR-TTS)

Fig. 4. An example of text sequence predicted by baseline and ASR-
TTS compared with the ground-truth

3.3.3. Data Annealing

In ASR-TTS model training, alternating between large amounts of un-
supervised data and little supervised data is difficult. The supervised
training of certain labels can result in over-fitting, which hinders the
effect of unsupervised training [21] as shown in figure 4.

Here, "general” in reference text is correctly predicted in baseline
training. During ASR-TTS training, the supervised samples from
baseline and unsupervised samples are provided in alternate fashion.
Although, in [4] we repeated the supervised data to reduce the under-
fitting, it still resulted in incorrect predictions such as “deneral” and
also increased the training time due to repetition. To mitigate this, the
supervised samples are released only when:

X 1 1
pasr( | ) > ve57e = me X (1 - g)Jr? X 1t @)

ne—1— exp(% *5), log schedule (8)
e — exp((% — 1) x 5), exp schedule )

where 7" and K are the number of training steps and classes respec-
tively. Table 1 shows that linear and exp schedules are better over log,
as release of supervision is initially high and reduces at the end of
training. The performance of EAT trained using exp schedule outper-
forms linear as the supervised data is mostly released at the final stage
of training paving smoother way for training with unsupervision.

4. RESULTS AND DISCUSSION

Librispeech [22] and BABEL-Pashto [23] datasets are used in our
experiments. The WSJ-si84 is used to pre-train ASR and TTS models.
83 dimensional filterbank features are extracted and used to train our
ASR and TTS systems. EAT model training is performed under SO,
TO and ST condition by splitting the data into unpaired and paired
data. 100 hours of Librispeech is used as paired data and 360 hours
of Librispeech as unpaired data. 5 and 10 hours of paired data are
obtained from 39.74 hours of BABEL-Pashto data and the rest of the
dataset is used as unpaired data as denoted in table 3. Baseline models
denoted in table 2 and 3 are built only with paired data. RNNLM
for Librispeech is built with 460 hours of clean and 500 hours of
other data. RNNLM for Pashto is built with external text containing
83k utterances and 62k vocabulary size. Our experiments are done
using ESPnet toolkit and the code will be published on github 2. All
experiments are conducted with RNNLM during testing. Evaluation
with Librispeech is done on dev-clean, dev-other, test-clean and test-
other as such variability can showcase the effectiveness of EAT.

4.1. Results on Librispeech

EAT is initially tested with different data annealing schedules to chose
the best training schedule for the rest of the experiments. 360 hours of
both speech only and text only (ST) data is used during EAT training
and the results for log, linear and exp schedules are in table 1. The
results show that for Librispeech, exp schedule is better and will be
used in the rest of our experiments.

Table 1. %WER performance of log, linear and exp based annealing
schedules data during self-supervised training using EAT

360-ST dev-clean dev-other test-clean test-other
log 7.7 23.5 6.9 24.3
linear 7.1 22.7 6.9 23.6
exp 6.9 22.5 6.9 22.1

Table 2 shows the effect of data augmentation by specaugment.
SO training with 360 hours of data attains consistent gains on all eval-
uation sets. 360-ST denotes that the 360 hours of speech only and text

Zhttps://github.com/creatorscan/espnet-asrtts
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only data are used simultaneously for training EAT. The performance
improvements obtained by 360-SO and 360-ST with augmentation
shows that the EAT model training is complementary to specaugment
approach. Here oracle in the table denotes the performance of ASR
model trained with 460 hours of data in Librispeech. The effect of SO
and ST data training with RNNLM penalizer (LMP) in EAT is also
shown in table 2. The penalty loss aids the model training to reduce
incorrect ASR predictions and the results show significant improve-
ment in performance. 360-SO + LMP attains 19.0%WER on harder
evaluation set such as test-other when compared to 25.0%WER with
specaugment only. The attention context vector in ASR is scaled

Table 2. Recognition performance of EAT model using specaugment
approach, RNNLM penalizer (LMP) and attention context scaler ()

Type dev-clean dev-other test-clean test-other
Baseline 14.3 36.4 144 36.9
360-SO 11.0 324 10.6 33.6
+aug 9.1 24.2 8.9 25.0
+LMP 6.0 18.6 5.8 19.0
360-TO 8.9 23.0 8.6 24.1
+a 4.5 15.8 4.7 159
360-ST 6.9 22.5 6.9 23.6
+aug 6.0 18.6 5.8 19.0
+a 5.2 19.5 5.3 20.4
+LMP 4.3 14.9 4.3 152
oracle 3.7 12.3 3.5 12.6

by a = 0.7 for Librispeech and attains 15.9%WER on test-other
with 360-TO when compared to 24.1%WER by 360-TO without a
scalar. This simple, yet effective method has allowed 360-ST to fur-
ther improve its performance which shows that LMP and « scaler are
complementary. In 360-ST, inclusion of o and LMP results in 4.3%
WER on test-clean and 14.9% WER on test-other. The oracle experi-
ment is done by training an ASR with 460 hours of supervised data
and it attains 3.5%WER on test-clean and 12.6%WER on test-other.

Table 3. %WER of EAT on BABEL-Pashto using aug, o for TO and
LMP for SO with 5 and 10 hours of paired data
Supervision info  Baseline SO TO ST

5 hours 71.4 639 622 63.1
+ aug 63.1 614 617 60.1
+« - - 58.8 58.5
+ LMP - 60.1 - 58.4

10 hours 64.7 61.1 609 604
+ aug 55.5 55.0 54.0 536
+« - - 53.7 525
+ LMP - 54.8 - 51.6

Oracle 56.0 - - -
+ aug 48.9 - - -

4.2. Results on BABEL-Pashto

The key results of the EAT are shown on BABEL-Pashto as it helps
to show the impact of o and LMP when compared to our previous
ASR-TTS model. Experiments on Pashto using our previous model
did not lead to gains and hence are not included in this paper. The
reason behind the difficulty is that building a multi-speaker TTS
model for Pashto is harder and hence our previous work failed to
provide reasonable TTS scores. EAT model mitigates this problem
by modifying its TTS architecture and reducing the importance of
synthesized speech from TTS by «. Here, the pre-trained TTS is
retrained during SO with RNNLM penalizer and later used for TO
training with o = 0.3. Table 3 shows that with 5 hours of paired data,

the effect of TO is higher compared to SO, but with 10 hours the TO
obtains comparable gains as SO. With « in TO the model obtains
58.8 %WER and further reduced to 58.5 %WER with ST training.
Here oracle in table denotes the performance of ASR trained with
39.75 hours of data in Pashto. With 10 hours of paired data and ST
training with both o and LMP, the EAT model attains 51.6 %WER
which is only absolute 2.7% less compared to oracle 48.9 %9WER.

4.3. Comparison with related work

Some of the recent works using ASR and TTS to handle unpaired
speech and text data have raised the performance bar on Librispeech.
The self-training approach such as pseudo-label training [24] feeds
the SO data to a pre-trained ASR and uses the predicted hypotheses
as pseudo-labels to attain better performance on all dev and test sets.
The errors in pseudo-labels were further corrected with a language
model using local prior matching (LPM) objective [25] and led to im-
provements in dev-other and test-other while the performance slightly
degrades in dev-clean and test-clean. Our EAT model outperforms
the self-training model on all evaluation sets as noted in table 4.

Table 4. Comparison of SotA results in literature with EAT model

dev test

Method Type clean other clean other
Self-training Pseudo [10]  5.41 20.31 579 21.63
LPM [25] 5.69 2022 599 2093
Synthesis GST [7] 7.4 25.7 7.9 26.7

GCP [26] 4.1 - 4.1 -
Cycle ASR-TTS 11.0 324 10.6 33.6
EAT 4.3 14.9 43 15.2

GST [7] method focuses on attaining better synthesis quality by using
GST speaker embeddings by training with TO data which is further
used to train an ASR. This model attains 7.4%WER and 7.9%WER
on dev-clean and test-clean which is relatively less due to the small
language model used. In case of GCP, the authors synthesize speech
and use consistency loss together to attain 4.1%WER on dev-clean
and 4.1%WER on test-clean. This is understandably better than our
EAT model since the GCP uses 460 hours of paired data while we
use only 100 hours of paired data. The effect of penalizer, attention
context scalar and other training strategies makes our EAT model at-
tain 4.3%WER on dev-clean and 4.3% on test-clean. The model also
attains the best performance on harder conditions such as dev-other
and test-other.

5. CONCLUSION

In this work, we address the shortcomings of our previous ASR-TTS
model and propose an enhanced ASR-TTS model. The proposed
EAT model performs well on commonly used Librispeech task and
shows its robustness to domain changes on BABEL-Pashto. The
modification of SO with penalizer helped the model to improve on
language related errors without hurting the acoustic information cap-
tured. The TO training by scaling attention context helped to improve
on out-of-domain conditions such as Pashto and also brought gains
in Librispeech. Training speech and text only (ST) together proved to
be complementary and resulted in further performance improvement.
The performance of EAT on Pashto is 51.6%WER which is 2.7%
absolute less than with oracle 48.9% WER. The model also attains
15.2%WER on test-other which is 2.6% absolute less than oracle
performance. The model can be further enhanced on Librispeech by
using 960 hours of unpaired speech and text data.
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