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Abstract—Applying Automatic Speech Recognition (ASR) in the 
domain of analogue voice communication between air traffic con-
trollers (ATCo) and pilots has more end user requirements than 
just transforming spoken words into text. It is useless for, e.g., 
readback error detection support, if word recognition is perfect, 
as long as the semantic interpretation is wrong. For an ATCo it is 
of almost no importance if the words of a greeting are correctly 
recognized. A wrong recognition of a greeting should, however, not 
disturb the correct recognition of, e.g., a “descend” command. 
More important is the correct semantic interpretation. What, how-
ever, is the correct semantic interpretation especially when ATCos 
or pilot, deviate more of less from published standard phraseol-
ogy? For comparing performance of different speech recognition 
applications, 14 European partners from Air Traffic Management 
(ATM) domain have recently agreed on a common set of rules, i.e., 
an ontology on how to annotate the speech utterances of an ATCo 
on semantic level. This paper first presents the new metric of “un-
classified word rate”, extends the ontology to pilot utterances, and 
introduces the metrics of command recognition rate, command 
recognition error rate, and command recognition rejection rate. 
This enables the comparison of different speech recognition and 
understanding instances on semantic level. The implementation 
used in this paper achieves a command recognition rate better 
than 96% for Prague Approach, even if word error rate is above 
2.5% based on more than 12,000 ATCo commands – recorded in 
both operational and lab environment. This outperforms previous 
published rates by 2% absolute. 

Keywords: word error rate, command recognition rate, language 
understanding, air traffic control, ATC, unclassified word rate 

I. INTRODUCTION

Nowadays, enhanced Automatic Speech Recognition (ASR) 
systems are used in Air Traffic Control (ATC) training simula-
tors to replace expensive simulation pilots. This work has started 
already in the late 80s [1]. Although ASR systems are widely 
used in everyday life (e.g., Siri®, Alexa®) and ATC phraseol-
ogy is standardized [2], recognizing and understanding control-
ler-pilot communication is still a big challenge and not solved 

with satisfactory performance. Due to lack of ATC-specific 
training data, current ASR systems still face challenges with spe-
cialized ATC vocabulary and syntax, controllers’ deviations 
from the standard phraseology, and a variety of speakers and ac-
cents [3]. Cordero et al. (2012) reported WER (= word error rate) 
of more than 80% with different Commercial-off-the-shelf 
(COTS) recognizers [4]. 

Different metrics exist to evaluate the performance of ASR. 
The most widely used metric in ASR applications is the WER 
based on the Levenshtein distance [5]. However, the decision 
makers of air navigation service providers (ANSPs) are not pri-
marily interested in these low-level metrics. They are interested 
in reducing costs and efforts. The AcListant®-Strips project 
quantified the benefits of using speech recognition with respect 
to both efficiency and ATCo workload: The ATCo workload 
for radar label maintenance could be reduced by a factor of 
three [6] and the support of ASR enabled fuel savings of 50 to 
65 liters per flight [7]. 

In this paper we will concentrate on the semantic level, i.e. 
on annotations, to evaluate the ASR and speech understanding 
performance in ATC domain. The concentration on the seman-
tic is best illustrated by an example with two transcriptions for 
ATCo utterances: 

 “good morning lufthansa two bravo alfa radar contact de-
scend flight level eight zero and speed two two zero knots”,

 “bravo alfa identified two twenty knots descend level
eighty”.

On word level there is a large difference between the two
transcriptions, but semantically they have the same meaning. 
According to the ontology defined by various European part-
ners from the ATM industry and research [8], both transcrip-
tions correspond to the following three ATC commands: 
“DLH2BA INIT_RESPONSE, DLH2BA DESCEND 80 FL, 
DLH2BA SPEED 220 kt”, but provided in a different order. 



The ontology rules enable the comparison of different 
speech recognition and understanding systems for ATC appli-
cation on a semantic level by considering each ATC command 
(e.g., DLH2BA SPEED 220 kt) as one (big) entity, i.e., word, 
and calculating the Levenshtein distances w.r.t. the gold anno-
tations. Gold transcriptions or annotation, respectively refer to 
the manually checked transcriptions/ annotations, i.e. the ones, 
which are assumed to be correct. 

The following section gives a brief overview of related work 
with respect to transcription and annotation in the ATC domain. 
Section 3 introduces the main elements of the ontology for ATC 
command annotation and describes the enhancements of the on-
tology with respect to annotated pilot utterances. Section 4 pre-
sents the suggested metrics for evaluation of speech recognition 
and understanding systems in ATC. Section 5 presents evalua-
tion results from different projects, followed by a conclusion. 

II. RELATED WORK 

One of the first publicly available corpora with transcribed 
speech recordings was the LDC94S14A data set. The audio 
files are 8 kHz, 16-bit linear sampled data, representing contin-
uous monitoring, without squelch or silence elimination, of a 
single FAA frequency for one to two hours [9]. A European 
data set for the ATC domain is the Air Traffic Control Simula-
tion (ATCOSIM) Speech corpus. It is a speech database contain-

ing ATCo utterances created during ATC real-time simulations at 

EUROCONTROL in Brétigny [10]. Our transcription rules for 
writing down ATC utterances word by word are very similar, 
but in addition to [10] we also propose rules for annotation. 
Nguyen and Holone [11], [12] proposed 10 classes to replace 
word sequences with their corresponding class label, e.g., 
callsign, unit-name, fix, number. Johnson et al. [13] propose a 
keyword and value representation in JSON format [14], where 
keywords could be Callsign, ToFix, FlightLevel, Altimeter, etc. 

In the AcListant® project [15], Saarland University and 
DLR created an ontology which consists of four elements, i.e., 
callsign, command type, command value, and unit [16], [17]. 
This approach already covering more than 30 commands 
reached its limits in the MALORCA project [18]. Here voice re-
cordings from Prague and Vienna live traffic were integrated. 
An increasing number of command types (e.g., QNH, 
INFORMATION, REPORT_SPEED, EXPECT_RUNWAY) 
had to be supported. Additionally, conditional clearances were 
modelled [19]. In 2002, NATS analyzed possible applications 
of ASR within the London Terminal environment [20]. Ini-
tially, several ontologies were proposed based on a statistical 
Language Model (LM). At project closure, the ontology encom-
passed five elements: callsign, standard type, non-standard 
type, value, and type unit (e.g., feet, degrees). 

The SESAR funded solution PJ.16-04 of the project Control-
ler Working Position Human Machine Interface (CWP HMI) 
tried to harmonize all these approaches. 22 partners from Euro-
pean ATM industry, research, and from air navigations provid-
ers agreed on a so-called ontology, i.e., a set of rules, for com-
mand annotations [8]. It is not final yet, which means that up-
dates/changes are still expected. The projects STARFiSH [21] 
and “HMI Interaction Modes for Airport Tower” [22] expand 

the ontology with respect to ATC ground and tower commands 
including remote tower operations, based on the work of 
Ohneiser et al. [23] with results for Lithuanian and Hungarian 
remote tower environment [24]. An ontology for tower com-
mands was also used by Chen et al. [25], when ASR was used to 
automatically detect read back errors of ground traffic. 

The projects “HMI Interaction modes for approach control” 
[26] and the SESAR funded project HAAWAII [27] also include 
pilot utterances as well as enroute and oceanic traffic. Some of 
these extensions are presented in the next section. Further ASR 
projects require an even bigger variety of annotated commands, 
i.e., greetings become important for workload estimation even if 
they have hardly any concrete meaning for ATC communication 
content. Greetings are normally uttered in low workload situa-
tions and observed less frequently in high workload situations, a 
hypothesis further analyzed by the HAAWAII project. The first 
example above is then transformed into “DLH2BA 
GREETING, DLH2BA INIT_RESPONSE, …”. 

III. ONTOLOGY FOR ANNOTATION OF ATC UTTERANCES 

A subset of the CWP HMI ontology [8] for annotation with 
new elements speaker and reason is presented in the next sub-
section III.A. The ontology is being extended in the SESAR 
funded HAAWAII project as shown with detailed examples in 
subsection III.B. 

A. Basic Annotation Ontology Structure 

The rules define that an utterance consists of one or more 
instructions (Figure 1) and each instruction starts with the 
callsign, even if the callsign is only said once. The full intended 
callsign (from the flight plan or surveillance data) is provided, 
i.e., AUA123B is used even if only “austrian three bravo” is said 
or recognized. This compensates for misrecognitions on word 
level and also deals with commonly used abbreviations for 
callsigns in ATC.  If no callsign is said or could not be uniquely 
determined, “NO_CALLSIGN” is used. Figure 1 depicts the 
structure of an instruction and shows that an instruction consists 
of a callsign, a command, and optional conditions. 

 
Figure 1: Elements of an instruction consisting of a callsign, a command, and 

condition(s). 

A command always has a type, which determines the number 
of allowed values. The command type is composed of two ele-
ments: command first type and an optional second type. Addi-
tional optional fields are unit (e.g., FL, ft, kt), qualifier (e.g., 
LESS, OR_BELOW, LEFT), speaker (PILOT or empty), and 
reason (REQUEST, REPORTING or empty for, e.g., readbacks 
and commands). 

Various examples from different application areas should il-
lustrate the agreed rules. For approach traffic “speed bird six 
nine six victor keep speed one eight zero knots until five miles 
final” would result in “BAW696V MAINTAIN SPEED 180 kt 
UNTIL 5 NM FINAL”. The last four elements after unit “kt” 

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +
Requirement

ReasonSpeaker
Callsign
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are the conditional clearance with the conjunction “UNTIL”. 
Here, we see that the type consists of two words (e.g., 
MAINTAIN SPEED) where MAINTAIN is the first command 
type and SPEED is the second type. However, command types 
such as CLIMB, DESCEND, SPEED, etc. consist of only the 
first type. An example from the tower is “lufthansa four nine 
eight taxi to alfa four eight via lima and november seven”, 
which corresponds to “DLH498 TAXI TO STAND_A48” and 
“DLH499 TAXI VIA TX-L TX-N7”. Here, the command type 
“TAXI TO” can only have one value, whereas multiple values 
are allowed for “TAXI VIA”. The ontology requires a configu-
ration file, which defines that the word sequence “alfa four 
eight” is mapped to “STAND_A48” and that “lima” in a TAXI 
VIA command is mapped to “TX-L”. This eases the mainte-
nance of the semantic extractor, if new waypoints, airline des-
ignators or taxiways need to be added and also enable easy ad-
aptation to other airports even by ATC experts who are not di-
rectly involved in ASR development. 

B. Enhancement Examples of Annotation Ontology 

In the following transcription and annotation examples we 
use colors to support the reader in immediately recognizing the 
different ATC concepts in an utterance transcription and in the 
corresponding annotation. The colors are independent from 
those used in Figure 1. It also shows the simplicity of the ontol-
ogy rules. 

The following utterance considers both pilot and ATCo ut-
terances for enroute traffic: “Pilot: reykjavik control [NE Ice-
landic] godan dag [/NE] ice air six eight kilo passing level one 
eight zero climbing two nine zero ATCo: [unk] six eight kilo 
reykjavik control [NE Icelandic] godan dag [/NE] identified 
climb to flight level three six zero”. Here, “NE” represents 
“Non-English” text. The transcription rules require that the 
speaker names followed by a colon (“ATCo” and “Pilot:”) are 
added, if more than one speaker occurs in an utterance. The 
above utterance results in the annotation: 

ICE68K PILOT   STATION REYK_RADAR,   
ICE68K PILOT   GREETING,   
ICE68K PILOT   REPORTING ALTITUDE 180 FL,   
ICE68K PILOT   REPORTING CLIMB 290 none,   
ICE68K                STATION REYK_RADAR,  
ICE68K                GREETING,  
ICE68K                INIT_RESPONSE,   
ICE68K                CLIMB 360 FL.  

We add the optional Speaker field in the annotations (tur-
quoise) only if the speaker is not the ATCo. If an altitude report 
or a clearance contains neither “feet” nor “flight level”, the unit 
field is set to “none”. The reason field with value 
“REPORTING” is used for pilot speakers only, if the altitude 
value is not a readback and is also not an altitude request. It is, 
however, not always certain if, e.g., “… descending flight level 
two five zero” from a pilot is an altitude readback or a report. 
Both “ICE68L PILOT REPORTING DESCEND 250 FL” and 
“ICE68L PILOT DESCEND 250 FL” are, therefore, possible. 

One could easily determine which one is correct, by looking 
into the previous utterances. The annotation rules, however, re-
quire considering only the current utterance for creating the 

annotations. This needs to be considered when comparing two 
different semantic extraction applications. Similarly, when a pi-
lot requests a command from the ATCo, the annotation is asso-
ciated with a REQUEST value for the reason field. For exam-
ple, “speed bird four two alfa requesting flight level one two 
zero” from a pilot would correspond to “BAW42A PILOT 
REQUEST ALTITUDE 120 FL”. It is important to note that the 
REPORTING value is only allowed for pilot utterances. The 
value REQUEST normally occurs also only in pilot utterances, 
put it could also occur during ATCo-ATCo negotiation. 

It is important to note that if a callsign is not fully said by 
the ATCo or is not completely understood, the annotation al-
ways contains the full callsign of an aircraft. For example, “easy 
jet one zero one delta”, “easy jet one delta” or “easy one delta” 
- all forms are represented by callsign EZY101D. 

The following very long utterance from enroute airspace 
“november triple nine papa november after passing five eight 
north five zero west reroute direct doryy spelling is delta oscar 
romeo yankee yankee you can expect further routing by gander 
control later on” results in only one command with a condition. 

N999PN DIRECT_TO DORYY none   
                               WHEN PASSING 58N_050W 

The non-color-highlighted part is just additional infor-
mation, which is not covered by the ontology. DORYY occurs 
only once. “none” is used, because no direction qualifier 
“LEFT” or “RIGHT” is provided. The purple part highlights the 
condition for the DIRECT_TO-command. 

The utterance “right turn direct five eight north five zero 
west then reroute direct doryy” results in a command with two 
values, but without a condition. Here we have a qualifier 
“RIGHT”: 

N999PN DIRECT_TO 58N_050W DORYY RIGHT 

The following utterance contains one reporting and two re-
quests from the pilot: "ice air two seven four climb flight level 
three seven zero request flight level three nine zero and mach 
decimal seven nine”. 

ICE274 PILOT REPORTING CLIMB 370 FL  
ICE274 PILOT REQUEST ALTITUDE 390 FL  
ICE274 PILOT REQUEST SPEED 0.79 MA 

The word sequence “mach decimal seven nine” in the utter-
ance is somewhat ambiguous. It could also mean just a 
REPORTING of the current speed value. We decided for the 
REQUEST, because it follows a request and not a reporting. 
However, the following answer of the ATCo shows that it is a 
reporting. Though, the ontology rules are defined as to annotate 
each utterance independently from other utterances, i.e., with-
out considering additional knowledge from recent utterances 
and especially from future utterances. 

The transcription “okay we check thanks air canada eight 
three four” results in “ACA834 NO_CONCEPT” - not all 
words are covered by the ontology rules. “okay we check thanks 
air canada eight three four descend four thousand feet” would, 
however, result in “ACA834 DESCEND 4000 ft”. 
NO_CONCEPT is extracted only if no other command type is 
extracted for this callsign. 
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As mentioned earlier, the ontology is continuously ex-
panded and this enables better evaluation of speech recognition 
performance on a semantic level as more concepts are recog-
nized. An implementation of the ontology from DLR already 
exists, which includes an automatic extraction (command 
recognition) of ontology concepts from word sequences. In gen-
eral, the command extraction first looks for fully matching 
callsigns followed by extraction of complete commands, in-
complete commands (i.e., clearances given without known key-
words), and values. The final step extracts non-fully matching 
callsigns from words which do not belong to an already ex-
tracted command. More details are provided in [28]. 

IV. METRIC FOR SEMANTIC EXTRACTION ACCURACY 

The user or the ATCo using speech recognition is interested 
in a high recognition rate and a low error rate on a semantic level. 
In other words, the meaning behind the spoken word sequence 
must be interpreted correctly [29]. Quantifying the accuracy on 
semantic level, i.e., recognition accuracy and error rate, is de-
scribed in this section. We use command recognition rate, com-
mand recognition error rate, and command recognition rejection 
rate, in order to be consistent with [30]. Nevertheless, a wrong 
condition counts as an error while computing the command 
recognition error rate. 

A. Basic Example for Metric Calculation 

Command recognition rates are computed by comparing in-
structions from manual human annotation (gold annotation) to 
the results of the automatic semantic command extraction (au-
tomatic annotation). For a given speech utterance, each instruc-
tion (see  Figure 1) is treated as one big word. Then, the Le-
venshtein distance between the gold annotation and the results 
of command extraction is calculated, resulting in the number of 
substitutions (subs), insertions (ins), and deletions (del). The 
Table 1 gives an overview about the different metrics and illus-
trates an example how they are calculated. In the table #gold 
defines the total number of commands in the gold annotation. 
#match defines the number of matches, which is #gold – subs – 
del. If the result of command extraction contains either 
NO_CONCEPT or NO_CALLSIGN, these substitutions and 
insertions are always calculated as deletions, i.e., these extrac-
tions contribute to the rejection rate and not to the error rate (as 
shown in the example in Table 1). 

TABLE 1: METRIC DEFINITION 

Metric Calculation 
Command Recognition Rate (RcR) RcR = #matches / #gold 
Command Recognition Error Rate 

(ErR) 
ErR = (subs + ins) / #gold 

Command Recognition Rejection 
Rate (RjR) 

RjR = del / #gold 

Callsign Recognition Rate (CaR) 
Same as RcR but only for 

callsigns without instructions 
Callsign Recognition Error Rate 

(CaE) 
Same as ErR, but only for 

callsigns without instructions 
Callsign Recognition Rejection Rate 

(CaRj) 
Same as RjR, but only for 

callsigns without instructions 

Unclassified word rate (UnClWR) 
UnClWR = #number of unclas-
sified words / #total number of 

words 

Metric Calculation 
If the command extraction results in different callsigns, the calcula-
tion is done for each callsign. See example below, which also illus-

trates that the sum of RcR, ErR, and RjR can exceed 100%. 
Example 

Command Extraction  Gold Annotation 

AFR123 DIRECT_TO OKG none 
AFR123 INIT_RESPONSE 
AFR123 TURN RIGHT 
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

AFR123 INIT_RESPONSE 
AFR123 TURN LEFT 
AUA1AB SPEED 140 kt 
DLH123_NO_CONCEPT 

Result:  
RcR = 2/4 = 50% 

(green) 
ErR = 2 / 4 = 50% 

(purple) 
RjR =1/4 = 25% 

(yellow) 

 

For calculating the callsign rates CaR, CaE, and CaRj, we 
just compare callsigns from the gold annotation and from the 
automatic extraction (see Table 1). For each utterance we con-
sider the callsign only once, except when different callsigns are 
annotated or extracted. For the example in Table 1 this results 
in the three annotated and extracted callsigns AFR123, 
AUA1AB, and DLH123. 

B. Metric Calculation with Disabled Command Types 

As the ontology is still evolving, the annotations and extrac-
tions for different data sets are based on different versions of 
the ontology. In most cases new ontology versions introduce 
new command types. The metric calculation has to take this into 
account so that older data sets can also be reused. If some com-
mand types were not considered in the gold annotation or in the 
extraction (set via a configuration file), these command types 
are deleted from both the gold annotation and from the auto-
matic extraction. If after the deletions, the set of annotations or 
extractions for a callsign is empty, the command type 
NO_CONCEPT is added for this callsign. If INIT_RESPONSE 
and SPEED command types are not supported for the above ex-
ample from the metric definition, this would lead to the follow-
ing result as shown in Table 2. 

TABLE 2: EXAMPLE OF METRIC DEFINITION WITH INIT_RESPONSE AND 

SPEED COMMANDS DISABLED 

Command Extraction  Gold Annotation 
AFR123 DIRECT_TO OKG none 
AFR123 TURN RIGHT  
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

AFR123 TURN LEFT 
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

AFR123 INIT_RESPONSE is mapped to AFR123 NO_CONCEPT. 
However, both gold annotation and command extraction still contain 
another command for AFR123. NO_CONCEPT is only added if it is 

the only command, which is the case for AUA1AB with SPEED 
mapped to NO_CONCEPT. 

Result:  
RcR = 2/3 = 67% 

(green) 
ErR = 2/3 = 67% 

(purple) 
RjR = 0 = 0%  

 

C. Metric Calculation with Additional Command Types 

As mentioned earlier, it might be important to extract the 
number of greetings and farewells in an utterance, because us-
ing often greetings and farewells might be an indication for sit-
uations with reduced workload for the ATCos. Table 3 shows 
an example. The gold annotations for a given data set could be 
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generated years ago. Like a few other newly introduced com-
mand types, FAREWELL and GREETING were not supported 
by the ontology’s first versions. Let’s assume that it is decided 
now to also support these two command types by command ex-
traction to enable workload estimation. Gold transcriptions and 
gold annotations are expensive, because they require manual 
checking. They are needed as reference for performance evalu-
ation. Therefore, they should be reused, whenever possible for 
evaluation of different command extraction implementations. 
The possibility to exclude some command types from evalua-
tion (here GREETING and FAREWELL) is important. Table 3 
shows that without this exclusion possibility we would get a 
command recognition error rate (ErR) of 33% and 0% when ex-
cluding GREETING and FAREWELL from evaluation for such 
datasets. 

TABLE 3: EXAMPLE OF METRIC DEFINITION WITH GREETING AND 

FAREWELL ACTIVATED 

Command Extraction  Gold Annotation 
AUA7H GREETING 
AUA7H STATION RADAR 
AUA7H INIT_RESPONSE 
AUA7H DESCEND 130 FL 
AUA7H INFORMATION ATIS L 

AUA7H STATION RADAR 
AUA7H INIT_RESPONSE 
AUA7H DESCEND 130 FL 
AUA7H INFORMATION ATIS L 

The utterance “good evening austrian seven hotel praha radar ra-
dar contact descend flight level one three zero lima correct” results 
in the above extraction, if GREETING is supported. But the anno-
tation performed earlier did not contain a GREETING command 
since they did not exist back then. 
CSA904 CONTACT RADAR 
CSA904 CNT_FREQ 127.825 
CSA904 FAREWELL 

CSA904 CONTACT RADAR 
CSA904 CNT_FREQ 127.825 
 

The utterance “CSA nine zero four contact praha radar one two 
seven decimal eight two five ahoj” contains a FAREWELL com-
mand type. CONTACT_FREQUENCY is abbreviated as 
CNT_FREQ. 

Result:  
RcR = 6/6 = 
100% (green) 

ErR = 2/6 = 33% 
(purple) 

RjR = 0 = 0%  

 

However, the other way around is also possible wherein the 
annotations contain more command types than what the com-
mand extraction implementations support. In this case, 
GREETING and FAREWELL would have to be excluded from 
the gold annotations. 

D. Rate of Unclassified Words as Error Indicator 

The metric unclassified word rate (UnClWR) is the propor-
tion of words in an utterance which are classified as “un-
known”. In other words, it is the total number of words which 
are classified as “unknown” after executing command extrac-
tion on a given utterance divided by the total number of words 
in the utterance. Unclassified word rate is relevant because it is 
an indication that the command extractor could not recognize 
and map them to corresponding concepts, thereby pointing to 
possible errors made by the ASR. The metric could especially 
help to evaluate the extraction performance on automatically 
transcribed data or on automatically annotated training data, 
i.e., data sets for which gold transcription or gold annotations, 
respectively, are not available. 

Table 4 shows an example of good classification of the ex-
traction algorithm. Just one word is mark as unknown (“unkn”). 

TABLE 4: GOOD CLASSIFICATION PERFORMANCE WITH JUST ONE UNKNOWN 

cont* heading zero six  zero descend altitude  six thousand 
 unkn    type valu valu valu    type     type valu     valu 

 

The example in Table 5 is a counter example. Most of the 
words could not be classified. Nevertheless, the command 
“SPEED 250 none” is still extracted.  The classification results 
from an automatic transcription. The gold transcription is here 
“you will be following a heavy triple seven speed now two fifty 
or below”. 

TABLE 5: BAD CLASSIFICATION PERFORMANCE WITH SEVEN UNKNOWNS 

level four  one heavy triple seven speed  now  two fifty 

 unkn unkn unkn  unkn   unkn  unkn  type unkn valu  valu 

 

V. EXPERIMENTAL RESULTS 

A. Comparison of Word Error Rates with Semantic 
Recognition Rates 

Voice and surveillance data from Prague Approach (Czech 
Republic) and Vienna Approach (Austria) from the two SESAR 
projects MALORCA and CWP HMI were used for both Prague 
and Vienna gold transcriptions and gold annotations of the 
ATCo voice recordings were available. From simulation runs 
(Lab) of the CWP HMI project 6,885 commands were taken 
from five different ATCos from Prague and 6,005 commands 
were taken from two different ATCos from Vienna (see rows 
with Labs)  [31]. From the MALORCA project 6,094 commands 
from Prague approach and 4,417 commands from Vienna ap-
proach were taken from operational environment recordings of 
12 and 41 ATCos [32], respectively (see Table 6 with rows 
“Ops”). The number of commands per speech utterance was be-
tween one and seven. 

TABLE 6: RECOGNITION ACCURACY FOR OPS ROOM AND LAB 

 #Cmd #Utt RcR ErR CaR 

Ops Prague 6,094 3,038 98.5% 0.9% 99.8% 

Lab Prague 6,885 4,211 99.2% 0.5% 99.7% 

Ops Vienna 4,417 2,279 94.8% 4.0% 98.2% 

Lab Vienna 6,005 3,562 95.3% 2.5% 96.4% 

 

Table 6 shows the metrics, number of commands (#Cmd), 
and speech utterances (#Utt) for the different data sets. The 
command extractions in this table are performed on the gold 
transcriptions (WER=0%) and, therefore, shows the upper limit 
of command extraction if the word recognition is perfect. More 
interesting are the results, when the output from a speech-to-
text engine with WERs > 0% is used. For the results of Table 7 
different models and context information from surveillance and 
flight plan data were used, resulting in different WERs. We pro-
vide only data from the ops room environment. The difference 
for the lab environment with different speaker models is very 
minor. 

Table 7 shows the results, if four different speech-to-text 
engines are used (i) manual (human) transcription, (ii) auto-
matic transcription trained with many different speakers, but 
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not using the information of the available callsigns, (iii) as be-
fore, but using the information of available callsigns, (iv) as 
(iii), but trained only from utterances of just one speaker and 
nevertheless used to recognize speech also from other speakers 
(rows with “bad speech model”). 

TABLE 7: RECOGNITION ACCURACY WITH DIFFERENT WERS 

 RcR CaR WER 
Ops Prague, gold transcription 98.5% 99.8% 0.0% 
Ops Prague, no callsign context 96.5% 98.7% 2.3% 

Ops Prague, callsign context 96.6% 98.2% 2.8% 
Ops Prague, bad speech model 76.8% 88.5% 13.5% 
Ops Vienna, gold transcription 94.8% 98.2% 0.0% 
Ops Vienna, no callsign context 89.9% 93.0% 5.1% 

Ops Vienna, callsign context 88.6% 91.6% 6.7% 
Ops Vienna, bad speech model 82.7% 87.8% 9.5% 

 

This results in a bad performance concerning WER. We see 
that a lower WER of 2.3% results in a worse command recog-
nition rate (96.5%) as compared to a WER of 2.8%. The latter 
WER is based on using the context information, i.e., infor-
mation regarding which aircraft callsigns are currently con-
trolled by the ATCo. The gold transcription “austrian two three 
one” is then recognized as, e.g., “austrian three three one” if 
only AUA331 is available in context, although the ATCo 
clearly said “two three”. Another interpretation is that, e.g., 
“ryanair” is automatically transcribed, whereas just “air” was 
understandable in the utterance. 

The data does not only show that a lower WER does not 
automatically result in a higher command recognition rate, but 
also shows that fully recognizing an instruction/command does 
not require each word of the command to be correctly recog-
nized. The command extraction algorithm always uses the in-
formation as to which callsigns are currently in the air, inde-
pendent of the fact whether the speech-to-text block uses this 
information or not. 

Table 8 shows what command recognition rates could be 
expected for certain WER and different average command 
length in words, if the WER would directly translate to the com-
mand recognition rate provided that the recognition results for 
a word are independent from the recognition results of the pre-
vious words, which is not true. 

TABLE 8: COMMAND LENGTH IN NUMBER OF WORDS 

WER 3 4 5 6 7 8 9 
2.3% 93% 91% 89% 87% 85% 83% 81% 
2.8% 92% 89% 87% 84% 82% 80% 78% 
5.1% 85% 81% 77% 73% 69% 66% 62% 
6.7% 81% 76% 71% 66% 62% 57% 54% 
9.5% 74% 67% 61% 55% 50% 45% 41% 

13.6% 65% 56% 48% 42% 36% 31% 27% 

 

Assuming that the sequence of words “descend flight level 
two one zero” consisting of six words only results in 
“DESCEND 120 FL” if all six words are correctly recognized, 
should result in a command recognition rate of 55% given a 
WER of 9.1%. The average command length for Prague and 
Vienna data were 7.0 and 5.6 words, respectively. 

So, for a WER of 2.8% a command recognition rate of at 
most 82% should result, but we have achieved 96.6% (as shown 
in Table 7). Similarly, for a WER of 5.1% for Vienna ops room 
data without using callsign information from the surveillance 
data, we expect a command recognition rate of about 75%, but 
we observed 89.9% recognition rate. The command extraction 
algorithm is quite robust, which was also shown by Ohneiser et 
al. on tower utterances from Lithuanian ATCos [33]. 

Table 9 illustrates the results, if we concentrate on altitude 
changing command types (column DESCEND) and direction 
changing command types (column DIRECT_TO), which are 
important in the ATC world. The top part of Table 9  shows the 
results for Prague and the bottom part for Vienna ops room data. 
The command recognition rate RcR for the DESCEND com-
mand decreases only slightly with increasing WER within ac-
ceptable levels, i.e., it decreases by less than 3% absolute when 
WER is below 7%. In these cases, RcR for the DESCEND com-
mand is better than RcR for all commands shown in Table 9.  

TABLE 9: SPECIFIC COMMAND RECOGNITION RATES 

Ops Prague  
 All DESCEND DIRECT_TO 

WER 6063 925 370 

0.0% 98.5% 99.8% 97.0% 

2.3% 96.5% 98.3% 95.1% 

2.8% 96.6% 99.0% 87.8% 

13.6% 76.8% 76.1% 77.3% 

Ops Vienna 

 All DESCEND DIRECT_TO 

WER 4417 679 387 

0.0% 94.8% 98.5% 91.0% 

5.1% 89.9% 95.9% 86.6% 

6.7% 88.6% 95.4% 82.2% 

9.5% 82.7% 86.5% 77.3% 

 

However, the command recognition rate decreases signifi-
cantly for DESCEND command if WER gets worse, i.e., worse 
than 9%. For such cases, the command recognition rate for 
DESCEND command is not better than the overall command 
recognition rate averaged over all command types. The perfor-
mance of RcR for the DIRECT_TO command, however, de-
creases already, when the WER gets slightly worse. 

B. Recognition Rates considering Additional Command Types 

The recordings from Vienna and Prague were annotated in 
2017 during the MALORCA project and in 2019. At that time 
GREETING and FAREWELL were not annotated, i.e., all the 
results reported in Table 7 and Table 9 do not consider these 
command types, although the command extraction implemen-
tation supports them. These extractions are, however, trans-
formed to “NO_CONCEPT”, before evaluation starts. 

Table 10 shows the command recognition error rates (ErR) 
for the cases when GREETING and FAREWELL commands 
are ignored and without ignoring them. The error rate dramati-
cally increases from 2.0% when these commands are ignored to 
about 12.7% when they are not ignored. 
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The table also shows the difference between a simulation in 
the labs and real-life utterances from the ops room. 
FAREWELL is seldom used in the lab environment, whereas 
greetings often occur in the ops room. For DESCEND and 
CONTACT command types, however no big difference in their 
frequency of occurrence is observed. 

TABLE 10: EFFECT OF IGNORING GREETING AND FAREWELL ON ERR 

 Lab Ops 
Total number of commands 6885 6094 

Number of GREETING commands 83 488 
Number of FAREWELL commands 2 201 
Number of DESCEND commands 1390 925 
Number of CONTACT commands 569 522 

ErR, switching off FAREWELL, GREETING 0.5% 2.0% 
ErR, switching on FAREWELL, GREETING 1.7% 12.7% 

 

C. Recognition Rates considering Unclassified Words 

Table 11 illustrates and compares the results of command 
extraction for gold and automatic transcription by also consid-
ering the number of unclassified words. The results are ex-
tracted from a data set from the London terminal maneuvering 
area (TMA). We concentrate on pilot utterances because of in-
creased noise and reduced audio quality for pilots, thereby re-
sulting in decreased ASR performance for pilots with respect to 
WER as compared to ATCos. Therefore, the relationship be-
tween unclassified words and the recognition rate can be better 
illustrated for pilot utterances. 

TABLE 11: CORRELATION BETWEEN UNCLASSIFIED WORD RATE (UNCLWR) 

AND RECOGNITION RATE (RCR) 

Dataset RcR 
(gold) 

UnClWR 
(gold) 

RcR 
(automatic) 

UnClWR 
(automatic) 

WER 
(automatic) 

Dir1  94.1% 6.9% 84.2% 8.9% 6.6% 

Dir2  92.3% 9.0% 69.1% 12.4% 11.8% 

Dir3  94.6% 8.6% 86.6% 9.0% 5.3% 

Dir4  94.4% 9.6% 89.1% 10.1% 5.2% 

 

From Table 11, we see that the unclassified word rate (Un-
ClWR) increases from gold to automatic transcriptions, the 
command recognition rates decrease. For example, for Dir1 Un-
ClWR for gold and automatic transcriptions are 6.9% and 8.9%, 
respectively. The command recognition rate decreases from 
94.1% to 84.2% when using automatic transcriptions. This is an 
indication of the presence of errors in the automatic transcrip-
tion and is reflected in the WER. The higher the WER, the more 
words will remain unrecognized, resulting in lower command 
recognition rates. 

For instance, the WER of Dir2 is relatively higher at about 
11.8%. This leads to a higher increase in UnClWR from 9% to 
12.4%, thereby significantly reducing the recognition rate from 
92.3% to 69.1%. This shows that there is a strong negative cor-
relation between the command recognition rate and the unclas-
sified word rate for pilots.  The correlation coefficient is -0.85. 
On the other hand, there is a positive correlation between the 
word error rate and the unclassified word rate, which is about 
0.78. Since there is a positive correlation between the word 

error rate and unclassified word rate, the presence of higher 
number of unclassified words in an utterance could be used as 
a hint that the command extraction is wrong. This is heuristic to 
reduce the command recognition error rate. Further analysis on 
more data sets is necessary in order to get statistically signifi-
cant results. Here we could only show a trend. 

For ATCo utterances, there is no correlation and this is re-
flected in the relatively low correlation coefficients of 0.42 and 
-0.47 for recognition rates and the errors rates, respectively. 
This could be attributed to the lower WERs for ATCo utter-
ances. 

Helmke et al. showed for the application of readback analy-
sis that there is a significant dependence between the rate of 
unclassified words and the recording environment [34]. In lab 
environment a UnClWR on gold transcriptions of 1.2% for Pra-
gue and of 4.3% for Vienna, respectively, was observed, 
whereas in ops environment 10% for Prague and 12% for Vi-
enna were observed. 

VI. CONCLUSIONS 

The paper has extended the ontology developed by SESAR 
solution CWP HMI also for pilot utterances. The implementa-
tion of the ontology rules results in command recognition rates 
of 99% for Prague airport and achieves 95% for Vienna airport, 
when manually transcribed utterances are used. 

The implementation is robust against errors resulting from 
speech-to-text transformation. WER below 3% decreases per-
formance of command recognition rate only slightly. WER 
above 10% still enable command recognition rates above 75%, 
even though the average command length was longer than 6 
words. Command extraction from automatically transcribed 
data with WER of 3% for Prague or 6% for Vienna achieves 
96% for Prague and 88% for Vienna, respectively. For Vienna 
the gold annotations are still improvable and the used phraseol-
ogy contains a high variability often deviating from published 
standard phraseology [2]. 

While the command recognition rate metric is not new, the 
presented ontology for transforming ATC utterances consisting 
of a sequence of words into its semantic elements, is new. Only 
the presented definition and the implementation of the extended 
ontology, enable a detailed comparison of different speech 
recognition and understanding applications on a semantic level 
and not just on word level. 

Using just the word error rate would represent only half of 
the truth. However, WER analyses do provide initial hints with 
respect to the ASR performance. New, however, is the proposed 
metric of the unclassified word rate, which also enables to eval-
uate the semantic extraction performance on unlabeled, i.e., un-
transcribed, ATC utterances. 

The results also show that evaluating speech recognition in 
the lab environment can result in different results compared to 
ops room environment. If the target environment is the ops 
room, the evaluation in the lab can only give first hints, but the 
command recognition rates and command recognition error 
rates can be very different in the ops room later on. 
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