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Abstract

Masked speech modeling (MSM) methods such as wav2vec2
or w2v-BERT learn representations over speech frames which
are randomly masked within an utterance. While these methods
improve performance of Automatic Speech Recognition (ASR)
systems, they have one major limitation. They treat all unsuper-
vised speech samples with equal weight, which hinders learning
as not all samples have relevant information to learn meaningful
representations. In this work, we address this limitation. We
propose ask2mask (ATM), a novel approach to focus on specific
samples during MSM pre-training. ATM employs an external
ASR model or scorer to weight unsupervised input samples by
performing a fine-grained data selection. ATM performs mask-
ing over the highly confident input frames as chosen by the scorer.
This allows the model to learn meaningful representations. We
conduct fine-tuning experiments on two well-benchmarked cor-
pora: LibriSpeech (matching the pre-training data) and, AMI
and CHiME-6 (not matching the pre-training data). The results
substantiate the efficacy of ATM on significantly improving the
recognition performance under mismatched conditions while
still yielding modest improvements under matched conditions.
Index Terms:Self-supervision, Wav2vec2, pretraining, Data se-
lection, Domain mismatch, asr, speech recognition

1. Introduction

Self-training and self-supervised training techniques rely on huge
amounts of unlabeled speech or text data for better generalization.
The self-training techniques such as pseudo-labeling [1, 2] and
student-teacher training [3] have shown promising improvements
by incorporating the data selection process. This data selection
step removes pseudo-labels with less confidence as denoted by
the teacher model before feeding the input to a student model. Xu
et al. [4] show that self-training and self-supervised training are
complementary to each other and also show that self-supervised
models act as good initialization for self-training techniques.

Masked speech modeling (MSM) is the recent and success-
ful self-supervised learning technique, thanks to the advent of
BERT [5] in NLP which inspired learning speech representations
from masked inputs. MSM techniques such as wav2vec2 [6],
HuBERT [7] and w2v-BERT [8] have shown considerable gains
across various down-stream speech tasks and have become the
go-to modeling approaches for ASR.

However, MSM does not have a data selection scheme to dis-
card the irrelevant input samples and instead imposes burden on
the training criterion to learn the relevance of the input samples
in learning meaningful representations. [9] noticed the impact
of not selecting relevant data from the huge amounts of unsuper-
vised data during pre-training by showing degradation in ASR
performance when fine-tuned to a target dataset with limited
data. To mitigate this constraint, [10] introduced substantially
more fine-tuning data related to the target dataset but did not
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achieve satisfactory results. [9] attempted to address this issue by
heuristically selecting the data from a closed set of unsupervised
speech databases or by including data relevant to target dataset
along with the existing pre-training dataset. However, this data
selection approach is not done within the existing pre-training
dataset and it is not completely empirically motivated.

In this study, we propose a simple strategy named ask2mask
(ATM) to incorporate data selection within a chosen pretraining
dataset. Here, the masking is done over the speech frames with
higher confidence as determined by the scorer. This is contrary
to the random selection of frames to be masked in conventional
MSM models. We hypothesize that this guided selection of
frames to be masked allows the model to focus on the frames
which can provide meaningful representations. The scoring
model used in this work is a speech recognition model trained
on small amount of data and provides frame-level confidence for
each input.

In [11], phonetic knowledge is injected to mask over pho-
netic segments to perform spectral augmentation. Determinis-
tic masking schemes are also proposed interms of phonemes
in [12] and using Entropy in [13] to improve multiple down-
stream speech tasks. Our ATM approach is primarily motivated
based on the recent work by [14] on semi-supervised learning
of conventional ASR systems which shows that performing data
selection at frame-level or token-level on unsupervised data pro-
vides better performance. Few works on unsupervised learning
also highlight the importance of weighting the data based on its
confidence [15, 16, 17]. We hypothesize that ATM can leverage
the effect of data selection within a particular training corpus
to further enhance the recognition performance of MSM tech-
niques.

To summarize, our contributions are listed as follows:

* Novelty: To the extent of our knowledge, ATM is the first
approach to incorporate a within-corpus data selection
strategy in MSM. We also show that data selection can
be simply performed inside MSM by guided selection of
frames to be masked using a scorer model.

Technical contributions: We provide a simple strategy
to incorporate data selection into MSM pretraining by
applying the confidence of the scorer. ATM is designed to
be compatible to all MSM based pre-training techniques.

Empirical study: Analysis is done to find an optimal
masking percentage for ATM and we highlight the ef-
fectiveness of ATM across varying masking percentages.
The importance of masking frames with high confidence
is substantiated by empirically comparing it with mask-
ing low confident frames and random frames respectively.
Experiments are performed on AMI and CHiME-6 data
which is from a distinct condition compared to Libri-light
corpus used for MSM based pretraining.
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2. Ask2Mask (ATM)

The primary reason to employ pre-training models is to exploit
the abundantly available unsupervised data for improving ASR
under limited availability of supervised data. The MSM models
such as wav2vec2 [6] and w2v-BERT [18] learn from unsuper-
vised data but they treat each data sample with equal weight
for computing the final objective. For instance, let the input
speech sequence X = [z1,%2,..., 2], wWhere x; is the log
Mel-filterbank feature vector at time ¢. X is sent to the feature
encoder ® to obtain the encoded representations E = ®(X).
The feature encoder contains convolutional layers performing
subsampling at a factor of 4 and reducing the total number of
frames of an utterance from T" to T to get E = [ey, ez, ..., er].
E is then sent to two parallel modules: 1) masking component,
and 2) quantizer. The masking is done over sets of frames or
blocks b1, ba, ..., bx and accommodates overlap between blocks.
Here K is the number of masked blocks in a randomly masked
encoded sequence E. The block by, = [ik, ¢|, where iy, is the
starting index of the masked block and c is the corresponding
right context size denoting the number of consecutive speech
frames. Here ) are randomly sampled from a uniform distri-
bution. It has been empirically observed by [6] that 49% of the
frames are masked and ¢ = 10 is chosen as the best hyperparam-
eter value to attain best representation during pre-training.

Instead, we generate a score s; for each encoded frame e;.
This is used to select relevant data in a fine-grained manner
during masking for computing the loss objective. Here, we
hypothesize that pre-training with data that closely resembles
the target domain leads to better recognition performance after
fine-tuning. Finally, a Gumbel-softmax quantizer component is
used to get quantized representations which act as targets for
wav2vec2 and w2v-BERT models.

2.1. Methodology

For each encoded feature frame e; € E, the scorer emits proba-
bilities p(v; = I | E); 1 € L of the frame belonging to a particu-
lar label. The scorer model is a CTC based frame-synchronous
ASR model separately trained with a limited amount of data.
Finally, the confidence score s; of the frame is defined as the
maximum probability across all labels:

St :mlaxp(vt =1|E) (1)

We sample K masking start indices {i1, .., i } with probabilities
without any replacement. That is, we sample beginning frames
with probability proportional to the scores of each frame. This is
the key difference between ATM and other masking approaches.
Prior works uniformly sample the start indices of each masking
block bi.x, while the ATM uses the probability distribution
induced by the scorer. K is determined by the percentage of
frames to be masked.

We hypothesize that frames with maximum confidence from
an external scoring model will be 1) easiest to learn using an
MSM training criteria and 2) most informative in for pretrain-
ing to facilitate fine-tuning. Conversely, the lowest confidence
frames, those more confusable to an external scoring model, will
be the least reliably learned by MSM and least informative for
pretraining.

The resulting frames are sent as input to the MSM architec-
ture and the final loss objective £ is determined by either of the
MSM objectives such as wav2vec2: L., or w2v-bert: L,,p.This
modified training objective allows the model to focus on learning
from gradients calculated from the frames with high confidences.

3. Experimental Setup

All experiments including pre-training and fine-tuning are per-
formed using 80 dimensional log Mel-filterbank features com-
puted over the sampled 16kHz audio. Datasets (such as AMI)
contains wideband audio and are downsampled to 16kHz. We
evaluate with the test-other (LibriSpeech partition) to show the
importance of ATM on matched data conditions, while [HM-eval
and SDM-eval (AMI partitions) is used to validate the model
under mismatched conditions.

3.1. Datasets used

Pretraining (PT): Libri-light (LL-60k) dataset contains 60k hours
of unlabeled speech and is used to pre-train all MSM models.
LL-60k is the most widely used large unsupervised speech cor-
pus for various PT techniques. Each input speech sequence is
constructed by first randomly selecting 32-64 seconds segments
from the original utterance. From these segments, a contigu-
ous 32 second region is extracted from a random starting point
on-the-fly during MSM PT as described in [19].

Finetuning (FT): Different target datasets including 1) 100
hrs of Librispeech (LS-100) [20]. 2) 100 hours of AMI and 3)
speechstew (approx. 5k hours) [10] are used to perform our FT
experiments. Each dataset used is specific to a certain target
data condition, for instance LS-960 is closely matches the LL-
60k, AMI dataset is distinct from the LL-60k condition and it
contains speech from two kinds of microphones (i) Independent
head microphone (IHM). (ii) single distant microphone (SDM).
SpeechStew is composed of datasets chosen from multiple con-
ditions to create a mixed domain aggregate corpus. Processing
details are described in [10].

Evaluation: We evaluate ATM performance on AMI us-
ing IHM-eval and SDM-eval. Finally, we also evaluate using
CHiME-6 [21] without using any FT data from CHiME-6 train-
ing set to compare the performance of ATM on completely un-
seen target dataset.

Scorer training data: A CTC [22] based conformer model
with 100M parameters is trained on the fine-tuning data, thereby
not requiring additional supervised data. The scorer is chosen
based on the target downstream task and in addition to this, the
scorer needs to be frame-synchronous to provide confidence
for every frame in a speech sequence. In this work, we use a
frame-synchronous ASR system as the scorer by employing the
connectionist temporal classification (CTC) objective. The CTC
is preferred over the RNN-T by analysing the reliability of the
frame-level predictions. Word-piece model (WPM) with 1024
tokens are used as labels for training the scorer models.

3.2. MSM architecture

W2v2-cfr: This is a wav2vec2 with conformer based context
network which first encodes the filterbank features using two 2D
convolutional layers with strides (2,2). Model has 100M/600M
parameters and is denoted as “w2v2-cfr-L/XL”. HuBERT-cfr-
L/XL is similar to w2v2-cfr-L/XL - it differs in using the k-
means based quantizer with 1024 targets and computes the cross-
entropy loss as described in [7]. The “L/XL” size models con-
tains context network €2 12/24 conformer layers with 8 attention
heads and 1024 hidden dimensions.

W2v-BERT: W2v-BERT is explored using two model sizes:
one with 100M parameters denoted as “w2v-BERT-L” and con-
taining 2 conformer layers in context net {2 and 4 conformer
layers in A. A 600M parameter model is denoted as “w2v-
BERT-XL"” contains 8 conformer layers in {2 and 24 conformer
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layers in A. Each conformer block contains 1024 hidden dimen-
sions with 8 attention heads, kernel size of 5 with local context of
128. The remaining architecture is identical to the configuration
defined in [8].

3.3. PT and FT configuration

The models L/XL are trained with a global batch size of
512/2048 on 64/256 Google TPU V3 cores for 2-4 days re-
spectively. Adam optimizer is used with a learning rate schedule
(Section 5.3 of [23]) with 2e-3 as peak learning rate and 25k
warmup steps. The model training configuration follows similar
procedure as described in [19].

The FT is done by employing the context network from the
PT model by adding a final layer with 1024 WPM units learnt
using the RNN-T objective function [24]. The FT is done on
w2v-BERT-XL, w2v2-cfr-XL and HuBERT-cfr-XL after 400k
PT model updates. The w2v-BERT-L model is FT after 900k PT
model updates. w2v-BERT-L is used to initially perform wide
range of analysis and hyper-parameter optimization on ATM.
w2v-BERT-XL is finally used to compare the results of ATM
across existing works in literature. w2v2-cfr-XL and HuBERT-
cfr-XL are also used in our experiments. All these models are
trained with the same configuration as in [19].

4. ATM analysis

The empirical study on ATM is done primarily using w2v-BERT-
L since this generates the best WER performance across similarly
sized models (cf. Figure 2). The pre-trained models are fine-
tuned with either LS-100 or AMI. The resulting finetuned models
are evaluated on IHM and SDM evaluation sets to understand
the domain generalization aspect of ATM. Librispeech evalua-
tion sets are used in unison to study how ATM behaves under
matching domain condition. We initially conduct our analysis
on choosing the optimal scorer and to understand how much
supervision is required. Three different scorers are trained using
1 hour, 10 hours and 100 hours of Librispeech data. The scorers
are evaluated using 1 hour of Libri-light data and the results
are in table 1. We chose 1 hour of Libri-light data since the
pretraining data is from the same domain (Libri-light).

Table 1: Comparison between scorers trained with different
amount of supervised data (1h, 10, 100h of Librispeech). The
scorer is evaluated on 1hour of Libri-light data.

#Hours. % WER

1 45.4
10 27.6
100 25.8

4.1. Masking percentages

The number of masked frames within an utterance plays a key
role in masked input learning and in this study, we vary the
masking percentages from 30% to 50% to determine the best
percentage for ATM approach. Previous works on wav2vec2 [6]
showed that masking 49% of the frames is ideal for 30 second
utterance and this has been followed subsequent works such as
HuBERT and w2v-BERT. In case of ATM, this can differ as
the frames selected are of higher confidences. Figure 1 shows
that ATM achieves its “sweet spot” with 40% masking for both
IHM-eval and test-other set. Interestingly ATM’s performance

® Random-IHM * ATM-IHM @ Random-test-other * ATM-test-other
20 12

% WER on IHM-eval
% WER on test-other

Masking %

Figure 1: Recognition performance of w2v-BERT with ATM and
random masking on IHM-eval and test-other sets by varying the
masking percentage during pre-training. The FT is performed
on LS-100 for evaluating test-other, while IHM-eval is evaluated
with model FT with AMI. Random masking shows a substantial
shift in performance when varying the masking from 30% to 40%,
while the ATM remains robust to changes in masking percentage.

is stable across large variations in masking rates with relatively
good performance with masking rate as low as 30%. This is a
significant difference from the uniform sampling of prior work
which suffers significant drop in performance as the masking rate
goes below 40%. The result indicates that masking the right set
of frames, which ATM aims to do, is able to promote more stable
performance. For instance, ATM achieves a %WER of 12.65
with 33% masking and 12.52 with 40% masking on IHM-eval
respectively as shown in Figure 1. The recognition performance
on test-other and IHM-eval improves over baseline from 8.86%
to 8.79% and 13.38% to 12.52% respectively by using ATM.

4.2. Consistency across different architectures

5 @ Baseline W ATM
1463 W Baseline W ATM
4
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% WER on SDM-eval

Figure 2: Performance comparison of different MSM architec-
tures with and without applying ATM on IHM-eval and SDM-eval
in AMI. All these models are FT using AMI. Here “cfr” refers to
conformer.

Figure 2 shows that ATM consistently outperforms on both
IHM-eval and SDM-eval across multiple MSM architectures in-
cluding wav2vec2 and HuBERT. In the case of IHM-eval, ATM
attains a relative improvement of 9% over w2v2-cfr-L, 4% rel-
ative improvement over HuBERT-cfr-L. and 5% relative gain
over w2v-BERT-L baseline models respectively. W2v2-cfr-L
using ATM obtained 6.2% relative improvement over its baseline
counterpart and HuBERT-cfr-L with ATM attained 7.9% rel. im-
provement over HuBERT-L baseline on SDM-eval respectively.
On the other hand w2v-BERT-L baseline is better compared to
w2v2-cfr-L and HuBERT-cfr-L on both IHM-eval and SDM-eval
by achieving 12.52% and 27.34% WER respectively.
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4.3. Analysis on Librispeech

Experimental analysis is conducted using different model archi-
tectures to validate the effect ATM on LS-100 and are present
in table 2. The impact of increasing the model parameters from
“L” size to “XL” size, we FT on LS-100 using MSM models
with XL size and the results are in table 2. We did not find any
consistency in the performance across the evaluation sets using
any of the MSM architectures. Slight gains are observed on
test or dev or dev-other using w2v2-cfr-XL. Once the baseline
in w2v-BERT-XL gets better, ATM did not achieve gains on
test-other. This scenario can be explained due to effectiveness
of MSM pre-training under matched condition and can perform
well without any necessary data selection approach.

Table 2: Performance comparison of different MSM architec-
tures with and without applying ATM on all evaluation sets on
Librispeech.

Model PT-LL, FT-LS100

dev  dev-other test test-other

w2v-BERT-L 3.78 8.86 3.85 9.32

+ATM 3.71 8.97 3.89 8.92
w2v2-cfr-XL 25 47 2.6 49
+ATM 2.4 46 25 5.0
HuBERT-cfr-XL 2.5 4.7 26 5.0
+ATM 25 4.6 25 5.0
w2v-BERT-XL 2.4 4.4 25 4.6
+ATM 2.3 4.4 2.4 47
5. Results

In this Section, the XL models are used to compare the impor-
tance of ATM on AMI and CHiME-6. These three datasets show
the effect of ATM on diverse conditions with a much larger
model. Results are compared with appropriate prior work. Ta-

Table 3: %@WER obtained by FT with AMI using w2v-BERT-XL
model using baseline and ATM. Evaluation is done on AMI test
sets to highlight the effect on mismatched condition.

MSM arch. IHM-eval SDM-eval
w2v2-cfr-XL 104 25.7
+ATM 10.0 24.5
w2v-BERT-XL 10.1 25.1
+ATM 9.5 23.7

ble 3 presents the results of ATM on AMI by comparing it with
w2v2-conformer-XL baseline and w2v-BERT-XL baselines. We
include w2v2-conformer-XL to further test the consistency of
ATM on XL models when evaluated on harder tasks. ATM
observes consistent gains over baseline on both IHM-eval and
SDM-eval when trained with XL models.

Table 4 analyses the effect of ATM on multiple evaluation
sets such as AMI and CHiME-6. These four sets are chosen
based on the mismatch range from minimum to maximum and
for instance, Commonvoice has the minimum mismatch with
Libri-light data, while CHIME-6 has the maximum mismatch.
The state-of-the-art results published in [10] are obtained by

Table 4: Comparison with state-of-the-art results on SpeechStew.
The FT is done on SpeechStew and the results are evaluated
using Kaldi scoring to match published results. Note that the
model has never seen any CHIiME-6 data, and we use it as an
example for zero-shot learning mode on how the model performs
on chime-6 wihout seeing any of its training data.

Model AMI
IHM SDM

Speechstew [10] 9.0 21.7 57.2
w2v2-cfr-XL [10] 9.6 23.8 56.4

w2v-BERT-XL 9.2 21.5 55.5
+ ATM 9.0 21.0 54.3

CHiME-6

choosing the best Conformer model supervisedly trained with
multiple datasets such as AMI, CommonVoice, Broadcast News,
Librispeech, Switchboard/Fischer, TED-LIUM and Wall Street
Journal. Note that the training data did not include the CHIME-6
data. The authors in [10] show that simply training an ASR
with lots of data leads to best results compared to the wav2vec2
finetuned model. Their best results are denoted in table 4 and
will be used to compare with our best ATM results.

Our baseline w2v-BERT-XL attained better results over the
published w2v2-conformer-XL and Speechstew results. In Com-
monvoice and CHiME-6, the baseline attained 7.4% and 2.9%
relative improvement over Speechstew respectively. However, by
including our ATM with w2v-BERT-XL, there was consistent im-
provement across all range of mismatched domains. This result
clearly justifies that selection of reasonable input samples during
pre-training reduces the necessity of having finetuning data from
the same domain to improve performance. To further substanti-
ate this, the results on AMI show a 4.6% relative improvement
on AMI-SDM over Speechstew which is of different domain
compared to pre-training domain. In case of minimal mismatch
domain such as Commonvoice, the ATM attained 11.6% relative
improvement over Speechstew. These observations show that
ATM demonstrate their effectiveness to generalize to unseen and
challenging speech recognition conditions.

6. Conclusion

In this work, we introduce ask2mask (ATM) to perform data se-
lection over unsupervised samples for MSM based pre-training
to focus on relevant information and learn meaningful represen-
tations. ATM achieves 21.0% WER on mismatched AMI SDM
set with guided masking. We empirically show that ATM is more
robust to changes in masking percentage compared to random
masking. as typically used in MSM. Our results substantiate the
importance of learning from high confident frames by attaining
improvements across multiple evaluation sets. An important
aspect of ATM approach is its flexibility to incorporate into any
MSM pretraining techniques. In our future work, we wish to
apply ATM over pretraining data containing data from multi-
ple domains [9, 25] to achieve further improvements. We also
consider two future enhancements to ATM: (1) Joint training of
the scorer model with MSM model by simultaneous training on
supervised and unsupervised data. (2) Perform active learning by
sharing the parameters of MSM with the scorer once the MSM
is well trained.
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