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ABSTRACT This paper presents the resources and benchmarks developed for keyword search (KWS)
in spoken audio from six low-resource Indian languages (from two families), namely Gujarati, Hindi,
Marathi, Odia, Tamil, and Telugu. The current work on constructing keywords and building benchmark
KWS systems is inspired by the popular IARPA Babel program and the subsequent works on low-resource
KWS. The keywords are constructed by taking into account their properties i.e., occurrence, length, and
average confusability; and their effects on the evaluation metric - the term-weighted value (TWV). We make
use of freely available speech datasets, and reprocess them to create resources for KWS, thereby adding
value to the existing speech resources. Four ASR-based KWS systems are built, and their performance is
analyzed across the three keyword properties on all the six languages. The prepared keywords and other
related resources to replicate our experiments are made available for the public. We believe that the analysis
and guidelines provided in this paper will not only help the research community, but also practitioners and
engineers to easily create KWS resources for newer languages, datasets, and scenarios.

INDEX TERMS Keyword search, low-resource languages, term-weighted value (TWV).

I. INTRODUCTION
Large amounts of publicly available datasets and resources
(labels, annotations, open source software) have played a
major role in advancing speech and language technologies.
However, of more than 6500 spoken languages in the world,
only a small number of languages fall under the high-resource
category, while many come under the category of low/under
resourced languages [1]. Different tasks under speech tech-
nologies require different kind of resources or manual anno-
tations. However, certain tasks are relatively close to each
other, and given the annotations for one (primary) task, semi-
automatic methods can be employed to quickly build the
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required annotations and resources for the other related (sec-
ondary) task. For example, one requires speech recordings
with corresponding textual transcriptions (optionally a lexi-
con) to build an automatic speech recognition system (ASR).
By using semi-automatic methods, these resources can be
extended for keyword search (KWS), a secondary but related
task, and the required additional resources are a set of key-
words (having specific properties).

Keyword search (KWS) or spoken term detection (STD) is
the task of automatically searching, detecting, and retrieving
a set of user-defined keywords (usually in text form) from a
spoken audio corpus. The technologies developed for KWS
have various applications including, but not limited to index-
ing, searching in multimedia archives [2], video lectures [3],
or voice based human-computer interfaces [4].
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Most of the approaches for KWS rely on automatic speech
recognition (ASR) systems. The ASR system is used to
decode the speech utterances into lattices, and a KWSmodule
performs the search within these lattices. Hence, the perfor-
mance of KWS systems directly correspond to the word-
error-rate (WER) of the underlying ASR system. It becomes
especially challenging in low-resource scenarios (languages),
where the amount of training data is relatively low and the
WERs of ASR systems are relatively high [5]. In WER
computation, every word is treated equally, whereas in the
case of KWS, detecting rare words might be of higher interest
than detecting frequent ones. Hence for evaluating a KWS,
the most often used metric is term-weighted value (TWV),
which is dependent on the occurrence of the keyword in a
test set.

In KWS, the keywords are in text format, whereas in query-
by-example spoken term detection (QbE-STD), the keywords
or queries are in spoken form. The most widely used methods
rely on template matching of speech features (eg: Gaussian or
phone posteriorgrams) using dynamic time warping (DTW)
algorithms [6]–[8], and similarity search based on end-to-end
neural networks [9]. There exist hybrid approaches that use
discriminatively trained models to extract speech features
(eg: multilingual, articulatory bottleneck features) [10]–[13],
which are then used in a template matching framework.

While there have been attempts to train ASR-free KWS
systems [14], they do not yet perform as good as the
traditional ASR-based KWS systems [15]. Moreover, any
improvements and technological advances in ASR [16] could
directly result in the improvement of KWS systems [17].
Research on low-resource KWS / STD gained importance
during the past 15 years. The National Institute of Stan-
dards and Technology (NIST) initiated the spoken term
detection (STD) evaluation (2006), and OpenKWS evalu-
ations [18], [19] to facilitate research and development of
speech technologies for retrieving information (keywords)
from spoken data archives. The IARPA Babel program [20]
(2012-2016) has played a major role in the progress of the
low-resource ASR and KWS research. A majority of the
techniques were released as recipes in the open source Kaldi
toolkit [21]–[23], aiming to help a wider community of
researchers and engineers.

On the other hand, MediaEval’s spoken web search
[24], [25], query-by-example spoken term detection
[26]–[29], organized evaluations and provided spoken data in
many Indo-European and African languages. The provided
speech data does not contain transcriptions for speech or
language labels, and is mainly focused on QbE-STD to
help facilitate the research in unsupervised methods in low-
resource scenarios.

There was a considerable amount of study and analysis of
the KWS systems in low-resource languages from the IARPA
Babel program [5], [23], [30], [31].

The work presented in this paper is inspired by [30], where
the authors have analyzed the properties of keywords, such
as occurrences, length (in terms of number of phonemes)

and average confusability, with respect to the term-weighted
value. The TWV is themost widely usedmetric for evaluating
KWS systems [18], [19], [24], [32], [33], which is designed
to be dependent on the occurrence of the keyword in the test
set. More details on TWV and the properties of keywords are
explained in Section III.

Even though several efforts have been made for KWS
in low-resource languages, there is a lack of a carefully
crafted set of keywords and benchmarks for datasets that are
freely available to the public. Moreover there exists no recipe
or guidelines on how to create a suitable set of candidate
keywords from the existing speech resources. The aim of
the current work is to create resources (keywords, training
recipes) using existing speech datasets, and building bench-
mark KWS systems that would act as baseline systems for
future research. For this, we used freely available datasets
that were primarily proposed for research in ASR for low-
resource languages. These datasets are reprocessed to make
them suitable for training and testingKWS systems. Themain
contributions of the paper are summarized below:

1) Two existing speech datasets comprising six languages
are analyzed, and reprocessed to make them suitable
for KWS.

2) Using a semi-automatic procedure, keywords are pre-
pared for all the six languages, while taking into
account the three keyword properties and its effect on
the term-weighted value, the KWS evaluation metric.
Guidelines and analyses are provided that can help
in rapidly creating keywords for newer languages,
datasets and scenarios.

3) Four ASR-based KWS systems are built to benchmark
the KWS results on six languages. These can act as
baseline systems for future research works.

4) The keywords and other necessary resources (including
Kaldi recipes) for replicating our experiments are made
public.1

The rest of the paper is organised as follows: Section II
gives an overview of existing datasets available for KWS,
which serves as motivation for preparing keywords for low-
resource languages. Section III explains the TWV evaluation
metric for KWS and the properties of keywords that affect
TWV. Section IV describes the data processing details and
Section V presents four ASR-based KWS systems built using
the open source Kaldi toolkit, followed by the keyword prepa-
ration methodology in Section VI. Experimental results and
discussions are presented in Section VII, and conclusions are
given in Section VIII.

II. AN OVERVIEW OF EXISTING DATASETS FOR KWS
This section presents an overview of existing datasets for
KWS. The most popular one is from the IARPA Babel
program which contains 25 languages, namely Amharic,
Assamese, Bengali, Cantonese, Cebuano, Dholuo, Guarani,
Haitian, Igbo, Javanese, Kazakh, Kurdish, Lao, Lithuanian,

1https://github.com/skesiraju/indic-kws
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Mongolian, Pashto, Swahili, Tamil, Tagalog, Telugu,
Tok Pisin, Turkish, Vietnamese, and Levantine Arabic. Each
language pack contains about 40− 80 hours of training data
(speech recordings with transcriptions) and approximately
10 hours of test data. There is also a 10 hour training set as part
of a low-resource language pack. The number of keywords
are in the range 300−3000, depending on the language pack.
At the time of writing this paper, the Babel language packs
are not freely available, but one can obtain them from the
Linguistic Data Consortium (LDC)2 for a nominal price of
$25 per pack.

There was little work done on KWS for Indian lan-
guages and there exists no free datasets or benchmarks that
are comparable to that of IARPA Babel datasets. How-
ever, more recently the authors from [34] presented a work
on 10 low-resource Indian languages, namely, Assamese,
Bengali, Gujarati, Kannada, Malayalam, Marathi, Odia,
Bodo, Manipuri, and Rajasthani. They used existing text-
to-speech datasets3 which contain about 4−51 hours of audio
data, depending on the language, from which 1000 utterances
were selected for the test set. There are about 160 keywords
per language; 100 keywords of length 1 − 10 characters,
50 keywords of length 10 − 15 characters, and 10 keywords
of length 15 − 20 characters. However, there is no further
analysis on the occurrences of these keywords. Note that the
TWV is directly dependent on the keyword occurrence.

The MediaEval’s spoken web search (SWS) provided data
in several low-resource languages: Hindi, Telugu, Gujarati,
(Indian) English for SWS 2011, African languages (isiNde-
bele, Siswati, Tshivenda, and Xitsonga) from LWAZI [35]
for SWS 2012. Albanian, Basque, Czech, non-native English,
Isixhosa, Isizulu, Romanian, Sepedi and Setswana for SWS
2013. Slovak (apart from SWS 2013 languages) was added to
MediaEval’s Query-by-example search in speech (QUESST
2014). While these datasets cover a diverse set of low-
resource languages, they do not have speech transcriptions
or language labels and cannot be used directly for KWS.

III. EVALUATION METRIC FOR KWS
This section describes the term-weighted value (TWV),
which is the most widely used metric for assessing the perfor-
mance of KWS and STD systems. It was proposed by NIST
in 2006 for spoken term detection evaluation [32]. It was
later used in the IARPA Babel program, NIST OpenKWS
evaluations [18], [19] and MediaEval SWS [24], [33], as the
primary evaluation metric. The TWV is well studied [36] in
the literature and there were attempts to train KWS systems
that optimize directly for the TWV metric [37], [38].

The following notation is used to formally present the
TWV metric. Let T be the set of terms (keywords), with
t ∈ T be a given term (keyword). Let θ be the detection
threshold. In order to compute TWV, a KWS system requires
to provide a detection score, start and end time stamps for

2https://www.ldc.upenn.edu/
3https://www.iitm.ac.in/donlab/tts/voices.php

every hypothesized occurrence, also known as a detection.
Every system detection is matched with the ground truth
reference using a function that accounts for both the tem-
poral overlap and the detection score. Hit corresponds to
an instance where a correct detection is made, and Miss
corresponds to an instance where the system failed to detect
an actual occurrence of a keyword. False alarm (FA) corre-
sponds to an instance where the model falsely hypothesized
a keyword.

With the above definitions, the probabilities of miss (PMiss)
and FA (PFA) at detection threshold θ for a single term t are
calculated as

PMiss(t, θ) = 1−
Ncorrect(t, θ)
Ntrue(t)

, (1)

PFA(t, θ) =
NFA(t, θ)

Tspeech − Ntrue(t)
, (2)

where Ncorrect(t, θ) corresponds to the number of correct
detections of t recovered by the system with a detection
score ≥ θ . Ntrue(t) is the true occurrences of term t in the
given test corpus, and NFA(t, θ) represents the number of
false alarms (incorrect detections) with a detection score≥ θ .
Tspeech is the total amount of speech in test data in seconds,4

which corresponds to the number of trials. This was rather
an arbitrary choice, as acknowledged by NIST [18], since it
is not possible to count the number of discrete number of
trials from a continuous speech. Moreover, it is not necessary
or required to provide a detection score for every keyword-
utterance pair.

From (1) and (2), it can be seen that the cost of a miss
depends on the number of true occurrences of a keyword
(Ntrue(t)), whereas the cost of a FA is effectively a constant
across all keywords (since Tspeech � Ntrue(t),∀t ∈ T ).
A perfect hit adds value to the system, whereas a miss or a
false alarm reduces the value of a system. Hence, TWV is one
minus the average value lost by the system per term; which is
a weighted linear combination of number of misses and false
alarms.

TWV(θ ) = 1−
1
|T |

∑
t∈T

(
PMiss(t, θ)+ β PFA(t, θ)

)
(3)

where β =
C
V
(
1
pt
− 1) (4)

Here pt = 0.0001 denotes the prior probability of a keyword,
C
V = 0.1 represents the cost to value ratio. This results in the
value of β to be 999.9. Again, these constants were defined
by NIST for STD [32] and used in subsequent OpenKWS
evaluations [18], [19]. Some of these choices seem arbitrary,
but for the sake of simple interpretation, one can ignore the
presence of pt ,C,V , and just view β as a scaling factor
for PFA. Alternative interpretation in terms of effective prior
exists that combines all pt ,C,V into a single one [26]. Now,
the range of TWV values of a system depends only on β,

4This is calculated by force aligning the speech signal to the corresponding
text transcriptions and considering only the duration of speech regions.
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TABLE 1. Statistics of the datasets used for KWS experiments. The left half of the table presents the duration of audio in hours. The right half of the table
gives the size of vocabulary and keyword sets. V represents the total vocabulary, with Vdev and Vtest representing the vocabulary of words in the
development and test sets respectively. T represents the set of keywords that occur in the test set, T Train ⊂ T , and T Dev ⊂ T are set of keywords that
appear in the training and development sets respectively. % Test exclusive refers to the percentage of keywords that appear only in the test set.

which may not be suitable for every scenario. Moreover the
systems are compared against a hard decision, rather than on
the detection scores. In order to overcome these, the systems
can be compared with the help of a detection error trade-off
(DET) curve. The trade-off between PMiss and PFA (without
the scaling factor β) for all possible values of θ can be seen on
the DET curve. The actual TWV (ATWV) corresponds to the
point on DET curve which is the TWV using the actual deci-
sionsmade by a given system. ThemaximumTWV (MTWV)
corresponds to the point on the DET curve where a value of
θ yields the maximum TWV. The difference between ATWV
and MTWV can show the score calibration issues or the loss
in choosing a sub-optimal operating point. The KWS systems
are often evaluated with the help of NIST F4DE (framework
for detection evaluation) toolkit [39], which computes the
TWV scores.

An alternative evaluation metric called the normalized
cross-entropy cost (Cnxe) was proposed for MediaEval SWS
2013 [26], and was later used for MediaEval QUESST
2014 [28]. It relies on the likelihood ratio scores of null
(i.e., the segment contains the query term t) and alternative
(i.e., the segment does not contain query term t) hypothe-
ses. This allows us to compare the systems based on their
scores rather than on hard decisions. There are two main
differences between TWVandCnxe: (i) Unlike TWV, theCnxe
treats every detection equally regardless of the frequency of
occurrence of the keyword, i.e., detecting rare and frequent
words are weighted equally, (ii) two systems can be com-
parable only when they use the same segmentation and the
same set of trials. In practice, a system provides score only
for hypothesized occurrences, and not necessarily to every
keyword-utterance pair. To address this issue, the organizers
of MediaEval SWS, proposed to use the minimum score as
the score for censored trials (the missing trials in a system’s
submission). This scheme might be suitable for evaluations
where the onus lies on the organizers, but makes it impractical
in our scenario. Hence, we use only TWV as our KWS
evaluation metric throughout the paper.

While every keyword is treated equally for TWV, every
detection is not, since PMiss is dependent on the occurrence
of keyword (Ntrue(t)) in the test set. This suggests that a good
candidate set of keywords for evaluating any KWS system

should contain many rare words. Rare words are likely to
be more informative than frequent words. Apart from the
keyword occurrence that explicitly influences TWV, there are
two other keyword properties that have an influence on the
TWV metric. These are keyword length and average confus-
ability distance, as observed for various datasets (languages)
from IARPA Babel program [30].

These three keyword properties are briefly explained
below:

1) Keyword occurrence is simply the number of times a
keyword has occurred in the test set. Detection of a rare
keyword from the test set will enhance the ATWV score
as compared to the detection of a common keyword.

2) Keyword length refers to the number of phonemes in
the word as extracted from the lexicon. In general,
a KWS system yields better detection performance for
longer keywords than shorter ones. This is due to the
availability of more acoustic information for longer
keywords. Moreover, longer words are more likely to
be rare.

3) The keyword confusability distance dt for a key-
word t is defined [30] as the average minimum
Levenshtein distance for the keyword in every utterance
n = 1 . . .N ,

dt = round
(
1
N

N∑
n=1

min
(

dist
∀i,t 6=wni

(t,wni)
))

(5)

where round indicates rounding to nearest integer, N
is the total number of utterances, wni is word i in
utterance n, t is the keyword, and dist represents the
Levenshtein distance (using phonemic transcriptions
from lexicon) that is computed for all the words wni in
a given utterance except when t = wni. The ATWV
values will be low for more confusable keywords as
compared to less confusable ones. Moreover, shorter
words are more likely to be confusable than longer
ones.

Based on the above properties, a good candidate set of key-
words should ideally have the following trends with respect
to the TWV metric: ATWV vs keyword occurrence shall be
a decreasing curve, whereas ATWV vs keyword length and
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average confusability distance shall be increasing curves. The
same was observed for several IARPA Babel languages [30].
The aim of this work is to create a set of keywords that
follow the above described trends. More details on keyword
preparation are described in Section VI.

IV. DATASET PREPARATION FOR KWS
This section describes the dataset preparation, which includes
the strategy for splitting the data in training, development
(dev), and test sets that are suitable for KWS. The data is
prepared for six Indian languages namely, Gujarati (guj),
Tamil (tam), Telugu (tel), Hindi (hin), Marathi (mar), and
Odia (ori). The data for the first three languages (guj, tam, tel)
are derived from the Interspeech 2018 special session for low
resource Indian language ASR (IS 2018) [40], whereas the
data for the latter three languages (hin, mar, ori) are derived
from multilingual and code-switching ASR challenges for
low resource Indian languages (MUCS 2021) [41], a special
session from Interspeech 2021.

A. PROCESSING IS 2018 DATASET
The original data splits had 40 hours in the training set and
approximately 5 hours each in the development (dev) and
blind test sets respectively. The transcriptions of the blind
test set were not released. The sampling frequency of the
data is 16 kHz. As 5 hours is too short (for example, IARPA
Babel languages had 10 hours of test data) and it would not
be appropriate as test data for KWS, we made our own splits
of the data. Moreover, with the original data splits, the best
ASR systems achieved about 14% WER [42], which would
not be an optimal choice for preparing keywords for a KWS
system. Hence, we combined the original training and dev
data (45 hours in total) and divided them into 3 splits in
approximately 5 : 2 : 3 ratios for training, development,
and test respectively, making sure that there are recordings
of unseen speakers in the test data.5 The details (duration in
hours) of these news splits are given in Table 1, which are
further used in all our experiments. The vocabulary sizes of
the three languages are given in the upper half of Table 1.
The common phone set and lexicon that came with the data

were used. Sequitur G2P [43] was trained to obtain phoneme
sequences for a few missing Tamil words, which were then
added to the lexicon.

B. PROCESSING MUCS 2021 DATASET
The data for Hindi, Marathi and Odia are taken from MUCS
2021 (sub-task1). The sampling frequency of the data is
8 kHz. The total duration of audio for each language is about
95 hours; however, the number of unique utterances is much
lower. Several utterances are indeed repeated by multiple
speakers. On average, each utterance is repeated 21 times in
Hindi, 27 times in Marathi, and 70 times in Odia datasets.

5Utterance ID to speaker ID mapping is obtained by listening to several
recordings and identifying a pattern in the file name that matches with the
speaker identity.

FIGURE 1. (a) Word occurrence histogram of the Telugu test set. (b) Word
occurrence histogram of the Hindi test set before and after trimming.

This also resulted in a much smaller vocabulary, which posed
a challenge in preparing keywords.

For each language, the data is pooled and then divided into
14 : 3 : 3 ratio for training, development (dev) and test,
while spreading the lexical variability. This resulted in about
70 hr for training, 15 hr each for dev and test. The dev and
test sets are further trimmed (i.e., several duplicate utterances
are removed) in order to have more unique utterances. This
is especially important, as it is desirable to have many rare
words in the test split. Fig. 1 (a) shows histograms of word
occurrences of the Telugu test set and Fig. 1 (b) presents
histograms of word occurrences of the Hindi test set, before
and after trimming. The duration (in hours) of audio data after
trimming, for individual sets is presented in the bottom half
of Table 1. The Table also presents vocabulary statistics. Note
that Hindi, Marathi, and Odia datasets have much smaller
vocabulary sizes as compared to Gujarati, Tamil, and Telugu
datasets.

V. DESCRIPTION OF ASR BASED KWS SYSTEMS
Our KWS systems are based on hybrid ASR systems, trained
using the Kaldi toolkit [21]. Generally, a Kaldi KWS system
contains two parts: i) a large vocabulary continuous speech
recognition (LVCSR) module that decodes the search collec-
tion and generates the corresponding lattices, and ii) a KWS
module that builds an index for the lattices [44] and searches
the keywords from the generated index [22]. A lattice is
a representation of the alternative word-sequences that are
sufficiently likely for a particular utterance.

Four systems are built relying on the standard recipes
from the Kaldi toolkit.6 Using a sliding window on the input

6https://github.com/kaldi-asr/kaldi/tree/master/
egs/babel/s5b
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FIGURE 2. The effect of three keyword properties on ATWV with DNN-sMBR KWS system, across all the six languages.

audio, 39 dimensional MFCC feature vectors (1 +11) are
extracted, which is followed by cepstral mean and variance
normalization. The initial mono-phone system is trained on
1k short utterances to obtain accurate alignments. This is
followed by an incremental GMM-based tri-phone system
training with 1k, 5k, and 10k short utterances respectively.
Without this incremental training, the WER of the systems
are about 10% worse than those reported in Table 3. This is
followed by a full tri-phone system training, and subsequently
by LDA + MLLT7 tri-phone system and speaker adaptive
training of a GMM-HMM system. The resulting system is
referred as GMM system in this paper. The alignments from
this GMM system are used for the subsequent neural network
based acoustic models.

The second system is based on a feed-forward (deep)
neural network (DNN), that is trained to minimize the frame-
level cross-entropy between predicted posterior probabilities
and the true senones. At the input layer, the neural network
takes 4 frames to the left and right as the context. The network
has 5 layers with 300 hidden units each, and tanh non-linear
activation functions. The network is trained for a maximum
of 30 epochs with an initial and final learning rates 0.005 and
0.0005 respectively. This system is referred as DNN.
The third system uses the state-level minimum Bayes risk

training criterion on top of the DNN acoustic model [46].
The model is trained to minimize the expected error of the
state-labels corresponding to a given word sequence. The
model is trained for 4 epochs. This system is denoted asDNN-
sMBR in the paper. The DNN-sMBR system is used to create
a candidate list of keywords, which will be explained in more
detail in Section VI.

The fourth system is based on a time-delay neural net-
work (TDNN) acoustic model [47], [48]. The initial layers

7LDA: Linear discriminant analysis. MLLT: Maximum-likelihood linear
transformations [45].

TABLE 2. Contextual information at each layer of TDNN.

operate on a narrower context, and the context widens as it
goes deeper. This is enabled with the help of sub-sampling
at each layer, which additionally reduces the number of
computations.

Different configurations for the TDNN are investigated by
varying temporal contexts, and hidden layers. The configura-
tion that gave the bestWER on the dev set is taken forward for
KWS experiments. The corresponding TDNN has 5 hidden
layers with 650 hidden units, and ReLU activation functions.
The contextual information (including sub-sampling) at each
layer is given in Table 2.
The input to the network is MFCC features concatenated

with a 100 dimensional i-vector that is extracted per utter-
ance [49]. The network is trained for 3 epochs with initial
and final learning rates of 0.0015 and 0.00015 respectively.
This system is referred as TDNN.
A 3-gram language model (LM) based on Kneser-Ney

discounting is used for all the languages. The LM is
trained only on transcriptions from the training set, and the
hyper-parameters are tuned on the dev set to obtain lower
perplexity. For Hindi, Marathi, and Odia, the LM is also
trained on additional data from Wikipedia. There are no out-
of-vocabulary words (OOVs) as the provided lexicon con-
tained all the words.

VI. PREPARATION OF KEYWORDS
A semi-automatic paradigm is used to prepare the keywords
that follow the three properties described in Section III.
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FIGURE 3. The PMiss and PFA for four different KWS systems on the Telugu (tel) test set with respect to the three keyword properties.

The DNN acoustic model and the ground truth test tran-
scriptions are used to obtain accurate alignments between the
test audio and the corresponding transcriptions. These act as
ground truth alignments for evaluating KWS systems. For
each language, Tspeech from (2) is calculated from the speech
regions after the force alignment.

For every unique word in the test set, the three men-
tioned properties can be inferred using the ground truth test
transcriptions and the lexicon. However, to determine the
difficulty of detecting the words, we need a reasonably well
designed KWS system. For this, we rely on the DNN-sMBR
based KWS. This KWS is used on all the unique words from
the test set, which results in several hypothesized detections.
Using the ground truth alignments, for every hypothesized
detection one of the following decisions is made: hit, miss,
false alarm, true negative. For the sake of simplicity, the
detection threshold (θ) is fixed to 0.5. Combining these deci-
sions with every word occurrence bin ranging from 1 to 24,
keywords are randomly picked such that ATWV is a decreas-
ing curve. For this to happen, more words (eg: >100 for
guj, tam and tel) are picked in low word-occurrence bins and
less words (eg: <30) in high occurrence bins. This results in
around 700 - 800 keywords (eg: guj, tam, tel). It is important
to note that rare words are actually rich in information, hence
to evaluate a KWS system, it is preferable to have many rare
words.

Once the keywords are selected based on occurrence, they
are categorized (binned) based on word length i.e., number
of phonemes (according to the lexicon). For each bin, the
ATWV is computed. For most of the cases (bins), the ATWV
increases with the keyword length. However, the increasing
curve might break at few points (bins). For these bins, few
words are either added or removed so that an overall increas-
ing trend is preserved.

In a similar manner, the third property, i.e., keyword con-
fusability distance follows an increasing curve with respect

TABLE 3. Word error rates of the ASR systems on the new data splits.
+wlm indicates the language model (LM) is trained on additional data
from Wikipedia. The values in bold and underline indicate the first and
second best systems respectively, for a given language.

to ATWV, provided the above two properties are satisfied.
At those few points where it breaks, few words are added or
removed to maintain an overall increasing trend.

Note that the curves need not to be strictly monotonous, but
an overall increasing or decreasing trend is desired, depend-
ing on the respective keyword property. Although the key-
words are selected based on the DNN-sMBR system, these
trends can be seen for any KWS system. We also ensure
that at least 15% of the selected keywords are exclusive
to the test set. Table 1 presents the number of keywords
obtained for each language. It also shows the percentage of
keywords that appear only in the test set. Since we use the
same constants in TWV metric as in IARPA Babel program,
and NIST OpenKWS, we also aimed at selecting keywords
that would result in ATWV scores around 0.5. This is mainly
to be consistent with prior works [30], [31].

The Fig. 2 (a) illustrates that ATWV decreases with key-
word occurrence while Fig. 2 (b) and Fig. 2 (c) depict that
ATWV increases with keyword length and confusability dis-
tance across the six languages.
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TABLE 4. ATWV (denoted by A) and MTWV (denoted by M) scores of the KWS systems with the respective sets of keywords prepared on the new data
splits. +wlm indicates that language model (LM) is trained on additional data from Wikipedia. In every row (language), the values in bold and underline
indicate the first and second best ATWV values on the test sets.

It reflects that longer keywords are more easily detected
when compared to shorter keywords. More confusable words
will have lower values of confusability distance and hence
their corresponding ATWV values will be smaller. A higher
value of confusability distance indicates that the word is less
confusable and easily detectable resulting in higher value of
ATWV, which is reflected in Fig. 2 (c). It can be observed
that for languages Marathi, and Odia, the range of frequency
class and word length are much shorter as they have a smaller
vocabulary (see Table 1). This also made it challenging to
prepare a good candidate set of keywords for them.

Note that for all the above analysis on ATWV, β is set
to the default value of 999.9. Since β can influence ATWV,
we illustrate in Fig. 3 the three keyword properties across
all the four systems using only PMiss and PFA (without the
scaling factor β).

It can be seen from Fig. 3 (a) that miss probability increases
with keyword occurrence. On the other hand, Fig. 3 (b) and
Fig. 3 (c) present the decreasing trend for miss and FA proba-
bilities with respect to both keyword length and confusability
distance across all the four KWS systems. Similar trends are
observed for the remaining languages.

Although the keywords are selected based on the
DNN-sMBR based KWS system, the desired trends are seen
across all the KWS systems with regard to the three keyword
properties.

VII. RESULTS AND DISCUSSION
This Section presents the ASR and KWS results on
the re-processed datasets, using the systems described in
Section V. We also empirically examine the relationship
between WER and MTWV.

The word-error-rates (WERs) of the underlying ASR sys-
tems on the dev and test sets for all the systems are given in
Table 3. The dev set is used to select an optimal language
model weight (relative to the acoustic model weight) during
decoding. In all the cases, DNN based systems have lower
WER as compared toGMMbased systems, and inmost cases,
both DNN-sMBR and TDNN systems have slightly lower

WER than DNN systems. For languages Hindi, Marathi, and
Odia, we also experimented with a Kneser-Ney 3-gram LM
trained on additional text data from Wikipedia (indicated
by+WLM in Table 3). This greatly reduced the WER, as can
be seen from Table 3. These improvements suggest that the
lexical variability in Marathi and Odia datasets is compara-
tively very small, and by adding an LM trained on external
data, the ASR model can decode the utterances much better.
We also tried the same for Gujarati, Tamil, and Telugu, but
observed a significant degradation in perplexity scores on
the respective dev sets. Hence we did not proceed with the
decoding usingWikipedia LM.Moreover Gujarati, Tamil and
Telugu datasets from IS 2018 are from news domain and
Wikipedia text might not be an optimal choice for additional
LM training.

Table 4 presents the MTWV and ATWV scores of four
KWS systems across all the six languages. The LM weight
and detection threshold (θ) that yielded maximum TWV on
dev set are used for the test set. The LMweight is used during
generating lattices, whereas the detection threshold is used
to make hard decisions, in order to compute ATWV. From
Table 4 it can be seen that DNN based KWS systems have
higher ATWV scores as compared to GMM based systems,
and in all cases the TDNN based KWS systems perform
better than DNN-sMBR and DNN based KWS systems. For
Marathi, and Odia languages, the KWS systems based on a
smaller LM (i.e., LM trained only on training set) did not
succeed to give a positive ATWV score, hence those values
are left blank. It is possible that the selected keywords are too
difficult for the KWS system to detect. But, by adding LM
trained on Wikipedia text, decent ATWV scores are obtained
for Marathi, and Odia. This can also be attributed to the
size and variability of the vocabulary in these languages.
The Table 4 also presents the MTWV scores on the test set.
The difference between ATWV and MTWV scores show the
loss in selecting a sub-optimal threshold. We can observe
from Table 4 that these differences are mainly in second
decimal, suggesting that our threshold selection is near opti-
mal. This also suggests that the speaker/channel variations

34796 VOLUME 10, 2022



V. L. V. Nadimpalli et al.: Resources and Benchmarks for KWS in Spoken Audio From Low-Resource Indian Languages

FIGURE 4. Illustration of absolute improvements in MTWV with respect to
absolute reductions in word-error-rates (WER). The statistics are
computed from Tables 3, and 4, for Gujarati, Tamil, Telugu and Hindi
languages.

FIGURE 5. Detection-error-trade-off for all four KWS systems on Telugu.
• indicates the PMiss and PFA that corresponds to ATWV.

and the difficulty of keywords in dev and test sets are
consistent.

The performance of ASR-based KWS systems directly
depends on the word-error-rates of the underlying ASR.
Tables 3 and 4 show that reduction in WER has given
an improvement in ATWV. To make this even more clear,
we took the WER and ATWV scores for 4 languages
(Gujarati, Tamil, Telugu and Hindi), and computed absolute
reductions in WER with respect to every ASR system, and
the corresponding changes in the ATWV. More specifically,
we consider the absolute WER differences (from Table 3)
between GMM based ASR system to the rest of the three
systems, thenwithDNNbasedASR to the remaining two, and
finally between DNN-sMBR and TDNN based ASR systems.
Similarly, we consider the absolute differences in MTWV
(from Table 4) of these systems in the same order. These
are illustrated in Fig. 4, and it can be seen that the absolute
reductions in WER are correlated with the improvements in

the ATWV. It is expected that the correlation is stronger for
dev data than for test data, since we tuned the systems on dev
data. For Fig. 4 we did not consider Marathi and Odia as they
seem like outliers (due to limited lexical variability).

Fig. 5 presents the detection-error-trade-off (DET) curves
of all the four KWS systems on the Telugu dataset. Although
the probability of FA at the ATWV operating point is close
across all the systems, the miss probability is much lower for
TDNN based KWS system, as compared to others. Similar
trends in DET curves are observed for other languages.

VIII. CONCLUSION
In this paper, we presented the idea of creating a suitable
set of candidate keywords for keyword search from spoken
audio, while using existing freely available speech datasets.
We re-processed IS 2018 and MUCS 2021 datasets com-
prising six low-resource languages, and created keywords
by taking into account the three properties (keyword occur-
rence, length and confusability distance), and their effect
on the term-weighted value (the KWS evaluation metric).
We trained four ASR-based KWS systems to benchmark
KWS results on the created resources. We provided an
in-depth analysis of keyword properties and their effect on
TWV across all the languages and KWS systems.

While the current work focused on creating baseline
systems, future research works would focus on multilin-
gual KWS systems, and out-of-vocabulary keyword search.
We believe that the analysis and guidelines provided in this
paper will not only help the research community, but also
practitioners and engineers to easily create KWS resources
for newer languages, datasets, and scenarios.
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