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Abstract
In this paper, we analyze the behavior and performance of
speaker embeddings and the back-end scoring model under do-
main and language mismatch. We present our findings regard-
ing ResNet-based speaker embedding architectures and show
that reduced temporal stride yields improved performance. We
then consider a PLDA back-end and show how a combination
of small speaker subspace, language-dependent PLDA mixture,
and nuisance-attribute projection can have a drastic impact on
the performance of the system. Besides, we present an efficient
way of scoring and fusing class posterior logit vectors recently
shown to perform well on speaker verification task. The exper-
iments are performed using the NIST SRE 2021 setup.

1. Introduction
In this paper, we provide an analysis of an integral part of state-
of-the-art speaker recognition systems, which is a DNN-based
embedding extractor and a subsequent speaker back-end that
provides probabilistic verification scores for individual trials.
We focus on the most recent NIST SRE 2021 which provided
us with an opportunity for experimentation and this analysis.

The past line of speaker recognition (SR) research focused
on modeling the fixed-length utterance representations, such as
i-vectors [1] obtained as maximum a-posteriori estimates of a
latent variable in generative factor analysis model. The obtained
i-vector representations (generative embeddings) were subse-
quently modeled by probabilistic linear discriminant analysis
(PLDA) [2], a technique introduced in face verification.

Deep neural networks (DNNs) have been gradually incor-
porated into the speaker recognition pipeline, through replacing
or improving one or more of the components of an i-vector +
PLDA system (e.g. feature extraction, calculation of sufficient
statistics, i-vector extraction or PLDA classifier). For instance
on the front-end level, employment of DNN bottleneck features
(BNF) instead of conventional MFCC features [3], or simply
concatenating BNF and MFCCs [4] and more recently learn-
ing the feature extraction directly from the raw audio [5, 6, 7],
was proposed. Later in the modeling stage, NN acoustic mod-
els were proposed to replace generative Gaussian mixture mod-
els (GMM) for extraction of sufficient statistics [8, 9], or for
complementing or substituting the PLDA [10, 11], [12], respec-
tively.

New deep learning works have logically resulted in at-
tempts to train a larger DNN directly for speaker recognition
tasks, i.e., binary classification of two utterances as a target or
a non-target trial [13, 14, 15, 16]. Such systems are denoted

as end-to-end systems and were proven competitive for text-
dependent tasks [13, 14, 17] as well as for text-independent
tasks considering short test utterances and an abundance of
training data [15]. On text-independent tasks with longer ut-
terances and moderate amount of training data, the i-vector mo-
tivated end-to-end system [16] outperformed generative base-
lines, but at the cost of high complexity during training.

While the fully end-to-end SR systems have been strug-
gling with large requirements on the amount of training data
(often not available to the researchers) and high computational
costs, the focus on speaker recognition has partially shifted back
to generative modeling, but now with utterance representations
obtained from a single DNN. Such DNN takes the frame-level
features of an utterance as an input and directly produces an
utterance-level representation, usually referred to as an embed-
ding [18, 13, 14, 19, 20, 21]. The embedding is obtained by
the means of a pooling mechanism (for example taking the
mean) over the frame-wise outputs of one or more layers in
the DNN [18], or by the use of a recurrent DNN [13]. One
effective approach is to train the DNN for classifying a set of
training speakers, i.e., using multi-class training [18, 19, 20]. In
order to perform speaker verification, the embeddings are ex-
tracted and used in a standard back-end, e.g. PLDA [19, 20].

Most recently, deep convolutional neural networks (DC-
NNs) models such as ResNet [22] play the core role in
the SR systems and are continuously replacing feed forward
DNNs [20] for embedding extraction. DCNNs are often fine-
tuned via optimizing angular margin loss as in face verification.
This approach offered the best results in the domain of English
wide-band data [23] and has been competitive in more chal-
lenging and less data-rich domain of telephone Tunisian Arabic
data [24] as well as in the most systems submitted to the recent
NIST SRE 2020 and 2021 challenges which always showcase
the latest state-of-the-art modeling techniques.

Great deal of our analysis will explore subtle changes in
the standard ResNet architecture such as changing the tempo-
ral strides or different pooling mechanisms. We will compare
the performance of operationally practical and relatively small
ResNet34 with a much larger ResNet152 and we will provide
an analysis with fine-tuning these models for longer duration
segments often present during inference as these are typically
in sharp contrast with very short (and same length) segments
used during training.

As it is typical in NIST SREs, also the last SRE21 brought a
challenging scenario of a channel, language, and data mismatch
w.r.t. training data. We are therefore exploring an approach to
incorporate language information into PLDA framework, vari-
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ous nuisance variability suppression techniques, and score nor-
malization. These methods, in our experiments, led to better
results than using a simple cosine-distance scoring. We also ex-
periment with taking the embeddings from different parts of the
DNN and use our back-ends to model directly the output of the
pooling layer, standard (x-vector) embedding, and also we pro-
vide an insight into scoring with class posterior logits from the
very end of the ResNet embedding extractor.

2. Embedding extractors and Back-end
model

In this section, we present the basic architecture of the embed-
ding extractors used in the experimental part of this paper. Also,
we describe in detail the back-end approach used in the major-
ity of experiments. When presenting the experiments we will
always describe the differences in the setup with respect to the
models and approaches described here.

2.1. ResNet Architectures

Residual Networks (ResNets), together with their variants (e.g.
ResNeXt, Res2Net [25]) are standard choices in speaker recog-
nition research. In this paper, we examine two different stan-
dard ResNet architectures, namely ResNet34 and ResNet152.
ResNet34 provides a good compromise between accuracy and
computational efficiency, e.g. it can be deployed in CPU-based
production systems. On the other hand, ResNet152 is a very
deep architecture that can yield state-of-the-art results but re-
quires GPU in runtime for being deployed in production sys-
tems that perform real-time processing. In terms of architectural
investigation, we experiment with the following directions.

2.1.1. Statistics pooling

Apart from the typical mean and standard deviation (std) statis-
tics pooling, we examine using only standard deviation features
in the statistics pooling layer. The approach was examined in
[26] and appears to generalize better, at least in cases of dataset-
shifts between training and test. Furthermore, we experimented
with the recently proposed correlation pooling, which showed
good improvements in VoxCeleb [27].

2.1.2. Temporal stride

We also experiment with reducing the temporal stride of the
ResNet blocks. The temporal stride per ResNet stage is set to
[1,2,1,2] or [1,1,2,1] (i.e. a cumulative stride equal to 4 or 2
instead of the standard 8) while the frequency stride is the typ-
ically used [1,2,2,2]. The motivation is to reduce the receptive
field in order to model shorter speech patterns, which should
be more language-independent. We should mention though that
reducing the stride results in increased computational require-
ments, and hence the model becomes less efficient.

2.1.3. Extracting alternative speaker representations

Another set of experiments is related to the layer from which
the speaker representation is extracted. One alternative to the
standard embeddings is extracting the statistics. Our motiva-
tion is that embeddings are susceptible to overfitting the training
speakers and languages, as they interact directly with the clas-
sification head. Consider for example TDNN-based x-vectors,
where two low-dimensional representations can serve as em-
beddings. The experiments show that embeddings extracted

from the input to the classification head are inferior [28]. On
the other hand, in ResNet-based architectures there is a single
low-dimensional representation after statistics pooling. We ex-
periment with modifying the architecture by adding a second
hidden layer however the results were discouraging. We, there-
fore, consider to extract the statistics instead. Statistics allows
us to experiment with unsupervised dimensionality reduction
methods (e.g. PCA), use a training set that is more diverge com-
pared to that of the extractor, and possibly retain directions that
are more discriminative for languages and domains not included
in the training set.

Apart from using the statistics, we examine the recently
proposed method of extracting the logits, i.e. the projection
of the embeddings to the classification head (prior to the soft-
max function). The method was proposed in [29] and yields
state-of-the-art results in SRE21. We moreover show that the
method can be implemented more efficiently using Cholesky (or
other equivalent) decomposition of symmetric positive (semi-
)definite matrices.

2.1.4. Fine-tuning on long durations

Several papers have reported improvements by fine-tuning the
extractor on long durations for the last few epochs. However,
most of the results are based on VoxCeleb and use cosine sim-
ilarity scoring. It is therefore interesting to examine whether
similar improvements will be attained on more challenging se-
tups and with a PLDA back-end.

2.2. Back-end Architectures

In most of the experiments described in this paper, we follow the
same approach to pre-processing the embeddings and training
the back-end:

2.2.1. Nuisance attribute projection

We start by removing from the data the direction corresponding
to speaker gender by nuisance attribute projection (NAP) [30,
31]. Further on in Section 3.9 we present the experiment mo-
tivating for suppressing gender information. Then, we proceed
with centering the data, LDA reducing dimensionality of the
embeddings to 100 (see Section 3.7 for details), and length nor-
malization.

2.2.2. Mixture of language-dependent PLDAs

After data pre-processing, we train a mixture of 3 PLDA mod-
els [32, 33]: each component of the mixture is a PLDA trained
on the data coming from one of three languages: English, Can-
tonese, and Mandarin. At test time, we score each trial with
each language-dependent PLDA model, the final score of the
mixture is a weighted average of the scores of individual mix-
ture components:

se,t =
∑

p∈{eng,cmn,yue}
wp

e,ts
p
e,t, (1)

where spe,t are LLR scores computed with one of the mixture
components (PLDA model Mp) and wp

e,t are corresponding
weights given by:

wp
e,t =

1

2
(P (Re | Mp) + P (Rt | Mp)) . (2)

In the expression above, Re and Rt are enrollment and test
embeddings (one or three in case of multi-session enrollment
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models). Likelihoods P (R | Mp) can be estimated using e.g.
equation (19) of [34].

Notice, that our approach to estimating the score is some-
what simpler than that of [32], where the correct LLR of the
mixture was estimated. At early stage of the development, we
compared these two approaches but observed a slight perfor-
mance degradation when using more complicated by-the-book
scoring with the mixture of PLDA models and decided to pro-
ceed with the easier approach described above.

3. Experiments and results
3.1. Experimental setup

For training our embedding extractors we used three databases,
namely NIST CTS Superset [35], Voxceleb 1 and 2 [36, 37]. In
all our experiments, the systems are trained on 8kHz data, all
16kHz data from the aforementioned datasets are downsampled
to 8kHz. In total, there are 14096 training speakers. We used
Kaldi style augmentation with MUSAN database [38]. At the
input of the embedding extractors there are 64 mel filter banks
with frequency band limited to 20-3800Hz.

When training the back-end model, we use only NIST CTS
Superset (English, Cantonese, and Mandarin recordings from
this set). We use the embeddings extracted from the original
recordings along with one augmented copy of the data. Each
recording is augmented with one augmentation that was ran-
domly selected out of five types of augmentation used when
training the extractor. There are approximately 7000 speakers
used for training the back-end.

In all of our experiments, we test the performance on NIST
SRE 21 evaluation set. The particulars of the evaluation can
be found in the evaluation plan [39]. The relevant details for
our system design choices are: there are no cross-gender trials;
the majority of the utterances are in English, Cantonese, and
Mandarin; there are cross-language trials. We report the results
in terms of Equal Error Rate (EER) and minimum cost (min C)
as computed by the scoring tool released by NIST as a part of
the evaluation.

Below, we present the results of the experiments where we
vary different aspects of the embedding extractors described in
Sections A.1 and A.2 and the back-end model of Section 2.2.
We start with the experiments on embedding extractors and then
continue with the back-end related experiments.

3.2. Effect of temporal stride

As we know, the evaluation set mostly consists of non-English
data, while the majority of the recordings used for training
the embedding extractors are in English. Hence, there is a
need to compensate for the language mismatch between train-
ing and evaluation data. Our assumption is that by reducing the
temporal context, we encourage the network to train on more
language-independent patterns. To verify this assumption, we
trained several ResNet networks with three settings for tempo-
ral stride: strides were set to [1,2,2,2], [1,2,1,2], or [1,1,2,1] per
ResNet stage (i.e. a cumulative stride equals to 8, 4 and 2, re-
spectively), frequency stride in all cases was fixed to [1,2,2,2].
We experimented with two different pooling mechanisms (more
information is given in Section 3.3). The back-end model for all
experiments was as described in 2.2.

The results of the extractors with varying temporal strides
are shown in Table 1. As one might notice, reducing the cumu-
lative temporal stride from 8 to 4 (compare lines 1 and 2 of the
table) results in a noticeable performance improvement for both

pooling mechanisms in case of ResNet34. For the larger em-
bedding extractor, the performance improvement is not as pro-
nounced but still non-negligible. However, reducing the stride
even further degrades the performance (we have the results only
for ResNet34 with std pooling) indicating that for successful
performance the network has to observe at least some temporal
dependencies in the data.

3.3. Statistics pooling

Here, we compare three approaches to pool frame-level rep-
resentations in the embedding extractor. The first option we
consider is the standard way of statistics pooling when both
mean and std are computed. Second, we consider the case when
only standard deviation features are used for statistics pooling.
In [26], this approach was shown to generalize better when there
is a mismatch between training and test data. Finally, we use
the approach of [27] where correlation pooling is used instead
of mean and std.

We compare these three approaches by training ResNet34
embedding extractors with the aforementioned pooling mecha-
nisms. The results are presented in Table 2. As can be seen,
both mean+std and std alone result in a similarly good perfor-
mance in terms of min C, however, in terms of EER, using just
standard deviation brings considerable gain. Regarding corre-
lation pooling, we notice that there is a notable performance
degradation compared to the other two options.

3.4. Extracting statistics as speaker representations

Typically, speaker embeddings are the activations of the low-
dimensional penultimate layer of the extractor network. Hence,
the embeddings extracted in this way might be overtuned to-
wards training speakers and domains. To overcome this poten-
tial problem, we try to extract the speaker representation di-
rectly as the output of the statistics pooling layer. As this layer
is further away from the classification head and has a higher di-
mension, our expectation is that such a representation would be
less susceptible to overtraining to the speakers that were used
when training the network. However, because such represen-
tations have relatively high dimensionality (2048 in our case),
it is problematic to directly use them for training the back-end
model. For this reason, we need to perform dimensionality re-
duction of high-dimensional statistics first. We believe that if
dimensionality reduction is trained on the set of speakers other
than that was used for training the network then, even though the
resulting embeddings are low-dimensional vectors, they will be
more suitable for a general speaker recognition problems than
the original embeddings.

In our experiments, we tried the simplest option for di-
mensionality reduction: Principal Component Analysis (PCA).
PCA projection matrix is estimated on the back-end training set
and reduces the dimensionality of statistics from 2048 to 256
(size of the original embeddings).

3.5. Extracting logits as speaker representations

In the opposite direction, the authors in [29] propose to
use high-dimensional vectors of class posterior logits (cl-
embeddings) in place of conventional embeddings. They show
performance improvements when such vectors are used in com-
bination with cosine distance scoring. However, we want to
point out that using high-dimensional vectors of logits is not
necessary. Instead, one can compute a low-dimensional pro-
jection of the original embeddings such that scoring high-
dimensional cl-embeddings will be equivalent to scoring low-
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Table 1: Comparison of speaker verification performance of ResNet embedding extractors with different temporal strides (two different
pooling approaches for ResNet34). The back-end used is a mixture of 3 language-dependent PLDA models.

Temp stride
ResNet34 ResNet152

std corr
min C EER (%) min C EER (%) min C EER (%)

1 8:[1,2,2,2] 0.495 8.66 0.553 9.84 0.412 6.32
2 4:[1,2,1,2] 0.473 8.38 0.520 9.44 0.407 6.28
3 2:[1,1,2,1] 0.504 9.07 - - - -

Table 2: Comparison of performance of embedding extractors
utilizing different pooling strategies. In all cases, the archi-
tecture we use is ResNet34 with cumulative temporal stride 4.
The back-end used is a mixture of 3 language-dependent PLDA
models.

Pooling min C EER (%)

1 mean+std 0.474 8.74
2 std 0.473 8.38
3 correlation 0.520 9.44

dimensional projected embeddings. Below, we demonstrate it
for cosine scoring, but a similar approach can be used for train-
ing a PLDA model.

When scoring cl-embeddings, we make use of the fact that
the logits l are just high-dimensional projection of the original
embeddings r:

l = Kr, (3)

where K is the projection matrix of shape Ns × d (number
of training speakers and embedding dimension, respectively).
Then the cosine score between enrolment and test becomes:

se,t =
l′elt

∥le∥ ∥lt∥
=

r′eK
′Krt

∥Kre∥ ∥Krt∥
. (4)

The matrix K′K is a symmetric positive (semi-)definite matrix
and can be considered as Ns times the between-speaker covari-
ance, estimated with the speakers contained in the training set
of the extractor (recall that when AAM loss is used, the rows
of K have unit norm). By performing Cholesky decomposi-
tion we obtain the upper triangular d × d matrix M such that
K′K = M′M. As a result:

se,t =
r′eM

′Mrt
∥Mre∥ ∥Mrt∥

. (5)

Thus, instead of extracting and scoring with high-dimensional
logit vectors l = Kr, we may equivalently extract low-
dimensional vectors Mr. Finally, an efficient implementation
of the fusion method of logits (proposed also in [29]) is derived
in Appendix B.

We perform the experiment where we compare three ap-
proaches: conventional embeddings (line 1 of Table 3), outputs
of the statistics pooling layer in combination with PCA (line
2), and embeddings projected with low-dimensional square ma-
trix M, computed as described above (line 3). For all three
types of speaker embeddings, we use either cosine scoring or
train the mixture of language-dependent PLDA models as de-
scribed in Section 2.2. In the latter case, r are projected onto
M and length-normalized, prior to LDA and a new length-
normalization. Here, we perform the experiments only with
ResNet34 embedding extractor with cumulative temporal stride

set to 4 and standard deviation pooling. The results of this ex-
periment are presented in Table 3.

In case of cosine scoring, we observe major performance
gains from using cl-embeddings compared to conventional em-
bedding vectors, which agrees with the findings of [29]. Using
statistics in this scenario, however, results in severe degradation.
For the second back-end approach, we do not observe such high
variability in the results. Statistics, though, still provide inferior
results compared to the other two types of speaker represen-
tations. One of the possible explanations is the dimensionality
reduction approach that we use. In future, we plan to investigate
alternatives to PCA.
Table 3: Comparison of performance of three types of embed-
dings extracted from ResNet34 with temporal stride 4 and std
pooling mechanism.

cos mix PLDA
min C EER (%) min C EER (%)

1 embd 0.662 15.60 0.473 8.38
2 stats+PCA 0.911 27.57 0.527 9.51
3 cl-embd 0.612 12.22 0.475 8.35

As both types of embedding extractors that we use here
were trained on exactly the same dataset and the main differ-
ence between them is only the size of the network, when fus-
ing two systems (either using score level fusion or the approach
described in appendix B) we do not observe any performance
improvements compared to using just the bigger ResNet152
model. Thus, we do not report any fusion results here.

3.6. Fine-tuning the extractor on long segments

Previously (see e.g. [40]) and in system descriptions of several
top performing teams of NIST SRE 2021 (e.g. in [29]), it was
noted that fine-tuning (FT) a pretrained embedding extractor on
long segments (10-20s vs. 2-4s) results in a major performance
gain. In order to verify this finding, we perform the following
experiment: we fine-tune our two embedding extractors on 10s
long segments. The embeddings extracted from the fine-tuned
models are scored with the approach described in Section 2.2.

The results of this experiment are presented in Table 4. It
is seen that for both extractors fine-tuning procedure provides a
considerable performance improvement. Also, we can note that
the effect of the fine-tuning does not depend on the back-end
approach: in previous works, either cosine scoring or a single
PLDA model were used, while we observe similar performance
improvements with a mixture of PLDA models.

3.7. Back-end processing

In this section, we investigate the impact of individual steps of
the back-end recipe described in Section 2.2 compared to a stan-
dard back-end approach: a single PLDA model trained on the
embeddings that were centered, their dimensionality reduced
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Table 4: Effect of fine-tuning embedding extractors on 10s long
segments on speaker verification performance. Two types of
networks are used: ResNet34 with std pooling and ResNet152
with mean and std pooling. For both networks, temporal stride
is set to 4. The back-end in all cases is a mixture of 3 language-
dependent PLDA models.

FT ResNet34 ResNet152
min C EER (%) min C EER (%)

1 no 0.473 8.38 0.407 6.28
2 yes 0.432 7.38 0.380 5.70

0 50 100 150 200 250

10 11

10 9

10 7

10 5

10 3

10 1

across-class cov
within-class cov

Figure 1: Diagonal across- and within-class covariances of the
back-end training data. Prior to plotting the graphs, the embed-
dings were projected onto eigenvectors of the total covariance
matrix i.e. total covariance is diagonal with elements sorted by
the index on horizontal axis.

from 256 to 200 by LDA and then length-normalized. Table 5
presents gradual improvements in the verification performance
with step-by-step transformation of the baseline back-end into
the back-end described in Section 2.2. The same experiments
were performed for embeddings extracted with ResNet34 and
ResNet152 models with temporal strides set to [1,2,1,2].

From the results, the largest improvement was observed
when reducing the dimensionality of the embedding after LDA
from 200 to 100 (lines 1 and 2 of Table 5). Figure 1 gives an
insight into this phenomenon. It displays eigenvalues of the
across- and within-class covariance matrices estimated on the
PLDA training data. The eigenvalues were computed after pro-
jecting the embeddings with eigenvectors of the total covariance
matrix i.e. the elements of total covariance monotonically in-
crease from left to right. Figure 1 shows the plots for ResNet34
embedding extractor, similar pattern is observed for ResNet152.
By inspecting the graphs, we notice that roughly half of the em-
bedding dimensions have very little variability. When such di-
rections are selected by LDA, their (possibly noisy) variability
is amplified leading to performance degradation.

Introducing a mixture of language-dependent PLDA mod-
els instead of a single one (lines 2 and 3 of the table) brings
another considerable improvement. Finally, removing the direc-
tion corresponding to the highest gender variability with NAP
results in an additional performance gain. However, compared
to the previous two modifications the improvement from using
NAP is rather small.

3.8. Alternative back-end approaches

Here, we want to compare the back-end strategy presented in
Section 2.2 with some other approaches that were shown to be
effective in NIST SRE21. Namely, we have noticed that many
teams used cosine similarity scoring instead of PLDA back-end;
in [29], it was shown that it is beneficial to use score and chan-
nel normalization when doing cosine similarity scoring of the
embeddings. Also, as mentioned in Section 3.5, cl-embeddings
(logits from the embedding extractor network) in combination
with cosine scoring were shown to provide competitive speaker
verification results. In order to show the effectiveness of the
mentioned approaches we use three scoring strategies: cosine
scoring on the embeddings and on the cl-embeddings and our
approach with NAP, LDA and a mixture of 3 PLDA models.
For each of these strategies, we report the results with and with-
out score, channel, and combination of both normalization.

The cohort for score normalization is constructed from
NIST CTS Superset by averaging the embeddings on per-
speaker basis i.e. the cohort contains one embedding per
speaker from the PLDA training set resulting in approximately
7k embeddings. We use 400 highest scores of the enrollment
and test segments against the cohort for score normalization.

Channel normalization is a calibration-like technique that
shifts and scales evaluation scores based on the channel type of
the enrollment-test pair. For each of four types of trials (mic-
mic, tel-tel, mic-tel, tel-mic), we evaluate the mean and stan-
dard deviation of the scores from NIST SRE21 development
set. These parameters are then used to shift and scale evalua-
tion scores for the matching trial type. If both score and channel
normalization are used, we perform score normalization first.
When scoring cl-embeddings, rather than computing cosine dis-
tance scores directly we follow the approach described in Sec-
tion 3.5 allowing for efficient score estimation. Note that the
channel is assumed given in SRE21. In real systems, one should
estimate it using a channel classifier.

We report the results of the aforementioned approaches on
ResNet34 and ResNet152 embeddings with and without fine-
tuning on the long speech segments. The results are shown in
Table 6. Several conclusions could be made looking at the re-
sults. First, as expected, we notice that for any kind of back-end
or score normalization, the bigger ResNet152 provides lower
error rates than the smaller ResNet34. Second, our results indi-
cate that channel normalization (and its combination with score
normalization) improves the performance only for cosine dis-
tance scoring and for the models that were fine-tuned on long
speech segments. For the models without fine-tuning, we ob-
serve, that typically channel normalization results in the im-
provements in terms of EER and performance drop in terms
of min C. Also, we verify the observation of [29] that cosine
scoring of cl-embeddings outperforms cosine scoring of con-
ventional low-dimensional embeddings. However, comparing
the results of the mixture of PLDA models with the simple co-
sine scoring of cl-embeddings, we note that the more elabo-
rated approach provides considerably better results for all em-
bedding extractors. Thus, we conclude that even though train-
ing separate a back-end model adds additional complexity to the
pipeline, it pays off in terms of the system performance.

3.9. Nuisance variability suppression

As was noticed in Section 3.7, using NAP to remove the di-
rection corresponding to the highest gender variability from the
data resulted in a slight performance improvement. A reason-
able question then is whether the gender dimension was the one
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Table 5: Effect of the individual steps used for back-end training. The results are shown for ResNet34 with std pooling and ResNet152
with mean and std pooling. Temporal stride for both extractors is set to 4.

Back-end ResNet34 ResNet152
min C EER (%) min C EER (%)

1 LDA200, LN, PLDA 0.584 11.37 0.569 9.90
2 LDA100, LN, PLDA 0.515 10.16 0.450 7.49
3 LDA100, LN, 3PLDAs 0.481 8.76 0.419 6.46
4 NAP gender, LDA100, LN, 3PLDAs 0.473 8.38 0.407 6.28

Table 6: Comparison of speaker verification performance of different scoring approaches. Two types of embedding extractors are used
(ResNet34 with standard deviation pooling and ResNet152 with mean and std pooling, cumulative temporal stride 4 is used for both
networks). For both extractors, we present the results with and without fine-tuning on 10s segments.

Back-end S-norm Ch-norm
ResNet34 ResNet152

no FT FT no FT FT
min C EER (%) min C EER (%) min C EER (%) min C EER (%)

cos

no no 0.662 15.6 0.554 10.89 0.589 12.22 0.49 9.18
yes no 0.65 15.25 0.58 10.52 0.606 11.91 0.525 8.68
no yes 0.706 15.35 0.552 10.31 0.62 12.6 0.498 8.77
yes yes 0.664 14.89 0.507 9.9 0.615 12.28 0.478 8.51

cos cl-embd

no no 0.612 12.22 0.534 9.61 0.528 9.76 0.456 7.72
yes no 0.612 11.71 0.57 9.12 0.538 9.23 0.478 7.3
no yes 0.69 12.42 0.548 8.83 0.574 9.85 0.458 7.39
yes yes 0.623 11.52 0.49 8.04 0.546 9.38 0.429 6.83

no no 0.473 8.38 0.432 7.38 0.407 6.28 0.38 5.7
NAP, LDA, yes no 0.476 8.42 0.426 7.48 0.406 6.27 0.372 5.77

mix 3 PLDA no yes 0.592 8.78 0.526 7.49 0.493 6.71 0.433 5.83
yes yes 0.543 8.89 0.47 7.56 0.44 6.59 0.38 5.73

to remove or there are other sources of unwanted variability
in the embedding distribution that we have to deal with. To
analyze this question we performed the following experiment:
we train several PLDA models, each of them is trained on the
same embeddings. What differs between these models is the
pre-processing performed on the embeddings: we either do just
centering, LDA and LN, or, prior to centering, we remove a
few directions from the data corresponding to various sources
of variability. Namely, we remove 2 directions corresponding
to the largest PCA eigenvalues i.e. the directions of the highest
variability of the data (we expect that these should correspond to
gender variability), alternatively, we apply NAP to remove gen-
der, language, or dataset (individual subsets of CTS superset)
variability. In all of these experiments, we use a single PLDA
to isolate the effect of pre-processing.

The results of this experiment are displayed in Table 7,
where lines correspond to the different pre-processing steps de-
scribed above. The table shows the results for ResNet34 that
was or was not fine-tuned on long training segments. As results
suggest, when the extractor is not fine-tuned on long segments
any kind of variability compensation does not provide any sig-
nificant improvement in terms of min C, while removing the
dimensions corresponding to either gender or language results
in some improvement in terms of EER. However, when the net-
work was fine-tuned, there is a clear performance gain from
using gender NAP compared to any other variability compen-
sation approaches. We do not have a clear explanation of this
phenomenon, it has to be investigated further.

Table 7: Comparison of various nuisance variability suppres-
sion approaches. The embedding extractor is ResNet34 with
std pooling and cumulative temporal stride set to 4. FT denotes
fine-tuning on 10s speech segments.

pre-process no FT FT
min C EER (%) min C EER (%)

1 - 0.515 10.16 0.499 10.02
2 PCA top 2 0.519 10.07 0.504 9.94
3 NAP gender 0.511 9.71 0.463 8.51
4 NAP lang 0.514 9.90 0.493 9.48
5 NAP db 0.517 10.12 0.490 9.58

4. Conclusion
In this paper, we proposed a set of methods to improve speaker
recognition performance on a challenging NIST SRE 2021. The
setup is characterized by language mismatch between trials and
limited or no in-domain data for training or fine-tuning models.
Our contributions are related to certain architectural improve-
ments of the extractor (such as the use of reduced temporal
stride and the use of alternative pooling methods) as well as to
the back-end of the system (such as the use of a PLDA mixture
and NAP). We also evaluated our methods against a strong novel
approach that uses cosine similarity with score and channel nor-
malization, and logits instead of embeddings, for which we
demonstrated a more efficient implementation with embedding
dimensional speaker representations. The experiments showed
that our proposed approach outperforms the baseline, while it
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does not make use of any channel (oracle or real) classifier, jus-
tifying the use of a more probabilistic back-end in setups similar
to SRE21.
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A. Architectural details, optimizers and
training strategies

A.1. ResNet34

The network is composed on 34 convolutional layers with resid-
ual connections. All convolutional kernels are 3×3, the number
of channels is (64,128,256,256) and the first convolutional layer
also outputs 64 channels. The number of convolutional layers
per block is (3, 4, 6, 3). The input features are 64-dimensional
fbanks, extracted from 8kHz audio files, and the training seg-
ments contain 350 frames.

The networks are trained using multi-speaker classification
and with Additive Angular Margin loss with 30 and 0.3 scale
and margin, respectively [41]. As optimizer we use stochastic
gradient descent with momentum equal to 0.9. The minibatch
size is 256, however to fit it in a single GPU we split the mini-
batch into 16 “microbatches” of 16 examples each and use gra-
dient accumulation. The initial learning rate is 0.2 which we
divide by 2 when the loss does not improve for more than 3000
model updates in the held-out set. When the network is fine-
tuned on long speech segments, we keep the margin of AAM
softmax at a value of 0.3. The initial learning rate is set to
0.01 and gradually decreased upon reaching a plateau of cross-
validation loss until convergence.

A.2. ResNet152

The ResNet152 embedding extractor comprises 152 convolu-
tional layers. The stages of the network consist of 3, 8, 36,
and 3 bottleneck blocks with a pre-activation structure and use
64, 128, 256, and 256 channels, respectively. Per-frame repre-
sentations are aggregated with a traditional mean and standard
deviation pooling. The resulting vectors are projected to 256-
dimensional embeddings. The model requires 64-dimensional
fbank features and is trained to optimize the AAM loss.

B. Efficient fusion in the logit domain
The fusion method in the logit space of two or more extractors
trained with the same set of speakers (suggested in [29]) can
also be performed in a low-dimensional space. More specifi-
cally, assume two networks with embedding dimension equal
to d1 and d2. The motivation of [29] is to fuse the two systems
using the weighted average logit vectors lf = w1l1 +w2l2, as-
suming that the number of training speakers and their order (as
encoded in l via K) is the same in both systems. To derive the
cosine similarity in the low-dimensional space (df = d1 + d2)
we may define the embedding rf = [w1r

′
1, w2r

′
2]

′ of length
df . Using linear algebra, one may verify that the cosine simi-
larity between two fused logit vectors lf,e and lf,t is identical
to the cosine similarity between Mfrf,e and Mfrf,t. Mf is
the upper triangular matrix of the Cholesky decomposition of
the between-speaker covariance in the df -dimensional space,
i.e. M′

fMf = K′
fKf , where Kf = [K1,K2] is the matrix of

concatenated projection matrices of shape Ns × df . Therefore,
logit-domain fusion can be performed in the df -dimensional
space, by projecting the concatenated embeddings rf onto Mf .
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