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ABSTRACT

End-to-end (e2e) systems have recently gained wide popularity in
automatic speech recognition. However, these systems do generally
not provide well-calibrated word-level confidences. In this paper,
we propose Hystoc, a simple method for obtaining word-level con-
fidences from hypothesis-level scores. Hystoc is an iterative align-
ment procedure which turns hypotheses from an n-best output of
the ASR system into a confusion network. Eventually, word-level
confidences are obtained as posterior probabilities in the individual
bins of the confusion network. We show that Hystoc provides confi-
dences that correlate well with the accuracy of the ASR hypothesis.
Furthermore, we show that utilizing Hystoc in fusion of multiple e2e
ASR systems increases the gains from the fusion by up to 1 % WER
absolute on Spanish RTVE2020 dataset. Finally, we experiment with
using Hystoc for direct fusion of n-best outputs from multiple sys-
tems, but we only achieve minor gains when fusing very similar sys-
tems.

Index Terms— confidences measures, system fusion, end-to-
end systems, automatic speech recognition

1. INTRODUCTION

The rising popularity of end-to-end (e2e) systems comes largely
from their seemingly simple structure. While the underlying neural
architectures vary greatly [1, 2, 3], the decoding process is generally
very simple. Oftentimes, it consists of iteratively finding the highest-
scoring entry in a softmax layer (listen-attend-spell [1], LAS, and
recurrent neural transducers [4], RNN-T), possibly even in parallel
(connectionist temporal classification [5], CTC). These approaches
are straightforward compared to a complicated beam-search decod-
ing through a recognition network [6] in the hybrid DNN/HMM
systems.

However, this simplicity comes at a cost: The outputs of e2e sys-
tems rarely provide localized transcription variants or their scores.
It may be possible to extract some sort of localized probability in-
formation; however, the outputs of modern large classification net-
works are known to be miscalibrated in general [7, 8]. The nature
of this localized information may vary in its very nature (e.g., the
input-synchronous CTC assumes a specific relation between neural
network outputs and final transcription, and it operates on a very
different time-scale than label-synchronous LAS system) or in gran-
ularity (graphemic / sub-word / word level outputs), thus preventing
direct use of this information for confidence estimation on a unified
level, e.g. words.

The lack of word-level confidences limits the utility of e2e sys-
tem, as word-level confidences provide several benefits: (1) They
can be utilized by downstream applications [9], (2) they can be used
in the scope of semi-supervised learning to filter out uncertain parts

of the machine annotated data [10], or (3) they can be used for finer
fusion of multiple ASR systems [11].

In this work, we propose to estimate word-level confidences and
reap the benefits they provide by finding the common denominator
of e2e systems: They are trained to directly model the probability
P (y|x) of token sequence y being the correct transcription of the
input audio x. Therefore, we assume that when a list of N best
transcription variants (hypotheses) is produced by an e2e system, a
score si ∝ logP (y = hi|x) is available for each hypothesis hi.
Since this score si is independent of the internal tokenization of hi

by the ASR system, any desired re-tokenization of the hypothesis
can be taken to bridge the gap between different e2e systems and
allowing for a unified approach.

In this paper, we propose Hystoc1 – a simple alignment-based
procedure for obtaining word-level confidences. We show that the
confidences obtained with Hystoc are surprisingly well calibrated
and that they significantly improve gains from fusion of multiple
e2e systems. Finally, we extend Hystoc to directly fuse individual
hypotheses from different systems.

A / 1.0
B / 0.9

ϵ / 0.1

C / 0.8

ϵ / 0.2

Fig. 1: A confusion network representing strings ABC, AB, and AC
with probabilities 0.7, 0.2, and 0.1 respectively. Note that while each
ϵ-transition corresponds to a single hypothesis omitting the corre-
sponding letter, all of the letter transitions actually aggregate multi-
ple hypotheses.

2. DISTILLING WORD-LEVEL CONFIDENCES

In this section, we describe how Hystoc2 restores word-level confi-
dences from hypothesis level scores. Prior to the actual computation,
observe that all hypotheses hi can be re-tokenized into a desired tar-
get form, e.g. into whitespace-delimeted words for European lan-
guages.

Hystoc is an iterative alignment procedure. Specifically, it aligns
individual hypotheses hi into a confusion network [12] (see Fig. 1)
in the order of decreasing hypothesis scores si. When aligning hi

into the confusion network, Hystoc finds the highest-scoring path
h∗ through the confusion network and finds a Levenshtein align-
ment between hi and h∗. Thus, the bins in the confusion network
are determined into which the individual tokens from hi shall be
incorporated, possibly introducing new bins in case the alignment
contains insertions. The score of each transition corresponding to a

1https://github.com/BUTSpeechFIT/hystoc
2HYpothesis Scores to TOken Confidences
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token from hi is then increased3 by si/T . Here, si is the score of the
hypothesis hi and T is temperature — a hyperparameter of Hystoc.

Finally, we normalize the scores in each bin by applying soft-
max. The confidence of any word is then its probability within the
corresponding bin.

If the outputs of the ASR system are to be rescored by any sort
of external language model (LM), it is sufficient to incorporate the
LM probabilities into the scores si of the hypotheses prior to the
application of Hystoc.

2.1. Related work

Rover — a standard tool for fusing outputs from multiple ASR
systems [11] — operates similar to Hystoc. However, Rover al-
ready expects word-level confidences in the input. When an inser-
tion/deletion mismatch is detected, Rover introduces an ϵ-transition
with a fixed confidence Cϵ. Hystoc only assumes hypothesis level
scores at the input and derives the scores of possible ϵ-transitions
individually.

There is a multitude of methods for estimating word-level confi-
dences for e2e ASR systems [13], but these typically include evalu-
ating multiple models or training whole new models for confidence
estimation. Hystoc operates on the outputs of a single system.

Already in 1996, Wessel at al. have observed that word-level
confidences derived from N -best list are well correlated to the er-
ror rates of hybrid GMM-HMM systems [14]. Hystoc updates this
observation for neural e2e systems and utilizes this information for
effective system fusion.

Kišš has recently shown that hypothesis level scores are well
correlated with segment-level error rate for character-level CTC sys-
tems in OCR and serve as an efficient filtration criterion for semi-
sepervised training [15]. Hystoc derives token-level confidences for
a tokenization independent of the underlying neural model.

In parallel to our work, Huang et al. have shown that the same
technique for computing confidences outperformed more sophisti-
cated techniques in context of keyword spotting [16].

2.2. Hystoc fusion

The primary application aim of this work is to enable fusion of
generic end-to-end systems, via the standard Rover tool. Neverthe-
less, the core procedure of Hystoc is unaware of the source of the
individual hypotheses that are aligned together. Therefore, we can
apply Hystoc confidence estimation to accumulation of hypotheses
across systems, under the very mild condition that they are run on the
same VAD segmentation. This way, a system fusion is performed.
We hypothesise that this comes with the added benefit of also con-
sidering all the other hypotheses as opposed to only considering a
1-best output from each system.

We propose three strategies of incremental alignment:
Direct, where we take every hypothesis hs

i along with its associ-
ated score ssi as-is and treat them as coming from a single system.
This assumes that the scores coming from all systems have compa-
rable dynamic range.
Normalized, where we first normalize the scores for each system
s′ separately so that

∑
i exp(s

s′
i ) = 1. Then, we again drop the

notion of individual systems and align the hypotheses into the con-
fusion network in the order given by their scores. This way, we

3In log-domain, i.e., by log-add-exp.

Table 1: Performance of the 1-best output of each individual system,
measured by % WER.

System w/o LM w/ LM

ConfA A 17.3 16.7
ConfB B 17.7 17.1
RNN-T R 21.7 21.2
Kaldi K 22.1 20.0

roughly balance the scale of scores across systems, but allow more
confident systems to impact the confusion network more by having
their top hypotheses aligned into it first.
Normalized round-robin addresses this aspect and first intro-
duces the top-1 hypothesis from each system, then the second best
from each system and so on.

3. EXPERIMENTS

We demonstrate the quality of calibration of Hystoc confidence
scores as well as their suitability for performing system fusion on
the Albayzin 2022 challenge.

This speech recognition challenge comes with a collection of
three audio databases: RTVE2018 and RTVE2020, consisting of
recordings from various Spanish TV shows broadcasted between
2015 and 2019, and RTVE2020, comprised of audio material from
historical recordings, popular broadcasted TV shows and fictional
shows [17]. We followed the original data splits and used the
RTVE2022’s dev partition with 2.5 hours of audio for development
and RTVE2020’s test partition with 39 hours for cross-validation of
acoustic models. The remaining 738 hours were used for training.
Most of the provided training data are not human-revised, so we fol-
lowed a data cleaning procedure from a previous work [18, Section
2.1], resulting in 512 hours of training recordings and 41 min-
utes of well-annotated dev data. The cross-validation set remained
untouched in our experiments.

3.1. Single systems

Since the main evaluation method of this work is system fusion, we
work with multiple ASR systems operating on a shared segmentation
of the audio data. In total, we consider four different ASR models:
ConfA and ConfB XLS-R Conformer [19] systems, using XLS-R
wav2vec features as input and predicting 1500 byte pair encoding
(BPE) units. The Conformer model was trained from scratch on the
training data, while the XLS-R feature extractor remained frozen.
RNN-T A recurrent transducer [20] based on CRDN encoder and
GRU prediction network. Operates on 80-dimensional f-banks and
predicts a vocabulary of 1000 BPE tokens.
Kaldi A hybrid TDNN-f/HMM system trained with the LF-MMI
objective in Kaldi. A 3-gram language model is used for decoding,
its optimal weight is 0.7.

Furthermore, we train an external language model (LM) based
on the LSTM architecture [21], with two layers of 1500 units each.
The LM operates on a 20k BPE vocabulary. We pretrained it on
Spanish News Crawl monolingual texts prepared for WMT’13 chal-
lenge4 and fine-tuned it to the transcripts of the training data. The

4https://www.statmt.org/wmt13/translation-task.html
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Fig. 2: Confidence as a predictor of accuracy. Dashed line corre-
sponds to using temperature T = 3.0, dotted to T = 10.0. Kaldi*
is the set of confidences coming directly from the original Kaldi lat-
tices, i.e. without their reduction to 100-best. Each coordinate is
computed from 2500 words.

LM is utilized by rescoring the 100-best outputs from each system.
When rescoring the Kaldi system, we perform a log-linear interpola-
tion between the scores from the LSTM-LM and the original 3-gram
LM. When rescoring the e2e systems, we add the LM probability
to the ASR score in the log-domain and introduce a token insertion
bonus, i.e. an increase in log-probability of a hypothesis proportional
to its length as measured in number of LM tokens. The optimal val-
ues are in range ⟨0.2, 0.3⟩ for LM weight and ⟨5.5, 6.5⟩ for token
insertion bonus. For more details, refer to the system description
paper [22].

The performance of our ASR systems, both with and without LM
rescoring, is summarized in Table 1. Note that rescoring of N -best
lists improved WER of each system by 0.7 % absolute on average.

3.2. Quality of confidences

With the ASR systems in place, we explore the quality of the confi-
dence as a predictor of the word accuracy. To this end, we process
the dev data with an ASR system and for each token, we record its
confidence and whether it aligns correctly to the ground truth. Then,
we sort the tokens by confidence and group them into batches of
2500 tokens. For each of these batches, we plot its median confi-
dence and the proportion of correctly aligned tokens in the batch.
Note that this analysis correctly takes into account substitution and
insertion errors, but it does not capture deletions.

The results of this analysis are shown5 in Figure 2. With the
exception of the RNN-T model, all confidences are in a close lin-
ear relationship with the word accuracies in the corresponding co-
horts. With an elevated temperature T = 3.0, the dependency is

5For systems w/o LM rescoring. The trends are very similar for systems with the
rescoring.
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Fig. 3: Confidence quality as a function of number of top scoring
hypotheses considered by Hystoc. Thinly dotted, dotted, dashed and
full lines correspond respectively to 3-, 10-, 17- and 100-best outputs
from each system.

even closer to the optimum. Increasing the temperature further to
T = 10.0 brings no additional gain.

Increasing the temperature means giving more credibility to hy-
potheses which were originally scored as less likely, so we investi-
gated the WER of the best path through these smoothed confusion
networks. The change in WER caused by increasing T from 1.0
to 3.0 was smaller than 0.1 % absolute and it was even negative in
majority of cases. The one outlier was the ConfA system rescored
with the external LM, where the WER increased by 0.2 % absolute.
Overall, we conclude that it is safe to increase the temperature if one
desires more precise estimates of word accuracy.

The confidences obtained from the hybrid Kaldi system are bet-
ter than traditionally expected (see e.g. [10]), which is likely the con-
sequence of using the sequence-discriminative LF-MMI criterion.
Comparing the confidences obtained from the directly from the full
lattices (black curve) with those computed from the 100-best lists,
we see that the degradation is not too sharp and is largely mitigated
by increasing the temperature.

Building on this observation, we check how quality of the confi-
dences changes when we further reduce the number of N -best out-
puts fed to Hystoc. Figure 3 shows that while applying Hystoc to
3-best is insufficient, the confidences are already reasonably reliable
with as little as 10-best outputs from an ASR. In this case, the confi-
dences of the e2e systems are actually better behaved than those from
Kaldi outputs. Again, with the exception of the RNN-T system.

3.3. Advantage of confidences in Rover fusion

Observing that the obtained per-word confidences are reasonable
predictors of word accuracy, we proceed to leverage them in fusion
of multiple systems. To this end, we run the standard Rover fusion
on transcriptions with Hystoc confidences. As the natural baseline,
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Table 2: Performance of Rover fusion as a function of temperature
T used to obtain the per-system confidences; results reported as %
WER. Note that with T = 0, only the best path is considered from
each system and the resulting confidences are then all equal to 1.0.

LM Systems T
0.0 1.0 3.0

no A 17.3 17.3 17.3
A + B 17.4 16.8 16.8
A + B + K 16.7 16.2 16.2
A + B + R 16.9 16.5 16.5
A + B + K + R 16.1 15.9 16.0

yes A 16.7 16.7 16.9
A + B 17.2 16.5 16.5
A + B + K 16.4 15.4 15.7
A + B + R 16.4 15.8 16.0
A + B + K + R 15.8 15.3 15.6

we take the single-best hypothesis from each system and assign con-
fidence 1.0 to each word in it. Formally, we achieve this effect by
setting the temperature to T = 0. Motivated by the effect of temper-
ature observed in the previous section, we introduce one more setup
into this experiment, where we increase the temperature of each sys-
tem correspondingly to 3.0. We tune the Rover fusion hyperparame-
ters, i.e. confidence interpolation coefficient α and ϵ-confidence Cϵ,
in a range of ⟨0, 1⟩.

The results of this experiment are summarized in Table 2. Pro-
viding the Hystoc confidences is beneficial in all cases, though the
scale of the improvement varies. In general, the improvement is
roughly on the scale of having one more system included in the fu-
sion, i.e., the fusion of N systems with the Hystoc confidences is
about as accurate as fusion of N + 1 systems without confidences.
This is in line with the observations made in the Rover paper [11] for
hybrid systems. Interestingly, the improvement from Hystoc confi-
dences is better pronounced for systems with external LM rescoring.

While the optimal values of α were consistently around 0.55 for
T = 1.0, they increased to about 0.75 for T = 3.0. This suggests
that the fusion mechanism generally searches for a smoothed but
informative confidence distributions.

3.4. Replacing Rover fusion with Hystoc

As described in Section 2.2, we continue to explore the possibility of
fusing ASR outputs directly on level of aligning individual hypothe-
ses. We fuse the same sets of models as in the previous experiment,
making the results directly comparable. As the elevated temperature
does not consistently improve the results, we use T = 1.0. With
Hystoc fusion, there are no more hyperparameters to tune.

The results are shown in Table 3 and overall, they are consider-
ably worse than in the Rover fusion. As long as we do not include
the RNN-T, the fusion is at least slightly better than using the sin-
gle best system. When RNN-T is included, the WERs deteriorate
dramatically, esp. when LM rescoring is not applied. While we do
not have a solid explanation why this happens for RNN-T in partic-
ular, it is in line with the observation that the confidences derived
from RNN-T are not very well calibrated. This suggests that the
confidence–accuracy analysis is a reasonable predictor of the useful-
ness of a system in the fusion.

Table 3: Performance of Hystoc fusion with different schemes of
accumulating individual hypotheses, reported as % WER. “Norm-
RR” stands for normalized round-robin.

LM Systems Scheme
Direct Normalized Norm-RR

no A 17.3 17.3 17.3
A + B 17.0 17.0 17.2
A + B + K 17.0 17.1 17.3
A + B + R 21.5 16.9 16.9
A + B + K + R 21.6 19.6 19.5

yes A 16.7 16.7 16.9
A + B 16.8 16.3 16.4
A + B + K 16.7 16.5 16.5
A + B + R 18.7 16.1 16.1
A + B + K + R 18.9 19.2 19.2

One notable exception is the fusion of the two conformer sys-
tems with LM, where the Hystoc fusion yields slightly better results.
While not significant on its own, this result does provide some hope
for further improvements of fusion of similar systems.

4. CONCLUSION

In this paper, we proposed Hystoc, a straight-forward technique for
computing word-level confidences from N -best lists produced by
any end-to-end system. Hystoc is fully independent of both the tok-
enization and the exact objective formulation used by the underlying
ASR model, making it a very generic tool.

We have shown that the confidences estimated by Hystoc are
on-par with confidences obtained from lattices from a WFST-based
decoder, and with as few as 10-best, the confidence estimation is rea-
sonably stable. Practically, we have shown that Hystoc confidences
bring a significant gain into the fusion of ASR systems, yielding 0.2
to 1 % absolute improvement over a confidence-free voting scheme.
Finally, we experimented with a direct Hystoc fusion of N -best lists
from different systems. Here, the results are negative, we only ob-
tained minor gains when fusing a specific combination of models,
while for most other setups, the performance deteriorated.

We see two lines of further work on Hystoc: First, when aligning
the individual hypotheses, Hystoc drops the notion of sequences im-
mediately and treats tokens individually, allowing “hypothesis hop-
ping” at any position. It could be beneficial to devise a more fine-
grained approach where it would only be possible to switch between
hypotheses in positions of high disagreement. Second, the iterative
nature of hypothesis alignment in Hystoc introduces hard decisions
early in the process of constructing the confusion network, possibly
limiting their quality. We expect that doing a full multi-sequence
alignment might mitigate this issue — however its direct computa-
tion is prohibitively expensive.

5. ACKNOWLEDGEMENTS

The work was supported by Czech Ministry of Culture NAKI III
project JARIN (DH23P03OVV010) and Czech National Science
Foundation (GACR) project NEUREM3 No. 19-26934X. Comput-
ing on IT4I supercomputer was supported by the Czech Ministry of
Education, Youth and Sports through the e-INFRA CZ (ID:90140).

11279

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 25,2024 at 12:57:18 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocabu-
lary conversational speech recognition,” in 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 4960–4964.

[2] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary,
Oleksii Kuchaiev, Jonathan Cohen, Huyen Nguyen, and Ravi
Gadde, “Jasper: An end-to-end convolutional neural acoustic
model,” 09 2019, pp. 71–75.

[3] Anmol Gulati, James Qin, Chung Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
arXiv preprint arXiv:2005.08100, 2020.

[4] Alex Graves, “Sequence transduction with recurrent neural
networks,” in 2012 Representation Learning Workshop, ICML,
2012.

[5] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural net-
works,” in Proceedings of the 23rd International Conference
on Machine Learning, New York, NY, USA, 2006, ICML ’06,
p. 369–376, Association for Computing Machinery.

[6] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recognition,”
Computer Speech & Language, vol. 16, pp. 69–88, 01 2002.

[7] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Scul-
ley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshmi-
narayanan, and Jasper Snoek, “Can you trust your model's
uncertainty? evaluating predictive uncertainty under dataset
shift,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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