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Abstract
In this paper, we address the Gaussian distribution assumption
made in PLDA, a popular back-end classifier used in Speaker
and Language recognition tasks. We study normalizing flows,
which allow using non-linear transformations and still obtain a
model that can explicitly represent a probability density. The
model makes no assumption about the distribution of the ob-
servations. This alleviates the need for length normalization,
a well known data preprocessing step used to boost PLDA
performance. We demonstrate the effectiveness of this flow
model on NIST SRE16, LRE17 and LRE22 datasets. We ob-
serve that when applying length normalization, both the flow
model and PLDA achieve similar EERs for SRE16 (11.5% vs
11.8%). However, when length normalization is not applied,
the flow shows more robustness and offers better EERs (13.1%
vs 17.1%). For LRE17 and LRE22, the best classification accu-
racies (84.2%, 75.5%) are obtained by the flow model without
any need for length normalization.

1. Introduction
Normalizing flows are a general class of machine algorithms
that use the transformation theorem [1, Chapter 1.2.1] in order
to model a probability distribution. This is done through the
application of invertible transformations on latent variables that
belong to a known distribution [2, 3]. Although they gained
their popularity within the field of generative modeling [4], the
fact that they represent a probability distribution makes it the-
oretically possible to use them for classification and regression
tasks. In this work, we study normalizing flows for speaker
recognition (SRE) and language recognition (LRE) tasks.

In speaker recognition, the goal is to develop a model capa-
ble of verifying a speaker from a set of recordings. In language
recognition, the goal is to determine the language of an utter-
ance. Both speaker and language recognition tasks typically
use a 2-step approach: (i) One first uses the training set to train
a deep learning model such that it learns to transform each ut-
terance into a single vector, which we call an embedding. The
embeddings must satisfy clustering properties: those belonging
to the same class must be close together in the Euclidean space,
while those belonging to different classes must be separated. In
speaker recognition, a class is a speaker. In language recogni-
tion, a class is a language. (ii) Once these training embeddings
have been produced, they form a new training set, which is used
to develop simple recognition models such as cosine distance or
Probabilistic Linear Discriminant Analysis (PLDA) [5]. During
evaluation, the recognition algorithm receives two embedded

utterances whose classes are unknown. The goal is to provide
a likelihood ratio between the same class or different class hy-
potheses.

1.1. Motivation

PLDA is a useful model deployed for classification tasks that
assumes an infinite number of classes can exist. It defines the
process that generates an observation x ∈ Rd as the following:

1. A latent variable v ∈ Rd is sampled from a Gaussian
with zero mean and diagonal covariance matrix Ψ, i.e.,
v ∼ N (0,Ψ). This represents the creation of a new
class.

2. The latent variable v is used as the center of a new Gaus-
sian with identity covariance matrix. Once fixed, a latent
variable u is sampled: u ∼ N (v, I).

3. Finally, the latent variable u is linearly transformed to
produce the observation x := m+Au, where the vector
m ∈ Rd is a bias, and A ∈ Rd×d is a matrix.

The linear transformation x := m + Au allows for sepa-
rately modeling the within class covariance matrix and between
class covariance matrix of the data. Hence, PLDA is often
known as the two-covariance model. However, one of the first
consequences of this transformation is that PLDA models ob-
servations as Gaussian variables. This can be a strong assump-
tion when the observations are for instance embedding vectors
extracted by a neural network. Consequently, length normaliza-
tion [6] is often applied to preprocess the vector embeddings
and make them approximate better the Gaussian assumption
of PLDA. In [7], the authors explored heavy-tailed PLDA [8],
which replaces the Gaussian distributions with Student’s t dis-
tributions. This approach is computationally expensive. In later
work [9], the authors explored applying a non-linear transfor-
mation to the embedding vectors before passing them to PLDA.
This requires an additional preprocessing step.

In this work, we relax this assumption by using an invert-
ible non-linear transformation x := g(u) instead of a linear
one. The main advantage is the explicit representation of an
arbitrary probability density that makes no assumption about
the distribution of the observations. Hence, we expect to ob-
serve more robustness with respect to PLDA when not applying
length normalization in our vector embeddings.

In [10, 11], this idea is already explored using a composi-
tion of affine and non-linear transformations based on the sinh
non-linearity. The resulting model requires a scaling factor that
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complicates the computation of likelihood ratios during evalua-
tion. The authors train the model via Expectation Maximization
(EM) [12, Chapter 9] using i-vector [13] and e-vector [14] em-
beddings. In our study, we present a different model whose
transformation is based on the composition of a single non-
linearity. The model is trained via gradient descent and it allows
using the original PLDA equations during evaluation. Another
difference is that we conduct our experiments using embeddings
from the x-vector [15] and XLS-R [16] models.

Section 2 describes the flow model applied as the backend
for SRE and LRE tasks. Section 3 provides an overview of the
training, development, and test sets. The experiments for SRE
and LRE are presented in Section 4 and the results are discussed
in Section 4.4. The overview of our findings in this study is
provided in Section 5.

2. Model
2.1. The Density

According to PLDA, observations that have been generated
from the same latent variable v are dependent and considered to
belong to the same class. The joint distribution of a set of depen-
dent observations p(x1, . . . ,xn|θ) depends on the parameters
θ. They are the matrix A, the intercept m, and the diagonal co-
variance matrix Ψ. The optimal θ is found by maximizing the
likelihood of the whole dataset {x1,x2, . . . ,xN}:

p(x1,x2, . . . ,xN ) =

K∑
k=1

log p(xi : i ∈ Ck | θ), (1)

where K is the total number of classes, N is the total number
of observations, and Ck is the set of indexes of the observa-
tions that belong to class k. Because PLDA just applies a linear
transformation, Equation 1 can be maximized analytically if all
classes have the same number of observations, or by using EM
if it is not the case.

Now, instead of applying a linear transform x = Au+m,
we are defining a parameterized, invertible, and non-linear
transformation x = g(u, λ). The transformation g involves a
new set of parameters λ and it has inverse h = g−1. At the same
time, we keep intact the PLDA assumptions regarding the la-
tent variables, i.e. p(u|v) = N (v, I) and p(v|Ψ) = N (0,Ψ).
Consequently, we have defined a new model with parameters
λ and Ψ. The remaining PLDA parameters A and m have
disappeared. In order to train this model via maximum like-
lihood, we need to find how it represents the joint distribution
p(xi : i ∈ Ck | λ,Ψ) of a set of dependent observations that
belong to a class k. In the following derivation, for simplic-
ity, we use the notation p(x1, . . . ,xn|λ,Ψ) in order to refer to
p(xi : i ∈ Ck | λ,Ψ).

From PLDA, we already know which is the joint distribu-
tion p(u1,u2, . . . ,un|Ψ) of a set of latent variables that be-
long to the same class [5, Equation 6]. If we now transform
each variable with xi = g(ui, λ) with inverse ui = h(xi, λ),
the transformation theorem claims that the new joint distribu-
tion p(x1,x2, . . . ,xn|λ,Ψ) takes the following form:

p(x1,x2, . . . ,xn|λ,Ψ) = p(u1,u2, . . .un|Ψ)

n∏
i=1

|∂h(xi, λ)

∂xi
|.

(2)
Where | ∂h(xi,λ)

∂xi
| represents the absolute value of the determi-

nant of the Jacobian ∂h(xi,λ)
∂xi

. It is not hard to prove that if we
choose x = g(u) = Au+m we obtain the PLDA distribution.

Therefore, our equations are a general case of the PLDA model.
We can take the logarithm of Equation 2 to obtain an explicit
expression for the log-likelihood:

log p(x1, . . . ,xn|λ,Ψ) = −nd

2
log(2π) (3)

+

n∑
i=1

log
∣∣∣∂h(xi, λ)

∂xi

∣∣∣− 1

2

d∑
t=1

log(Ψt +
1

n
)

− 1

2

d∑
t=1

ūt
2

(Ψt +
1
n
)
− 1

2

n∑
i=1

d∑
t=1

(uit − ūt)
2.

The data dimensionality is d and the scalar uit is just com-
ponent t of the vector ui = h(xi, λ). We also denote by
ū := 1

n

∑n
i=1 ui the average of all vectors ui and ūt is com-

ponent t of vector ū.
Our density assumes that the parameterized transformation

u = h(x, λ) generates latent variables of the same class that
are normally distributed with unit variance around the center ū.
Moreover, the center ū is normally distributed with zero mean
and covariance matrix controlled by the diagonal matrix Ψ and
the number of observations within the class, just like in PLDA.

2.2. The Flow Transformation

The transformation u = h(x, λ) that we use is called coupling
layer [17]. It is a non-volume preserving transformation that
transforms the vector x ∈ Rd into a new vector u ∈ Rd. It
splits the vector x into two halves: x1 ∈ R

d
2 and x2 ∈ R

d
2 .

The first half x1 remains unmodified, forming u1 := x1. The
second half is transformed according to:

u2 := (x2 − t) exp(−s), (4)

where the variables s and t have been produced by a neural net-
work function f that receives x1 as input: s, t = f(x1, λ). The
vectors u1 and u2 are concatenated to form the new vector u. It
is easy to check that this transformation is non-linear and invert-
ible. The parameters λ of the coupling layer transformation are
the parameters of the neural network f that has been used. The
most common choice is to use a Convolutional Neural Network
(CNN) [18].

2.3. The overall flow model architecture

Because the composition of invertible transformations is still an
invertible transformation, we can create a powerful non-linear
function by composing several coupling layers. Mathemati-
cally, we define h(x) as h(x) = hN ◦ hN−1 ◦ . . . ◦ h1, where
h1, h2, . . . , hN are N coupling layer transformations and ◦ de-
notes function composition.

When composing multiple layers, it is important to vary the
way in which the vector x is split at each layer. This is done
to ensure that all components of the vector x are modified after
the full transformation. To achieve this, we follow the simple
approach of just splitting in half the vector x and inverting the
splitting at each layer. We are aware there are clever ways of
achieving this, such as introducing additional invertible layers
based on rotation matrices, as done in [19]. In this first study
we decide to start with the simplest possible flow. A summary
of the presented ideas is illustrated in the block diagram of Fig-
ure 1, which also establishes a comparison between the flow and
PLDA architectures.

Finally, each coupling layer has its own CNN network with
a well defined goal: it must receive one half of the vector
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Unknown Data Distribution

Latent Variable Distribution

x∼ρd

ρd

u=hPLDA (x)

u∼N (v , I )
v∼N (0 ,ψ)

Latent Variable Distribution

u∼N (v , I )
v∼N (0 ,ψ)

x∼ρd

u=hFlow( x)

Coupling Layer

x→ x1x2
Vector splitting

Coupling Layer

x→ x2 x1
Vector splitting

M×1

PLDA Linear 
Transformation

PLDA Model Flow Model

ρd
Unknown Data Distribution

Figure 1: Overview of the PLDA and flow model backends in
SRE and LRE. PLDA receives a sample x from the unknown
data distribution ρd, applies a linear transformation hPLDA(x)
and assumes the resulting latent variable u belongs to a Gaus-
sian. The flow model instead performs multiple non-linear
transformations on the data sample.

x ∈ Rd, namely x1 ∈ R
d
2 , and it must output the scale and

intercept vectors s, t that are needed in Equation 4. Our imple-
mentation achieves this by using a CNN that starts with a linear
transform from d

2
to d units. It then uses 1D convolutions with

padding that preserve the d dimensions during forward propa-
gation. The network f returns a vector f(x1) ∈ Rd that is split
in two to obtain s and t.

2.4. Optimization

The model parameters that need to be optimized are the co-
variance matrix Ψ and the CNN parameters λ of each coupling
layer. In this work, we take a simplified approach and we train
first a PLDA model via EM. Then, we take the optimal matrix
Ψ∗ and we fix it for our flow model.

The optimization method that we use for learning λ is
stochastic gradient descent. We randomly select a batch of data
and we perform an update in order to maximize its likelihood.
We repeat the procedure until the likelihood saturates. More
specifically, we randomly select B classes k1, k2, . . . , kB . Our
batch loss l(λ,Ψ∗) is the Negative Log-Likelihood (NLL) of
the data involved in the B classes:

l(λ,Ψ∗) = − 1

B

B∑
b=1

log p(xi : i ∈ Ckb |λ,Ψ
∗). (5)

2.5. Evaluation

It is straightforward to do verification with the model. Verifica-
tion consists in receiving a vector xenroll and a vector xtest and
computing the log-likelihood ratio between the target and non-

target hypotheses. Following our independence assumptions,
the ratio takes the following form:

R(xenroll,xtest) := log
( p(xenroll,xtest|λ,Ψ)

p(xenroll|λ,Ψ)p(xtest|λ,Ψ)

)
.

(6)
At this point we notice that when using Equation 2 in order to
compute Equation 6, we keep a desirable property of PLDA:
there is no need to compute the Jacobians, as they cancel each
other out in the fraction. This means our model only requires
evaluating the likelihood of the Gaussian latent variables, ob-
taining the PLDA equation:

R(xenroll,xtest) := log
( p(uenroll,utest|Ψ)

p(uenroll|Ψ)p(utest|Ψ)

)
, (7)

where uenroll = h(xenroll, λ) and utest = h(xtest, λ).

3. Datasets
This section describes the datasets used for training and evalu-
ating the flow model on SRE and LRE tasks.

3.1. Speaker Recognition Evaluation (SRE)

The NIST 2016 Speaker Recognition Evaluation Plan
(SRE16 1) [20] consists of telephone calls in 4 different lan-
guages obtained from the Call My Net [21] corpus. It com-
prises training, development, enrollment, and evaluation sets.
The training data is obtained from the previous NIST SREs 04,
05, 06, 08, 10, Switchboard [22], Fisher [23] and Mixer 6 [24]
corpora. It has a total duration of 5700 h. The development, en-
rollment, and evaluation splits contain 52 h, 50 h, and 206 h of
data respectively. Energy based voice activity detection (VAD)
is applied to these datasets.

3.2. Language Recognition Evaluation (LRE)

The LRE17 [25] dataset consists of 14 languages and 3 parts:
train, dev, and eval. The splits contain 2061 h, 21 h, and 236 h
of data, respectively. We filter out the LRE17 dev data to use
only audio files shorter than 100 s. On the LRE17 eval data,
silence removal is applied on all audios that have length more
than 100 s.

The LRE22 [26] dataset comprises 14 languages from
African countries. The dev and test splits contain 30 h and 193 h
of audio, respectively. The evaluation focused on developing
technologies to improve LID for low-resource languages with
an average of 2 h of dev data for each language.

4. Experiments
Our experiments compare the performance of PLDA and the
flow model for two different data preprocessing conditions. We
either apply or skip length normalization [6] as the last step of
our data preprocessing. More specifically, we always follow the
subsequent steps for each dataset:

1. Center the data.
2. Reduce the data dimensionality with Linear Discrimi-

nant Analysis (LDA) [29, 30].
3. Train and evaluate both PLDA and the flow model.
4. Repeat steps 1-3 but now adding length normalization

after LDA in step 2 and compare the results.
1https://www.nist.gov/system/files/documents/

2016/10/07/sre16_eval_plan_v1.3.pdf
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Table 1: Overview of the training datasets used in the front-end
for embedding generation. The datasets are used in x-vector
system training and XLS-R system fine-tuning for SRE and
LRE tasks.

Task Front-end Train data

SRE x-vector NIST SREs 04, 05, 06, 08, 10,
Switchboard [22], Fisher [23] and Mixer 6 [24]

LRE

x-vector NIST LRE 2009– 2017, Babel [27],
NIST SRE16 [28] and Fisher English [23]

XLS-R LRE17

Table 2: Equal Error Rate (EER)(%) comparison between
PLDA and the flow model for x-vector embeddings on SRE16.
The flow shows more robustness than PLDA to the application
or not of length normalization.

SRE16 EER (%)

Embedding type Length Norm PLDA Flow
x-vector Yes 11.8 11.5
x-vector No 17.1 13.0

4.1. Common Flow Hyperparameters

For all experiments we choose a flow model with N = 4 cou-
pling layer transformations. Each coupling layer uses a CNN
with a linear transform and 3 1D convolutions, all of them with
kernel size 3. The number of output channels of each convo-
lution are 8, 8, and 1 respectively. The ReLU non-linearity is
applied between each convolution. We implement the model in
Pytorch [31]. Adam optimizer is used with learning rate 0.001
and momentum. We choose a class size of B = 64 (Equation
5).

4.2. Methodology for SRE16

For SRE16 the x-vector [15] model is trained with the kaldi
SRE16 [32] recipe, with the model architecture extended to
have 10 layers of Time delay neural networks (TDNN) [33].
The training data used for x-vector model is given in Table 1.
The embeddings are preprocessed to train the PLDA model as
mentioned at the beginning of Section 4. We apply the same
data preprocessing methodology for our flow model as well.
The large unlabeled dev-set is used for centering the evaluation
data and the small labeled dev-set is ignored.

In order to choose the number of training epochs, a highly
representative labeled dev-set is created by splitting the training
data into a new train-set with 80% of the speakers and a dev-
set with the remaining 20%. The flow model is then optimized
on the Negative Log-Likelihood (NLL) loss using the train-set.
We stop training the model when the loss on the dev-set grows
or saturates. During evaluation, when a speaker has multiple
utterances for enrollment, the embeddings are averaged (see i-
vector averaging in [34]).

4.3. Methodology for LRE

For LRE, we use two distinct embedding extractors to demon-
strate the generalizabiltiy of our observations: (i) x-vector
model from [35], which was trained from scratch with labeled
data, and (ii) XLS-R model [16] fine-tuned for language iden-

tification. The datasets used for training the two embedding
extractors are detailed in Table 1. Note that the XLS-R model
only uses LRE17 train data for fine-tuning. Hence, it is not ex-
pected to perform as well as the x-vector system, which uses
significantly more data.

As mentioned earlier, x-vector embeddings – with a dimen-
sion of 256 – are obtained from the system described in [35].
The model uses a 18 layer ResNet [36] architecture and 64 fil-
ter bank channels as the acoustic features. The XLS-R embed-
dings – with a dimension of 1024 - are obtained from the system
described in [37]. The XLS-R [16] model is pre-trained follow-
ing wav2vec 2.0 [38] style self-supervision with 128 languages
and 430,000 h of data using fairseq [39]. We fine-tune with the
LRE17 train split described in Section 3.2 with a learning rate
of 3e-05 for 42’000 steps with a batch size of 8 with the cross-
entropy loss using the espresso [40] toolkit following [41]. The
Orthonormal Linear layer proposed in [37] is used as the final
layer classifier for the XLS-R model. This layer is implemented
using [42] and adapted with a learning rate factor of 20.

LDA dimensionality of 13 is chosen given that both LRE17
and LRE22 datasets have only 14 languages. The dev split for
each LRE dataset is used to compute the mean of embeddings
required for centering. We train the flow model for 10 epochs
using the dev splits of each dataset.

4.4. Results

Table 2 shows the EERs obtained on SRE16 for the PLDA and
flow models when varying the application of length normaliza-
tion. The results indicate that the flow model slightly outper-
forms PLDA when length normalization is applied (11.51% vs
11.83% respectively). However, when length normalization is
not applied PLDA performance degrades to 17.12% while the
flow shows more robustness with an EER of 13.05%. As al-
ready reported by several other studies [6, 43], we note how
the application of length normalization strongly boosts PLDA
performance for SRE16. We do not claim our flow model is
in general better than PLDA for SRE16, as PLDA can offer an
excellent EER of 8.5% when used with domain adaptation tech-
niques [32].

It is also revealing to visualize the Detection Error Tradeoff
(DET) curves in Figures 2 and 3. When length normalization is
applied, both models present very similar performance curves.
When it is not applied, we get a clear separation gap between the
DET curves of each model, indicating a substantial performance
improvement of the flow with respect to PLDA.

When analyzing LRE17 in Table 3, we observe PLDA ac-
curacy on x-vector embeddings drops by 1.4% absolute (from
77.7% to 76.3%) when not applying length normalization. On
the contrary, our flow model not only performs better than
PLDA for both x-vector and XLS-R systems (improving by
1.3% with length normalization), but also length normalization
has no effect on its performance (difference of only 0.1% in ac-
curacy with and without length normalization). The results for
LRE22 point towards the same direction: the flow model re-
sults are independent to the application of length normalization
(constant to 75.7% for x-vector and to 69.2% for XLS-R).

5. Conclusions
We conclude it is possible to combine the theory of PLDA and
normalizing flows in order to obtain a non-linear version of
PLDA that can be efficiently trained and evaluated for speaker
verification and language recognition. While PLDA strongly
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Table 3: Accuracy (%) comparison between PLDA and the flow model for x-vector and XLS-R embeddings on LRE17 and LRE22
evaluation sets. The best accuracy is achieved by the flow model when length normalization is not applied. The XLS-R model is
fine-tuned with only LRE17 data (see Table 1), thus resulting in a performance drop on the LRE22 setup.

LRE17 LRE22
Embedding Length Accuracy (%)

type normalization PLDA Flow PLDA Flow

x-vector Yes 77.7 79.0 73.3 75.7
No 76.3 79.1 73.6 75.7

XLS-R Yes 83.7 84.1 67.0 69.2
No 83.2 84.2 66.9 69.2
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Figure 2: Detection Error Tradeoff (DET) curves for PLDA and
the flow model on SRE16 are similar when length normalization
is applied in the data preprocessing.
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Figure 3: Clear gap between the DET curves of PLDA and the
flow model when not applying length normalization.

relies on length normalization to boost its performance, the
flow model can offer more robustness when the data distribution
varies and it does not match the Gaussian assumption of PLDA.
In some problems the flow can even offer the best results with-
out any need for length normalization. We emphasize we do not
present the flow model as a replacement of PLDA, as one can
obtain excellent results by using PLDA with domain adaptation
techniques. We rather present the flow as a non-linear version of
PLDA which offers the possibility to compose many invertible
non-linear transformations in order to model non-Gaussian data
distributions. Theoretically, the flow can be applied to the same
variety of tasks as PLDA (classification, clustering, and verifi-
cation) while keeping desirable properties such as Jacobian can-
cellation in likelihood ratios and simple Gaussian distributions
for latent variables.

6. Future Work
Our model currently relies on PLDA for obtaining a matrix Ψ
and fixing it. Our next step will be to derive an optimization
method for updating the diagonal matrix Ψ that is independent
of PLDA. We will also focus on extending our techniques to
flow models from [44, 19] to allow using simple (and cheaper)
models for generating the vector embeddings.
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