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Abstract
The current state-of-the-art for various speech processing problems is a sequence-to-sequence model based on a self-attention 
mechanism known as transformer. The widely used wav2vec 2.0 is a self-supervised transformer model pre-trained on large 
amounts of unlabeled speech and then fine-tuned for a specific task. The data used for training and fine-tuning, along with 
the size of the transformer model, play a crucial role in both of these training steps. The most commonly used wav2vec 2.0 
models are trained on relatively “clean” data from sources such as the LibriSpeech dataset, but we can expect there to be a 
benefit in using more realistic data gathered from a variety of acoustic conditions. However, it is not entirely clear how big 
the difference would be. Investigating this is the main goal of our article. To this end, we utilize wav2vec 2.0 models in three 
fundamental speech processing tasks: speaker change detection, voice activity detection, and overlapped speech detection, 
and test them on four real conversation datasets. We compare four wav2vec 2.0 models with different sizes and different 
data used for pre-training, and we fine-tune them either on in-domain data from the same dataset or on artificial training 
data created from the LibriSpeech corpus. Our results suggest that richer data that are more similar to the task domain bring 
better performance than a larger model.

Keywords Speaker change detection · Voice activity detection · Overlapped speech detection · Wav2vec 2.0

1 Introduction

In the past few years, several subfields of machine learning, 
particularly those related to speech and language, have been 
overtaken by transformer models. The transformer neural 
network architecture uses the attention mechanism (Vaswani 
et al., 2017) and has recently seen great success on a variety 
of tasks, including but not limited to speech processing (Liu 
et al., 2021).

For speech processing, one of the currently most success-
ful approaches is wav2vec 2.0 (hereafter referred to as “wav-
2vec2”), proposed by Baevski et al. (2020). It is a self-super-
vised transformer model that is pre-trained on large amounts 
of unlabeled speech data and which can then be fine-tuned 
for a specific task. Wav2vec2 models have been used for a 
large variety of different speech processing tasks, such as 
automatic speech recognition (Baevski et al.,  2020; Lehečka 
et al., 2022), speaker recognition (Vaessen & Van Leeuwen, 
2022), and many others (Yang et al., 2021).

In this article, we focus on the use of wav2vec2 mod-
els in three basic speech processing tasks that are used in 
a variety of speech applications: speaker change detection 
(SCD), voice activity detection (VAD), and overlapped 
speech detection (OSD). SCD aims to find the points in a 
conversation where the active speaker changes, while the 
goal of OSD is to detect intervals where more than one 
speaker is active at the same time. Voice activity detec-
tion simply distinguishes between speech and non-speech. 
SCD and OSD are both particularly important to speaker 
diarization (Bullock et al., 2020), automatic speech recog-
nition (Wu et al., 2023), as well as other tasks related to 
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processing multi-speaker audio (Aronowitz & Zhu, 2020). 
Meanwhile, voice activity detection has a use in nearly all 
speech processing.

In our earlier paper (Kunešová  & Zajíc, 2023), we 
proposed an approach to speaker change detection, voice 
activity detection, and overlapped speech detection based on 
wav2vec2. In another recent publication (Zajíc & Kunešová, 
2023), we also explored the capabilities of different pre-
trained wav2vec2 models of various sizes and pre-training 
data by comparing their performance on the SCD task. The 
article presented here is an extended version of the latter 
work. While the original conference paper focused only 
on SCD, here we also add comparisons on the other two 
tasks: VAD and OSD. We also provide a more detailed 
analysis of the results, including statistical significance. The 
performance of the models is evaluated on four widely used 
corpora of conversational speech.

1.1  Related work

Older approaches for the SCD task include computing 
a distance between two sliding windows  (Rouvier 
et  al., 2013) or detecting differences in pitch  (Hogg 
et  al., 2019). More recent works have employed deep 
learning, using precomputed features based on i-vectors 
or x-vectors  (Aronowitz & Zhu, 2020), Mel-frequency 
cepstral coefficients (Hogg et  al., 2019), spectrograms   
(Hrúz & Zajíc,  2017), or combinations of multiple types 
of features  (Su et  al., 2022). Some authors have even 
included lexical information gained from automated 
transcripts (Anidjar et al.,  2021;  Zajíc et al.,  2018) or word 
embeddings (Jung et al., 2023) for speaker change detection. 
Various neural network architectures have been applied, such 
as CNN (Hrúz & Zajíc,  2017), LSTM (Yin et al., 2017), or 
sequence-level modeling methods (Fan et al., 2022).

The research of OSD has also undergone a simi-
lar shift from conventional techniques to deep learning. 
Where the oldest works relied on hand-crafted features 
such as LPC residual energy (Boakye et al., 2008), more 
recent studies use approaches such as convolutional neural 

networks (Kunešová et al., 2019) or LSTMs (Bullock et al., 
2020). The input of the networks can be in the form of 
MFCCs (Cornell et al., 2020), spectrograms (Kazimirova 
& Belyaev, 2018), x-vectors (Mateju et al., 2022), or raw 
waveforms (Bredin & Laurent, 2021; Mariotte et al., 2024).

VAD has been extensively researched for a long 
time (Ramirez et al., 2007; Tong et al., 2016), but nowadays, 
it is rarely the main focus by itself. Instead, it usually appears 
as one part or a by-product of a more complex system, such 
as in combination with OSD (Cornell et al., 2020; Mariotte 
et al., 2024) or as part of a speaker diarization system (Han 
et al., 2021).

2  Pre‑trained models and data

Since the original introduction of the wav2vec 2.0 approach, 
many different pre-trained models have been published, with 
different numbers of parameters and trained on different 
datasets.

From this range of options, we chose the following 
pre-trained models for our evaluation: the original two 
wav2vec 2.0 models wav2vec2-base and wav2vec2-
large, which are trained on English language data Baevski 
et  al. (2020), the large cross-lingual (XLSR) model 
wav2vec2-large-xlsr-53 (Conneau et al., 2021), 
and finally, to show the efficiency of models trained on 
different than clean data, also the Czech model wav2vec2-
base-cs-80k-ClTRUS, which is trained on Czech-
language data from a greater variety of different domains, 
such as radio, telephone, TV shows, and more (Lehečka 
et al.,  2022). The parameters of each model are summarized 
in Table 1. In subsequent text, we will refer to these models 
simply as “base”, “large”, “xlsr-53” and “ClTRUS”.

Note that although the pre-training data of the “ClTRUS” 
model do not match the English language of the datasets 
used in this article (described below), this should not be 
an issue—all three examined speech processing tasks are 
language-independent.

Table 1  Pre-trained wav2vec 
2.0 models used in this article

“#Tr” = the number of transformer blocks, “#Par.” = the number of parameters
1https:// huggi ngface. co/ faceb ook/ wav2v ec2- base
2https:// huggi ngface. co/ faceb ook/ wav2v ec2- large
3https:// huggi ngface. co/ faceb ook/ wav2v ec2- large- xlsr- 53
4https:// huggi ngface. co/ fav- kky/ wav2v ec2- base- cs- 80k- ClTRUS

Model #Tr. #Par. Datasets Hours Lang.

wav2vec2-base1 12 ∼ 95M Librispeech 960 English
wav2vec2-large2 24 ∼ 317M Librispeech 960 English
wav2vec2-large-xlsr-533 24 ∼ 317M MLS, CV, BABEL ∼ 56k 53 lang.
wav2vec2-base-cs-80k-ClTRUS4 12 ∼ 95M various ∼ 80k Czech

https://huggingface.co/facebook/wav2vec2-base
https://huggingface.co/facebook/wav2vec2-large
https://huggingface.co/facebook/wav2vec2-large-xlsr-53
https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
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To evaluate the effectiveness of the different wav2vec2 
models, we tested our system on several widely used Eng-
lish-language conversational speech corpora, which have 
annotated speaker turns and for which there are recent 
results from other authors.

Section 2.1 provides a description of the four datasets 
and their division into training, development, and test data. 
To study the impact of out-of-domain data, we also used 
artificially created data as an alternative for training—this 
is described in Sect. 2.2.

2.1  Real conversation data

For fine-tuning and evaluating our models, we used four 
English-language corpora of conversational speech:

• The AMI Meetings Corpus (AMI) (Carletta, 2007) 
contains ∼100 hours of meetings between 3–5 
speakers. We used the “headset mix” recordings for 
our experiments and followed the official “Full-corpus 
partition of meetings”1 for our training set. Evaluation 
on this corpus was done using the pyannote library 
plugin pyannote.db.odessa.ami2 with its built-in 
reference annotations (the development and test sets of 
which are subsets of the “Full-corpus partition’s”).

• The CALLHOME American English Speech 
(CALLHOME, or “CH”) corpus  (Canavan et  al., 
1997) is an 18-hour dataset of narrow-band telephone 
conversations (converted to 16 kHz for our experiments), 
typically between two speakers. We used the same 
training and test sets as Hrúz (Hrúz & Hlaváč,  2018;  
Hrúz & Zajíc,   2017): 43 and 77 files, respectively. 
Several files in the training set contain more than two 
speakers, but the test set consists only of two-speaker 
conversations. Since the division does not include a 
development set, and the training set is already fairly 
small, we evaluate the corpus in this article using a two-
fold cross-validation process.

• The First DIHARD Challenge (DIHARD I, or “DH-I”) 
dataset (Ryant et al., 2018; Bergelson, 2016) includes 
audio from 12 challenging domains that range from 

relatively clean (audiobooks, radio interviews) to 
noisy recordings (child language recordings, restaurant 
conversations). As the corpus doesn’t have a training set, 
we split it from the original DIHARD I development data 
using the partitioning published by Fan et al. (2022)3.

• The Second DIHARD Challenge (DIHARD II, or “DH-
II”) dataset (Ryant et al., 2019; Bergelson, 2016) is a 
successor to DIHARD I. We focus on the single-channel 
track, which contains data from 13 audio sources (some 
of which only appear in the development set or only in 
the evaluation set). Most of the contents are identical to 
DIHARD I, but there are some additions and corrections, 
including completely recreated annotations for two of 
the domains. We followed the example of Bullock 
et al. (2020) and split the development data into 2/3 for 
training and 1/3 for development (though likely not in the 
same way).

These four corpora are frequently used for speaker 
diarization and similar speech-processing tasks, so they are 
very suitable for testing speaker change detection, which we 
consider the main focus of our three tasks. They are perhaps 
slightly less ideal for overlapped speech detection, as the 
ground truth labels are not always perfectly accurate in this 
regard, but there are very few (if any) real conversational 
datasets where that is true.

2.2  Artificial training data

To also compare the effectiveness of the individual 
wav2vec2 models on out-of-domain data, we used synthetic 
training data, originally designed in Kunešová et al. (2019) 
and Kunešová and Zajíc (2023) specifically for the OSD and 
SCD tasks, respectively. Both were made from the “train-
other-500” subset of the LibriSpeech corpus (Panayotov 
et  al., 2015) by artificially combining single-speaker 
utterances. This way, we can control the speaker change 
points and overlaps and ensure that reference labels are 
accurate.

Figure 1 illustrates the creation of the artificial SCD 
dataset in Kunešová and Zajíc (2023). We generated 500 
artificial audio files by always concatenating five different 

Fig. 1  Artificial training data 
for SCD. Each colored rectangle 
represents one single-speaker 
utterance from the LibriSpeech 
corpus

random overlap or pause, -2s to +2s

Speaker A

Speaker B

1 https:// groups. inf. ed. ac. uk/ ami/ corpus/ datas ets. shtml
2 https:// github. com/ pyann ote/ pyann ote- db- odessa- ami 3 https:// github. com/ zhiyu nfan/ SEQ- SCD/ tree/ master/ data/ dihar d1

https://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
https://github.com/pyannote/pyannote-db-odessa-ami
https://github.com/zhiyunfan/SEQ-SCD/tree/master/data/dihard1
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utterances (individual audio files, typically around 5–15 sec-
onds long) from two different speakers in an A-B-A-B-A 
pattern, with random pauses or overlaps of up to 2 seconds 
between them. The leading and trailing silence at the start 
and end of each utterance was linearly tapered to avoid dis-
cernible seams. The total duration of this generated dataset 
was approximately 8 hours.

The creation process of the artificial OSD dataset was 
somewhat more complicated, so we refer the reader to the 
original description in Kunešová et al. (2019). This dataset 
had a total duration of 35 hours.

For VAD, there is no separate artificial dataset—for 
this task, we simply used the same data as for SCD. The 
reference VAD labels, like the OSD labels in Kunešová 
et al. (2019), were previously obtained from the original 
single-speaker LibriSpeech utterances with a different VAD 
detector.

3  Methods

In this section, we describe our approach to the three 
speech-processing tasks: SCD, VAD, and OSD. Unlike 
our multitask system in Kunešová and Zajíc (2023), here 
we use a separate model for each task so that they can be 
evaluated independently, without influencing each other. The 
structure of the models for each task is identical—the only 
differences are in the creation of the training labels and in 
how the outputs are processed.

As described in the above-mentioned paper, we treat each 
of the three problems as an audio frame classification task, 
using an approach that was initially proposed in (Kunešová 
and Řezáčková,  2022) for the detection of prosodic phrases 
but that can easily be applied to several other speech 
processing tasks, including SCD, OSD, and VAD.

We use a wav2vec2 model to get a contextual 
representation of the input signal (raw 16  kHz audio 
waveform), with an additional last decision layer in the form 
of one neuron with a linear activation function. This neuron 
outputs the relevant prediction about each audio frame—
i.e., every 20 ms, as per the pre-trained wav2vec2 model. 
Due to the character of the labeling functions (described 
in Sects. 3.1 and 3.2), the model is trained for regression, 
with mean square error loss, rather than a simple binary 
classification.

The implementation of the model and the fine-tuning 
process are done using the HuggingFace Transformers 
library (Wolf et al., 2020), as in our previous work4. The 
model architecture is illustrated in Fig. 2.

Because of the high memory requirements of the 
wav2vec2 models, the input 16 kHz audio signal is given in 
segments of 20 seconds, with a 10-second overlap between 
neighboring segments. When the resulting predictions are 
joined back together for evaluation, we use the middle part 
of each segment and discard the duplicate 5 s intervals at the 
edges. This ensures that the prediction for every audio frame 
is made with sufficient context on both sides.

3.1  Speaker change detection

For the purposes of this work, we define “speaker change” as 
a point in the audio signal where a currently active speaker 
stops speaking or a new speaker begins to speak. In other 
words, we do not only seek boundaries between two different 
speakers but also between speech and non-speech or between 
one speaker and multiple.

Reference labels for the SCD task are based on each 
dataset’s annotation files in the Rich Transcription Time 
Marked (RTTM) format, which is the standard annotation 
format for speaker diarization. Each line in an RTTM file 
specifies the time interval and speaker ID of one unbroken 
speaker turn. In our work, we consider the beginnings and 
ends of all these intervals as speaker change points, with one 
minor adjustment: in the training labels used for fine-tuning 
the model, if two turns of the same speaker have only a small 
gap (less than one second) between them, we merge the two 
turns, ignoring the gap. This helps to prevent the model from 
becoming too sensitive and reporting “speaker changes” 
even in brief pauses between words. For evaluation, we use 
the original speaker turns.

In order to deal with time inaccuracies in the human-
annotated references, we also use a fuzzy labeling strategy, 
which we first developed in (Hrúz & Zajíc,  2017): speaker 
change points are given a reference label with a value of 1, 

Fig. 2  The basic structure of the wav2vec2 models used for all three 
tasks. The model outputs a label for each audio frame (every 20 ms)

4 Our code is available at https:// github. com/ mkunes/ w2v2_ audio 
Frame Class ifica tion.

https://github.com/mkunes/w2v2_audioFrameClassification
https://github.com/mkunes/w2v2_audioFrameClassification
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which linearly decreases to zero over an interval of ±0.2 s 
around each boundary. Audio frames more than 0.2 seconds 
away from the nearest speaker change point are labeled as 0. 
An example of this triangular labeling can be seen in Fig. 3.

During the evaluation, we detect speaker change points 
by first finding peaks (local maxima) in the predicted labels 
and then applying a threshold—peaks above the threshold 
are considered speaker change points. However, we also set 
a minimum distance between detected peaks—if there are 
multiple peaks within a 0.25 s interval, only the highest one 
is kept. This brings a very minor but consistent improvement 
in the results. No other post-processing of the model outputs 
is performed.

3.2  Voice activity detection and overlapped speech 
detection

Voice activity detection and overlapped speech detection use 
an identical approach. Similarly to SCD, the training labels 
for VAD and OSD use a fuzzy labeling function with values 
between 0 and 1: 1 indicates speech/overlap, 0 indicates non-
speech/non-overlap, and there is a linear slope (width 0.4 
s) at the boundaries between the two, as in Kunešová et al. 
(2019). An example of this labeling can again be seen in 
Fig. 3.

The information about speech and overlaps is again based 
on the speaker turns listed in each dataset’s annotation. 
However, unlike SCD, where we remove short pauses within 
the speech of the same speaker, here we found it better to 
keep the speaker turns unchanged.

During evaluation, the classifications for each audio 
frame are obtained with a simple threshold—predicted 

values higher than the threshold are classified as speech/
overlap. We do not perform any post-processing on these 
two tasks.

4  Results

In this section, we present the experimental results. For 
each task, we fine-tuned the four pre-trained wav2vec2 
models on the training sets of each of the real conversation 
corpora (separately) and on the artificial data.

The number of epochs was the same for all models—five 
epochs, as in our previous publication on this topic (Zajíc 
& Kunešová, 2023). However, while previously we used 
the same decision thresholds for all models and datasets 
(selected on the AMI development set), here we tuned the 
thresholds for each dataset and model separately:

For each fine-tuned model, we found the optimal 
threshold on the development set based on the lowest 
or highest value of a specific evaluation metric (see 
Sect. 4.1). The possible range of the thresholds was -0.1 
to 1.1, with a step of 0.01.

For CALLHOME, where, as previously mentioned, we 
do not have a separate development set, we use a slightly 
different process, using two-fold cross-validation: We find 
an optimal threshold on one half of the test set and use it 
to evaluate the other half and vice versa. The evaluation 
metrics obtained on each half are then averaged. For this 
reason, our tables with results always list two thresholds 
for CALLHOME.

Fig. 3  Predictions and fuzzy 
labeling functions for all three 
tasks on the CALLHOME 
file “en_4431.wav” (model 
“ClTRUS”)
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4.1  Evaluation metrics

The predictions for each task were evaluated using the 
Python library pyannote.metrics (Bredin, 2017). 
For each task, we report evaluation metrics that are 
commonly used by other authors on the same task.

Speaker change detection was evaluated in terms of 
audio segmentation, as segment purity (Pur), coverage 
(Cov), and their harmonic mean (Hn). Purity measures 
how homogeneous the segments are, and coverage 
expresses whether each speaker turn is fully contained 
within one segment. Hn is analogous to the F1-score 
(which typically refers to the harmonic mean of precision 
and recall), only calculated from different metrics. Purity 
and coverage are obtained as

where S = {s1,… , sK} is the set of segments (i.e., 
intervals between speaker changes) found by the system, 
R = {r1,… , rJ} corresponds to the ground-truth segments, 
|rj| is the duration of segment rj , and sk ∩ rj denotes the 
intersection of segments sk and rj.

When searching for the optimal threshold on the 
development set, we chose the setting with the highest Hn.

(1)purity(S,R) =

∑
k maxj �sk ∩ rj�∑

k �sk�

(2)coverage(S,R) =

∑
j maxk �sk ∩ rj�

∑
j �rj�

,

Voice activity detection was evaluated in terms of detec-
tion error rate (Err), which is the sum of the missed speech 
rate (miss) and the false alarm rate (FA). Miss is the ratio 
of speech that was incorrectly labeled as non-speech, while 
FA describes the amount of non-speech that was incorrectly 
labeled as speech. Both are calculated relative to the total 
duration of speech in the data. During evaluation, the thresh-
olds for each model were optimized for the lowest Err on 
the development set.

For overlapped speech detection, the main metrics were 
precision, recall, and F1-score. Additionally, we also report 
accuracy and the detection error rate. The latter is analogous 
to the detection error rate of VAD—it is calculated relative 
to the total duration of overlapped speech, and so it can 
be higher than 100%. For selecting the threshold on the 
development set, we searched for the highest F1-score.

4.2  Speaker change detection results

The results of speaker change detection for individual 
corpora can be seen in Table  2. Unlike the preceding 
conference paper (Zajíc & Kunešová, 2023), where all 
models used the same threshold of 0.35, here we selected the 
thresholds for each model and dataset separately. However, 
the model checkpoints are the same as previously.

As seen in the table, the SCD results on all corpora are 
very consistent, and with the exception of AMI, the differ-
ences between models trained on in-domain or artificial data 
are relatively small. The consistency of our tested models is 
also evident from the coverage vs. purity graphs shown in 
Fig. 4 for all four corpora.

Table 2  Our results (%) for the 
SCD task with models fine-
tuned either on in-domain data 
or on an artificial dataset

The best result for each dataset is shown in bold text; the second best in italics

Dataset Model In-domain training data Artificial training data

Thresh. Cov Pur Hn Thresh. Cov Pur Hn

AMI Base 0.47 92.07 89.25 90.64 0.34 83.36 81.42 82.38
Large 0.32 91.30 90.59 90.94 0.40 81.44 81.95 81.69
xlsr-53 0.31 91.59 90.83 91.21 0.43 85.15 82.36 83.74
ClTRUS 0.27 91.42 90.88 91.15 0.42 85.90 78.67 82.13

DH-I Base 0.39 94.16 89.33 91.68 0.33 92.82 86.17 89.37
Large 0.28 93.91 90.26 92.05 0.52 92.48 86.55 89.42
xlsr-53 0.35 95.56 88.99 92.16 0.43 90.36 89.14 89.75
ClTRUS 0.29 94.03 89.80 91.87 0.13 89.85 88.73 89.29

DH-II Base 0.47 94.08 91.30 92.67 0.50 95.91 85.29 90.29
Large 0.35 94.75 91.04 92.86 0.60 95.89 85.23 90.25
xlsr-53 0.30 95.00 91.93 93.44 0.50 94.10 88.16 91.03
ClTRUS 0.46 95.87 90.26 92.98 0.46 95.83 86.12 90.72

CH Base 0.50/0.40 93.92 92.09 92.99 0.36/0.14 91.80 87.07 89.33
Large 0.42/0.45 93.53 92.48 93.00 0.30/0.28 90.70 88.02 89.33
xlsr-53 0.39/0.34 93.64 93.20 93.42 0.32/0.23 92.86 89.18 90.96
ClTRUS 0.34/0.31 94.40 92.53 93.45 0.11/0.09 92.68 87.69 90.10
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4.3  Voice activity detection results

Table 3 shows the results of voice activity detection. Here, 
the differences between datasets and between in-domain vs. 
artificial data are larger.

The results on AMI again stand out: when models are 
trained on in-domain data, AMI has the lowest error rate 
of all four datasets. But with models trained on artificial 
data, voice activity detection on AMI completely failed - the 
“optimal” threshold is the lowest one, when everything is 
classified as “speech”.

Upon closer examination, we found that the VAD models 
trained on artificial data are overly sensitive—even some 
pauses between words are classified as non-speech. This 
increased sensitivity applies to some degree to all four 
corpora but appears to be the most pronounced on AMI. 
However, we feel that this is, in essence, not so much an 
error as a mismatch in the level of granularity between the 
predictions and the reference annotations. It likely stems 
from the nature of the VAD labels used for the artificial data, 
which were themselves obtained from the original single-
speaker utterances with a different voice activity detector. 
The models trained on such labels would naturally reflect 
the sensitivity of the earlier VAD.

On the other hand, the models trained on artificial data 
also classify some non-speech sounds, such as breath and 
laughter, as speech, even though they are not marked as 

such in the ground-truth annotations. Such sounds are 
particularly common in the AMI dataset but not in the 
artificial data. The models trained on AMI do not have this 
issue. This will also be discussed in Sect. 5.1.

4.4  Overlapped speech detection results

Finally, the results of overlapped speech detection are 
shown in Table 4.

As seen in the table, overlap detection on the DIHARD 
I and DIHARD II datasets performed poorly. However, 
this is in line with previous OSD results on these very 
challenging data (Miasato Filho et al., 2018; Bullock et al., 
2020).

The results with models trained on artificial training 
data were also substantially worse than when trained on 
in-domain data, especially for the AMI corpus. This suggests 
that the artificial dataset for OSD needs to be improved so 
that it better represents real conversations.

For AMI in particular, we suspect that our artificial OSD 
data do not model the overlapped speech in AMI very well—
for example, each artificial file combines speech from two 
speakers, but AMI also contains overlaps between three or 
more individuals. Additionally, there are some instances of 
overlapping laughter, which is not marked as speech but may 
be detected as such during both VAD and OSD.

Fig. 4  Coverage vs. Purity 
on the SCD task for different 
thresholds with models fine-
tuned on in-domain or artificial 
data. (Zajíc & Kunešová, 2023)
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5  Analysis and discussion

5.1  Performance on different datasets

Before we compare the different pre-trained wav2vec2 
models, it would be a good idea to also discuss the 
differences in performance between the four datasets used 
for evaluation.

As observed in the previous sections, the AMI corpus has 
the greatest difference between models trained on AMI data 
and those trained on artificial data. This difference may stem 
from the character of the AMI dataset—it contains many 
instances of non-speech sounds, such as breath and laugh-
ter, which are not present in the artificial data. Additionally, 

as previously mentioned, these sounds are typically not 
marked as speech in the ground-truth annotations but may 
be detected as such by our models. This would naturally 
lead to increased errors, especially in the VAD and OSD 
predictions. For models that were trained on the AMI train-
ing data, the issue is mitigated as they were able to adapt to 
the AMI annotations and learn what should and should not 
be considered speech.

By contrast, CALLHOME has the most consistent results. 
This might be partially helped by the fact that, unlike the 
other datasets, our CALLHOME test set always has only two 
speakers in each conversation—just like the artificial data.

Finally, the DIHARD I and DIHARD II datasets had 
reasonable results on SCD and VAD but fared very poorly 

Table 3  Our results (%) for the 
VAD task for different models 
fine-tuned for 5 epochs

The best result for each dataset is shown in bold text; the second best in italics

Dataset Model Thresh. Err Miss FA Acc

(a) Models fine-tuned on in-domain data
AMI Base 0.29 5.54 2.13 3.41 95.48

Large 0.46 5.09 2.22 2.87 95.85
xlsr-53 0.34 4.98 1.88 3.10 95.94
ClTRUS 0.45 4.89 1.97 2.93 96.01

DH-I Base 0.15 13.16 4.71 8.45 90.03
Large 0.10 13.57 4.93 8.64 89.72
xlsr-53 0.16 11.67 5.65 6.02 91.16
ClTRUS 0.07 11.94 3.85 8.09 90.96

DH-II Base 0.07 12.54 3.91 8.63 90.64
Large 0.10 12.77 4.90 7.87 90.47
xlsr-53 0.08 11.64 4.62 7.02 91.32
ClTRUS 0.09 12.05 4.29 7.76 91.01

CH Base 0.42/0.49 8.51 4.02 4.48 92.61
Large 0.37/0.45 8.19 4.19 4.00 92.88
xlsr-53 0.44/0.40 8.18 4.65 3.52 92.89
ClTRUS 0.45/0.50 8.34 3.79 4.55 92.75

(b) Models fine-tuned on artificial data
AMI Base − 0.10 22.71 0.00 22.70 81.50

Large − 0.03 22.69 0.00 22.69 81.51
xlsr-53 − 0.10 22.73 0.03 22.71 81.47
ClTRUS − 0.10 22.71 0.00 22.71 81.50

DH-I Base 0.07 18.10 7.75 10.35 86.29
Large 0.04 18.42 9.39 9.03 86.04
xlsr-53 0.06 18.23 8.46 9.77 86.19
ClTRUS 0.09 19.34 8.87 10.47 85.34

DH-II Base 0.05 18.25 5.76 12.49 86.38
Large − 0.00 17.57 4.56 13.01 86.89
xlsr-53 0.04 17.85 6.60 11.26 86.68
ClTRUS 0.06 18.77 6.59 12.18 86.00

CH Base 0.03/0.04 11.42 7.29 4.13 90.07
Large − 0.01/0.00 10.38 5.30 5.08 90.98
xlsr-53 0.02/0.02 10.90 6.15 4.75 90.53
ClTRUS 0.04/0.05 11.31 5.86 5.45 90.17
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on the OSD task—although we are not the only ones to 
face this issue (Miasato Filho et al., 2018; Bullock et al., 
2020). This could be influenced by several factors: Firstly, 
the audio files do not come from a single source. Rather, as 
mentioned in section 2.1, these are collections of data from 
several different speech corpora with different characteris-
tics, some of which only appear in the development or test 
sets. This makes it more difficult to find a single model set-
ting or threshold that would work well on the entire dataset, 
as opposed to tuning them on each subset separately (Zajíc 
et al.,  2018). A part of the problem might also be in the 
reference labels—the DIHARD I annotations, in particular, 
are known to be imperfect and had been partially replaced 
in DIHARD II (Ryant et al., 2019). This may also account 

for the substantial difference between our OSD results on 
DIHARD I and DIHARD II.

For a comparison with other systems from different state-
of-the-art articles, we also present Table 5, showing the best 
results on the selected corpora we could find in the literature. 
Here, we can see that the SCD results of all our models 
surpass the previous works, while OSD and VAD are at least 
comparable.

5.2  Statistical analysis of differences 
between pre‑trained models

The tables with our results on the three tasks show that 
model “xlsr-53” nearly always achieved the best results of 

Table 4  Our results (%) for the 
OSD task for different models 
fine-tuned for 5 epochs

The best result for each dataset is shown in bold text; the second best in italics

Dataset Model Thresh. Prec Rec F1 Acc Err

(a) Models fine-tuned on in-domain data
AMI Base 0.19 76.11 81.62 78.77 93.83 44.00

Large 0.14 78.19 82.07 80.08 94.28 40.83
xlsr-53 0.14 78.47 82.75 80.55 94.40 39.96
ClTRUS 0.15 77.98 83.04 80.43 94.34 40.40

DH-I Base 0.13 42.05 50.10 45.73 91.98 118.94
Large 0.12 42.78 53.17 47.41 92.05 117.95
xlsr-53 0.10 48.68 49.33 49.00 93.08 102.68
ClTRUS 0.11 45.18 51.96 48.33 92.51 111.10

DH-II Base 0.13 49.93 61.08 54.95 93.38 100.17
Large 0.32 51.58 60.72 55.78 93.64 96.27
xlsr-53 0.17 54.00 58.89 56.34 93.97 91.28
ClTRUS 0.16 50.91 65.15 57.16 93.55 97.66

CH Base 0.16/0.14 64.77 68.50 66.58 94.62 68.77
Large 0.19/0.20 70.42 69.21 69.79 95.30 59.96
xlsr-53 0.19/0.19 70.78 69.11 69.92 95.35 59.48
ClTRUS 0.16/0.16 68.06 69.27 68.64 95.04 63.33

(b) Models fine-tuned on artificial data
AMI Base 0.03 60.32 60.81 60.56 88.90 79.20

Large 0.01 65.53 62.51 63.98 90.14 70.37
xlsr-53 0.00 60.51 76.23 67.47 89.70 73.52
ClTRUS 0.04 76.86 56.28 64.98 91.50 60.66

DH-I Base 0.06 38.62 48.25 42.90 91.34 128.43
Large 0.02 34.94 57.00 43.32 89.95 149.16
xlsr-53 0.01 38.25 60.34 46.82 90.76 137.05
ClTRUS 0.05 40.99 52.91 46.19 91.69 123.28

DH-II Base 0.07 43.81 51.27 47.24 92.44 114.49
Large 0.07 42.97 54.85 48.19 92.21 117.95
xlsr-53 0.03 46.45 59.27 52.08 92.79 109.07
ClTRUS 0.06 47.20 55.50 51.02 92.96 106.57

CH Base 0.17/0.17 56.16 61.14 58.53 93.23 86.64
Large 0.19/0.19 55.91 65.08 60.14 93.28 86.25
xlsr-53 0.11/0.10 66.74 68.46 67.59 94.87 65.67
ClTRUS 0.12/0.10 65.07 64.78 64.90 94.55 70.07
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the four pre-trained models, while “base” tended to be the 
worst.

However, to determine whether the differences between 
the pre-trained models are meaningful, we calculated the 
statistical significance of our results using the Wilcoxon 
signed-rank test. This was done in the following manner:

For each task, we calculated the F1-scores (OSD), Hn 
values (SCD), or detection error rates (VAD) for each 
individual file in the test sets of the AMI corpus (22 files), 
CALLHOME (77 files), and DIHARD II (194 files from 11 
separate audio domains). We did not include DIHARD I in 
this comparison, as most of its audio files are also part of 
DIHARD II.

Then, for every task and every combination of two 
models A and B, we performed the Wilcoxon signed-rank 
test comparing the two sets of per-file results, with the 
alternative hypothesis that model A is better than model B, 
i.e., that its F1-scores or Hn values are larger (OSD, SCD) 
or that its detection error rates are lower (VAD).

The resulting p-values (without any correction for 
multiple comparisons) can be found in Table 6.

From this and the previous tables, we can safely conclude 
that models “ClTRUS”, “large” and “xlsr-53” all surpass 
the performance of the base wav2vec2 model. Additionally, 
“ClTRUS” appears to be better than “large”.

Model “xlsr-53” also achieved better results than “large” 
in most cases and usually scored best of all four models (see 
Tables 2, 3, and 4), but according to Table 6, the difference 
is statistically significant only for the SCD task.

For models “large” and “xlsr-53”, the fact that they are 
better than “base” is an expected result—they have three 
times as many parameters, and “xlsr-53” was additionally 

pre-trained on a much larger set of training data (see 
Table 1).

The results for the “ClTRUS” model are more interesting. 
The model has the same size and architecture as the “base” 
model and differs only in the data used for pre-training, yet 
it also consistently brings better results.

The “base” and “large” models were trained mainly on 
clean LibriSpeech data and had not been exposed to real 
wild acoustic conditions such as those in the tested datasets. 
On the other hand, the “ClTRUS” model saw many different 
kinds of “wild” data during the pre-training phase, and 
the fine-tuning on in-domain data can benefit from this. 

Table 5  Previously reported results (%) for the three tasks on different corpora

For AMI and CH, the test sets may have been different from ours

Task Dataset Publication Cov Pur Hn

SCD AMI Su et al. (2022) 91.75 85.68 88.61
SCD DH-I Fan et al. (2022) 92.56 86.24 89.29
SCD DH-II Bredin et al. (2020) 93.7 86.8 –
SCD CH Hrúz and Hlaváč (2018) 72.57 72.57 –

Task Dataset Publication Miss FA Err

VAD AMI Bredin and Laurent (2021) 3.2 3.6 6.8
VAD DH-I Miasato Filho et al. (2018) 9.3 – 12.7
VAD DH-II Bredin et al. (2020) 4.2 5.7 9.9
VAD CH Landini et al. (2022) 3.23 4.03 –

Task Dataset Publication Prec Rec F1

OSD AMI Chen et al. (2024) – – 81.76
OSD DH-I Miasato Filho et al. (2018) 62.1 9.9 17.1
OSD DH-II Chen et al. (2024) – – 61.37
OSD CH Chen et al. (2024) – – 70.13

Table 6  Statistical significance of our results with models trained on 
in-domain data

Obtained using the Wilcoxon signed-rank test (without correction for 
multiple comparisons), with the alternative hypothesis that model A 
is better than model B. Values of p < 0.05 are shown in bold

↓ A / B → Base Large xlsr-53 ClTRUS

SCD Base – 0.828166 1 1
Large 0.171834 – 1 0.999993
xlsr-53 3.057e-17 5.544e-21 – 0.000373
ClTRUS 3.878e-07 7.103e-06 0.999627 –

VAD Base – 0.921325 0.950494 0.999039
Large 0.078675 – 0.586875 0.999607
xlsr-53 0.049506 0.413125 – 0.949927
ClTRUS 0.000961 0.000393 0.050073 –

OSD Base – 0.999997 0.999996 1
Large 2.634e-06 – 0.705546 0.982099
xlsr-53 4.097e-06 0.294454 – 0.798838
ClTRUS 4.494e-09 0.017901 0.201162 –
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Similarly, the larger “xlsr-53” model, which was pre-trained 
on more variable data from a few different datasets, also 
supports this trend.

6  Conclusion

Our main goal in this article was to determine the effect 
of using models pre-trained on data from a variety of 
real acoustic conditions as opposed to models pre-trained 
on relatively clean data. To this end, we compared the 
performance of four different wav2vec2 models with an 
additional decision layer when fine-tuned for the SCD, VAD, 
and OSD tasks.

A comparison of these models on four datasets of 
conversational speech shows us the importance of in-domain 
data not only in the fine-tuning phase but also in the self-
supervised pre-training phase. Based on the results, we 
believe that using richer data for pre-training the models 
brings a bigger gain than using larger models with more 
parameters.

Wav2vec2 is a relatively complex model with a high 
computation cost, so using it for some of these tasks—
especially the relatively simple task as voice activity 
detection—could be considered an overkill. However, 
we wish to use this approach in a transcription system in 
combination with existing ASR (Lehečka et al.,  2022), 
where the first wav2vec2 layers can be shared.
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