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Abstract
As speech technology has matured, there has been a push to-
wards systems that can process conversational speech, reflect-
ing the so-called “cocktail party problem,” which includes not
only more challenging acoustic conditions, but also necessi-
tates solutions to new problems, such as identifying who spoke
when and processing multiple concurrent streams of speech.
Such problems have been approached primarily via corpora
comprising business meetings and dinner parties, overlooking
the broad range of conversational dynamics and speaker de-
mographics that fall under the category of multi-talker speech.
To this end, we introduce the use of the Santa Barbara Corpus
of Spoken American English for evaluation of speech technol-
ogy—including preparing the corpus and annotations for auto-
matic processing, demonstrating the failure of state-of-the-art
systems to withstand the heterogeneity of conditions, and high-
lighting the situations where standard methods struggle to per-
form at all.
Index Terms: conversational speech, diarization, speech recog-
nition

1. Introduction
Solving the cocktail party problem—the ability to recognize
speech when one or more conversations are taking place, often
in reverberant and noisy environments—has long been consid-
ered among the ultimate goals of the recognition of speech [1].
A variety of techniques have partially enabled this ability in
speech processing systems. For instance, speech enhance-
ment [2–5] and beamforming [6–8] have been used to suppress
the noise and reverberation present in far-field recordings, and
speech separation [9, 10] and overlap-aware [11] or speaker-
attributed automatic speech recognition (ASR) systems [12,13]
have been developed to accommodate overlapping speech.

These techniques are often evaluated on recordings of busi-
ness meetings [14–17] or dinner parties [18,19]. While work on
such corpora has driven progress in multi-talker speech tech-
nology, they do not reflect the full range of human interac-
tions or acoustic environments present in naturally occurring
multi-talker audio. Recently released corpora for benchmark-
ing audio-visual diarization [20–23] include a broader range of
human interactions, but lack transcription for ASR.

One existing resource that explicitly aims to capture the
full range of naturally occurring spoken interaction is the Santa
Barbara Corpus of Spoken American English (SBCSAE) [24],
which was originally collected for linguistic analysis of every-
day speech from American English speakers of all “ages, occu-
pations, genders, and ethnic and social backgrounds.” 1 To ad-

*Denotes equal contribution
1https://www.linguistics.ucsb.edu/research/santa-barbara-corpus

dress the shortcomings in evaluation of conversational speech
technology, we repurpose the Santa Barbara corpus for evalu-
ation of multi-talker speech technology, including speaker di-
arization and speaker-attributed automatic speech recognition.
This involved processing of transcript files, realignment of seg-
ment boundaries, detection of anonymized regions of speech,
and more. In this work, we describe our efforts in detail and
also demonstrate and analyze the inconsistent performance of
standard systems in these heterogeneous conditions. All corpus
processing scripts and results will be released2 and integrated
into the Lhotse [25] audio preparation library for ease of use.

1.1. Related Work

Recent work in diarization has focused on creating data re-
sources that cover the breadth of natural human interactions.
For instance, The DIHARD [26] data contains some interviews,
e.g., from the Mixer 6 corpus [27], as well as restaurant con-
versations and meetings. Recent corpora such as the AVA-
AVD [22], and VoxConverse [21] datasets consist of movies and
celebrity interviews and likely do not reflect everyday speech.
Similar to SBCSAE is the MSDWILD [20] corpus, which used
targeted web-scrapping to collect videos of everyday conver-
sations. SBCSAE, however, has nearly double the amount of
speech with many (> 5) speakers per recording.

Almost all publicly available multi-talker ASR corpora con-
sist of meeting or dinner scenarios. While the recent CHiME-
7 DASR challenge [13] focused on multi-domain speaker at-
tributed ASR systems, the domains were all “seen” in training
and limited to the CHiME [18], DipCo [19], and Mixer 6 [27],
corpora which cover dinner parties and two-person interviews.
SBCSAE, which comes with full transcription, can be used
for evaluation of multi-talker and speaker-attributed ASR sys-
tems in more heterogeneous environments. The Ego4d-AVD
set [23] has some similarities, though contains only 5-minute
ego-centric multimodal clips of social interactions. SBCSAE,
however, contains longer (∼20 minute) recordings of all kinds
of speech, not just social interactions, recorded in stereo.

2. Corpus Overview
The Santa Barbara corpus comprises 60 recordings (24 hours)
of naturally-occurring speech, recorded from 1987–1996 with
stereo microphones (though 4 recordings are monaural and 4
have a silent channel), released at 22.05 kHz.

Because the corpus was constructed for linguists to study
the speech of American English speakers of all backgrounds,
the available transcripts are at the level of intonation units and
are very detailed. Annotation includes full transcripts with

2https://github.com/mmaciej2/sbcsae_preparation
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utterance-level time marks, speaker labels, overlap labels, vo-
cal style markings, inhalations/exhalations, laughter and other
vocalization, and some non-speech sounds. However, as the
corpus was originally intended for human viewing, there are
a number of formatting issues that complicate automatic pro-
cessing, including inconsistent tab and space character delimit-
ing both across and within files as well as other typographical
inconsistencies. In single-speaker regions, the utterance time
marks were not precise, only placing boundaries between utter-
ances. However, the excess silence can be reliably removed by
resegmenting via forced alignment with the transcripts.

SBCSAE also comes with metadata about participants’
gender, age, hometown, current state, education level, years of
education, occupation, and ethnicity, and also recording infor-
mation such as the recording location/room, type of conversa-
tion, and conversation summary. To protect the participants’
privacy, personally-identifying information, such as name or ad-
dress, had been redacted via transcript anonymization and low-
pass filtering of the audio prior to release. Additionally, for
some speakers, some or all metadata is missing.

Figure 1: Characterizing the speech in the SBCSAE by accord-
ing to conversation type, the number of speakers, and the per-
cent of overlapped speech. Each point is a recording.

Figure 1 characterizes the styles of speech present in SBC-
SAE, each with unique challenges. Conversations with family,
friends, romantic partners, doctors, and work colleagues feature
prominently, containing between 2-10 speakers and potentially
large amounts of overlapping speech. There are a number of
task-oriented conversations involving game-play, cooking, vet-
erinary clinic work, and even witness preparation. These in-
volve groups where speech is more formal and less overlapped.
Finally many recordings feature “lecture” scenarios with pre-
dominantly a single speaker (e.g. a lecturer, tour guide, or pas-
tor), and many additional participants who speak only briefly
(e.g. to ask or answer a question). Counter-intuitively, these
recordings often contain the largest number of speakers.

3. Corpus Preparation
3.1. Transcript Processing and Correction

39.62 40.42 KENDRA: [5(THROAT)5]
41.07 41.37 [6(SNIFF)6]
41.72 42.27 KEN: [7(Hx)=7]
42.00 42.27 MARCI: [7That wa-7] --
42.27 43.77 That made me ma=d.
43.77 45.57 KENDRA: ... <VOX Ma=d VOX> (Hx)[=].
45.27 47.28 WENDY: [<VOX<SING I wa]s so= ma=d.
45.27 45.72 MARCI: [XXX] --
47.28 48.09 I was [2ma=d,

Figure 2: Example of SBCSAE transcript file, demonstrating
annotation level and style.

An example selection from a transcript file is shown in Fig-
ure 2. Transcripts with this level of detail are valuable, but re-
quire processing to be usable for evaluation. Additionally, typo-
graphical errors can be problematic. For example, the highly-
prevalent space/tab character errors lead to significant errors
of tracking speakers due to difficulties in delineating the time

mark entries, optionally-empty speaker attribution entry, and
text transcription entry. For ASR purposes, we removed all
special characters and annotations except for code-switching
marks, punctuation, laughter, and undecipherable utterances.
The results were then extensively checked for processing errors,
and many annotation errors were corrected manually.

We made manual corrections to address inconsistent anno-
tation: we annotated all unmarked instances of code-switching;
we created—to the best of our ability—new, consistent, dummy
speaker labels for speakers who were assigned a collective
speaker label such as “audience”. In one recording (SBC021),
the high number of people, low volume, and short utterance
length made this speaker re-annotation difficult, so we instead
gave each new speaker-unlabeled utterance a new dummy la-
bel. This likely overestimates the speaker count, but better rep-
resents the dynamics of that recording. This recording should
be treated carefully in diarization evaluation.

3.2. Anonymization Filter Detection

As part of the release of the Santa Barbara corpus, personal-
identifying information of the participants was anonymized.
This was done via text replacement in the transcripts (along with
a marker) as well as filtering of speech energy above 400 Hz to
maintain pitch information while removing formants necessary
to recognize the words spoken. While the corpus documenta-
tion refers to “filter list files” (*.flt) that contain the filtered
regions, we were unable to find evidence of these files having
been released among the UCSB, TalkBank, and LDC copies of
the corpus. As a result, we developed a manually-tuned algo-
rithm to detect these filtered regions based on a significant re-
duction of energy in high-frequency parts of the spectrum. The
spectra and algorithm results were manually checked and all
errors found were corrected. The code and results have been re-
leased,3 including a file in the .uem format used in diarization
scoring packages for denoting scored regions.

3.3. Alignment

As noted in Section 2, the provided segments often include
excess silence in single-speaker regions, which makes them
unsuitable for evaluating speaker diarization and voice activ-
ity detection (VAD) systems; even ASR systems typically re-
move silence regions as a preprocessing step. We improved
the ground-truth segments by re-aligning the original audio with
the transcripts. Because overlapped regions are well-annotated
and are challenging for forced alignment (FA) models, we only
re-aligned single-speaker segments. We produced two sets of
alignments: alignments designed to tightly match speech ac-
tivity for diarization purposes, and ASR alignments aiming to
never clip spoken words.

Our pipeline consists of three FA models: an HMM-GMM-
based Montreal Forced Aligner (MFA) [28], torchaudio *-CTC-
based MMS_FA [29] and WAV2VEC2_ASR_BASE_960H,
both built on top of Wav2Vec2 [30]. We aligned audio on a per-
segment basis for each model separately. Certain annotations
corresponding to laughter, yell, or unknown words, are either
deleted or mapped to “*” in the *-CTC aligners. As an orthog-
onal resegmentation procedure, we used the pyannote-3.1 di-
arization system to create a VAD-based segmentation. We com-
puted the intersection over union (IoU) between all per-segment
pairs of FA outputs and defined that two models agree if the IoU
is positive. If at least one system disagreed with the others, we

3https://github.com/mmaciej2/sbcsae_anon_detection
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left the segment for manual inspection. To obtain a per-segment
matching score, we computed a weighted average of IoU scores.
We assigned more weight to agreement between more dissimi-
lar systems. If the IoU was too low or any systems do not over-
lap, the segments were manually inspected. Afterwards, VAD
was used to confirm the presence of speech. Conflicting results
were then manually inspected. The union of all alignment in-
tervals was used as a tentative updated segment boundary. We
finally applied the updated boundaries to segments that were
less than half their original duration.

For diarization alignments, we aimed to remove as much si-
lence as possible. We used the SpeechBrain CRDNN VAD sys-
tem [31] in union with the pyannote diarization system, as pyan-
note sometimes drops large consecutive chunks of speech. We
also relaxed the silence realignment condition to 10%, which in
combination with VAD union allowed us to remove almost five
times more silence, totalling 1 hour for the ASR and ∼5 hours
for the diarization segmentations.

4. Experimental Configuration
4.1. Systems

4.1.1. Diarization Systems

We evaluated performance of state-of-the-art diarization sys-
tems on the SBCSAE using a traditional cascaded, speaker
embedding clustering system and a modern end-to-end neural-
based system. For the cascaded system, we used the Diarizer4

package, based on the AMI [14] recipe. The pipeline uses
pyannote-2.0’s VAD and overlap detection [32–34] along with
Brno University of Technology’s implementation of x-vector
extraction and VBx [35] with overlap [36]. We did not fine-tune
any model parameters in order evaluate to what extent systems
can generalize to heterogeneous conditions.

For the neural system, we used pyannote-3.15, for its perfor-
mance record and prevalence of use both in research and pro-
duction. This system is based on powerset-classification neu-
ral diarization [37], with an additional clustering component to
stitch the windowed sections used to accommodate the memory
requirements of neural models. For heterogeneity experiments,
we used this system with all default settings. For tuning ex-
periments, we focused on parameters which affect the number
of unique speakers the model produces, evaluating both using a
fixed number of speakers as well as varying the minimum num-
ber of embeddings required for a speaker cluster.

4.1.2. Speech Recognition Systems

For ASR, we sought to test robustness to challenging condi-
tions and multi-talker overlapped speech transcription. We se-
lected OpenAI Whisper Large-v3 [38], a single-talker ASR
system pre-trained on vast amount of data. We use Guided
Source Separation (GSS) [39] pre-processing to help Whis-
per cope with overlapped speech and enhance the audio, even
though the dataset does not contain more than two channels that
GSS would benefit from. As an alternative, we use the SURT
2.0 large [11] model, pre-trained on single-talker dataset Lib-
riSpeech [40] and multi-talker simulated dataset LibriCSS [41],
to test performance of an ASR system trained to transcribe over-
lapped speech.

We first split the long-form recordings into groups accord-
ing to the re-aligned ASR supervisions (transcription units, such

4https://github.com/desh2608/diarizer
5https://huggingface.co/pyannote/speaker-diarization-3.1

as parts of sentences). Then, we ensured that each group con-
tains at most 20 re-aligned supervisions, which limits the dura-
tion of a single group to at most 1 minute as well as the maxi-
mum number of speaker changes, and restricts the MIMO WER
combinatorial space.

4.2. Evaluation Metrics

4.2.1. Diarization Metrics

For evaluation, we used both Diarization Error Rate (DER) [42]
and Jaccard Error Rate (JER) [26], as they have complemen-
tary downsides. The salient difference is that while DER is in
some sense the amount of errors divided by the total amount
of speech, JER is roughly the per-speaker detection error aver-
aged across all reference speakers. This means that DER tends
to under-emphasize errors of rare speakers due to contributing
little overall speech, while JER does not penalize hallucinating
extra speakers which do not correspond to a reference speaker.

4.2.2. Speech Recognition Metrics

We evaluated speaker-agnostic ASR performance using MIMO-
WER [43] as implemented in the MeetEval toolkit [44], as it en-
ables evaluating a single hypothesis stream against against mul-
tiple overlapping references. For speaker-attributed ASR we
used cpWER [12].

5. Results and Discussion
5.1. Diarization Results
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Figure 3: DER/JER comparison on a per-sample basis.

The baseline diarization results are reflected in Figure 3.
There is a wide range of performances by both systems, with
a floor of around 20%, which is not unreasonable for generally
far-field recordings, and a ceiling of around 75% DER. As some
recordings contain over 20 unique speakers, it is unsurprising
that JER tops out above 99%. It also matches expectations that
recordings with lower DER but higher JER have more speak-
ers in them. Interestingly, there is one recording where JER is
much lower than DER. The systems consistently overestimate
the number of speakers in it, which aligns with the primary po-
tential downside of JER.

It is also encouraging to see that there are recordings where
both DER and JER are high, which indicates truly bad perfor-
mance rather than artifacts of the metrics. The worst samples for
pyannote are dominated by speech by the elderly and teenagers,
likely due to a lack of age range in the training data. The x-
vector system performs better on these samples, likely due to
the broad range of training data in the x-vector system. How-
ever, it tends to do very poorly on heavily-overlapped record-
ings, suggesting the overlap-aware VBx method does not do as
well as a neural model at recovering overlapping speech.
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Figure 4: Per-sample comparisons of speaker count between
the automatically-detected, best-performing hard-coded, and
ground truth number of speakers. The lines represent the
boundaries when two of the above were equivalent.

Additionally, we explored the speaker-counting aspect of
diarization through the pyannote model, which both has de-
fault behavior of automatically detecting the number of speak-
ers via its clustering method as well as the ability to cluster to a
fixed number of speakers. We swept this parameter to find the
best-performing ‘oracle’ number of speakers for each recording.
Comparisons of the oracle, detected, and ground-truth number
of speakers are shown in Figure 4.

The primary takeaway from this figure is that there is no
systemic bias between these quantities—which would be seen
if the points tended to lie on one side or another of the lines. One
interesting result is that the most systemic bias is that pyannote
tends to detect a larger number of speakers than is optimal for
DER, but not JER. This suggests that pyannote does a reason-
able job of detecting speakers, and is not optimizing the DER
metric, which can incentivize dropping rare speakers.
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Figure 5: Exploration of min_cluster_size parameter of
pyannote diarization. Red ‘x’s show per-recording diarization
improvement from using the ‘oracle’ setting, and the blue line
shows the overall average error rate.

Finally, Figure 5 reflects analysis we did with respect to
the min_cluster_size parameter of pyannote, which helps
prevent the model from over-clustering, but also provides a floor
to the amount of speech the model is capable of detecting as a
unique speaker. Similar to the prior experiment, we found the
per-sample ‘oracle’ optimal setting.

In many cases, decreasing this parameter can lead to dra-
matic reductions in JER (up to 33% absolute), suggesting that
the clustering backend does drop speakers that the end-to-end
model found. However, decreasing this parameter reduces over-
all performance, suggesting it is already tuned optimally for this
dataset (from below), even for the speaker-emphasizing JER
metric. For DER, we unsurprisingly saw no gains by reducing
this parameter and still saw an increased error rate in aggregate.

5.2. Speech Recognition Results

Table 1 reports the performance of Whisper and SURT Large.
While the SURT model is able to detect and separate over-

Table 1: MIMO WER% comparison using segmentations with at
most 20 supervisions. The high/low overlap boundary is 10%.

Model Low ovl. High ovl. Avg.

Whisper 20.51 33.14 25.11
SURT Large 50.48 64.84 55.71

SURT Large + FT 51.62 67.52 57.38

lapped speech to an extent, it often produces incoherent sen-
tences even on clean recordings with little overlap. This may
be due to training on synthetically created mixtures from Lib-
riSpeech [40] that do not reflect real-world conditions. We
therefore performed 4-fold cross-validation, fine-tuning (FT)
the SURT model on each chunk of ∼5 hours of speech. How-
ever, fine-tuning does not help, likely because SBCSAE con-
tains such heterogeneous recordings. While Whisper was not
trained to perform multispeaker ASR, and often fails to tran-
scribe non-dominant speech in overlapped regions, it signifi-
cantly outperforms the SURT model likely thanks to robustness
from training on much larger amounts of data. The MIMO-
WER ranges from 5.99% on mostly single speaker recordings
to 42.31% on recordings with significant overlapped speech.
Examining Table 1, we see that both models perform consid-
erably better on groups with low overlap. This suggests that
pre-training models on colossal amounts of single speaker data
leads to superior performance, but does not solve ubiquitous
problems in spontaneous speech.

SBCSAE also enables evaluation of speaker-attributed
ASR. We first evaluated Whisper on speaker-labeled supervi-
sions using oracle diarization, and later used GSS to assist
Whisper and potentially enhance the target speaker on over-
lapped speech. As Figure 6 shows, GSS decreased the max-
imum cpWER by 11.2% absolute. The improvement mainly
comes from a single recording (SBC019) that contains two less-
correlated channels, which GSS benefits from as opposed to
highly-correlated stereo recordings prevalent in the data. Fur-
thermore, the violin plot displays a slight cpWER mass shift
towards lower error rate values, demonstrating that GSS results
in small improvements on other recordings as well. Finally, we
evaluated Whisper + GSS with a pyannote diarization system.
The last violin plot in Figure 6 shows 25.48% relative cpWER
degradation when real a diarization systems is used compared
to Whisper + GSS with oracle diarization. The long distribution
tail shows how diarization can negatively affect cpWER, which
on SBC011 increased from 21.61% to 109.34% due to failure
to distinguish between voices of the elderly.

0 20 40 60 80 100 120
cpWER (%)

Whisper + GSS
pyannote Diar.

Whisper + GSS
Oracle Diar.

Whisper
Oracle Diar.

6.10% 39.89% 109.34%

4.90% 31.79% 54.96%

5.01% 33.60% 66.16%

1

Figure 6: Speaker-attributed ASR evaluation.

6. Conclusion
We have presented the Santa Barbara corpus for diarization and
ASR evaluation, benchmarking performance of standard speech
technologies in wide conversational settings, highlighting diffi-
culties of speaker detection in diarization and the failings of
using large pre-trained models or synthetic data to tackle spon-
taneous speech recognition.
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