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Abstract
This paper presents our method for tackling the CHIME-8 chal-
lenge’s NOTSOFAR-1 task, which requires participants to per-
form multi-speaker automatic speech recognition (ASR) using
audio from distant microphone arrays. We modify the Pyan-
note3 diarization pipeline, incorporating pre-trained WavLM as
local EEND to adapt effectively to new domains, and we intro-
duce two diarization-aware approaches to ASR by condition-
ing Whisper on diarization outputs for target-speaker ASR. The
first method, which we refer to as Query-Key Biasing, modi-
fies Whisper’s attention mechanism and positional embeddings
with a learnable attention mask to exclude non-target speaker
segments in the audio. The second method, called Frame-
Level Diarization-Dependent Transformations, applies affine,
diarization-dependent transformations with trainable parame-
ters to the inputs of one or more transformer blocks. We also
extend both the ASR and diarization systems to a multichannel
setup by incorporating cross-channel communication into our
models. Finally, we report the performance of these approaches
on the NOTSOFAR-1 dataset.
Index Terms: multi-talker speech recognition, CHiME-8,
NOTSOFAR-1, target-speaker

1. Introduction
Self-supervised models [1, 2, 3], LLMs [4, 5] and Whisper-style
supervised models [6, 7], have demonstrated that scaling up
models to use more parameters and large amounts of data can
enable the development of high-performing automatic speech
recognition (ASR) systems, even in relatively challenging en-
vironments. However, these models have primarily been used
in single-speaker, single-channel ASR systems, whereas most
conversations are multi-talker, often recorded with multiple mi-
crophones. Approaches to handle this scenario generally com-
bine multiple systems that perform source separation, speaker
segmentation, overlapped speech detection, post hoc speaker
clustering, and ASR to produce speaker-attributed transcripts.

We aim to use Whisper in a relatively simple setup that
avoids many of these components. At a high level, we first
diarize the conversations and then fine-tune Whisper to per-
form target speaker ASR. However, rather than conditioning on
speaker embeddings, we propose two methods for conditioning
directly on frame-level diarization outputs. The advantage of
this approach is that the ASR system not only has access to an
instance of the target speaker speech, but also the labeled in-
stances of non-target speech. For the Whisper fine-tuning, we
use the ground truth speaker segmentation. For each training
example, one of the speakers in the input conversation is des-
ignated as the target speaker and only the transcript of his/her

speech is considered as the target output sequence. Training
segments that have transcripts for more than one speaker are re-
peated during training so that each speaker in the conversation
can play the role of the target speaker.

The first of our methods, dubbed Query-Key Biasing,
utilises the diarization outputs to produce a target speaker mask.
This mask expands keys and queries to modify attention scores
and focus better on the desired speaker frames. As the masked
audio may contain overlapped speech, this approach, in theory,
trains Whisper to perform target speaker ASR while handling
large regions of silence and non-target speaker speech.

In the second approach, named Frame-Level Diarization
Dependent Transformations (FDDT), the model has more fine-
grained access to diarization outputs, which are incorporated
by applying learned frame-level transformations corresponding
to target-speaker and non-target-speaker audio at the input of
transformer blocks in the encoder.

Some of our fine-tuned models suffered from some of
the well-known problems of the original Whisper model:
hallucinations, especially in regions of silence, and unreli-
able timing information. For these reasons, we also fine-
tune the Whisper model using the CTC objective. All
our code is publicly available at https://github.com/
BUTSpeechFIT/CHiME-8_NOTSOFAR-1.

1.1. Related Work

Target speaker ASR (TS-ASR) models generally rely on
speaker-specific information [8, 9, 10, 11], such as target
speaker enrollment or existing speaker embeddings, or embed-
ding models such as x-vectors extractors [12]. TS-ASR models
trained on a limited number of speakers, as is the case with the
NOTSOFAR-1 challenge [13], may struggle to generalize effec-
tively to new speakers or different acoustic conditions. Train-
ing these models often requires additional components, such as
x-vector extractors, in order to compute speaker embeddings.
Other approaches to target speaker ASR first attempt to sepa-
rate the speech and then assign speech in the separated streams
to speakers, again using some enrollment speech or embed-
dings [14]. More recently, especially in the streaming scenario,
this enrollment speech has been provided by “prompting” the
model with examples of previously recognized speech [15, 16],
or instruction tuning of Whisper style models [17].

2. Target Speaker ASR
This section describes two methods for conditioning Whisper
on diarization outputs and extending the Vanilla Whisper.
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2.1. Query-Key Biasing for Target Speaker ASR

One way to condition on frame-level diarization outputs is to
use them as target speaker time masks when transcribing audio
segments with one or more speaker turns.

For simplicity, let us assume the number of attention heads
is one. Let Wq,Wk ∈ Rd×d be the query and key projection
matrices and qi, kj ∈ Rd the query and key respectively, where
d is the attention embedding dimensionality. The attention score
between qi, kj is computed as:

aij = softmax(
(Wqqi)

T (Wkkj))√
d

). (1)

If we assume that acoustic information is aligned across time,
masking out non-target speaker frames forces Whisper to ig-
nore information irrelevant to the target speaker transcript (i.e.
other speakers, silence, etc.). However, pure attention masking
leaves Whisper no chance for unmasking and possibly attend-
ing to non-target frames, which makes adaptation and speaker
tracking learning impossible.

As a solution, we decided to bias the encoder self-attention
and the decoder cross-attention by extending queries, keys and
initializing corresponding projections in the following way:

q̂i =

[
qi
1

]
, k̂j =

[
kj
−c

]
, Ŵq,k =

[
Wq,k 0

0 1

]
(2)

where c ∈ R+
0 is a bias factor that is set to 0 if kj corresponds to

a target speaker frame, and to a predefined constant otherwise.
It is easy to observe that, after initialization, if ki represents

a target speaker frame, aij remains intact. On the other hand, if
kj represents a non-target speaker frame, the dot-product inside
the softmax changes as:

Ŵq q̂i =

[
Wqqi
1

]
, Ŵkk̂j =

[
Wkki
−c

]
, (3)

[
(Wqqi)

T 1
] [Wkki

−c

]
= (Wqqi)

T (Wkkj)− c. (4)

It is important to note that fine-tuning the Whisper model with
extended queries and keys changes the extended attention pro-
jection matrices, which controls the level of attention biasing.

2.1.1. Shifted Positional Embedings

Masked silences within an utterance can lead to hallucinations
and instability during Whisper’s training. The main reason is
that the decoder is cross-attending to discontinuous parts of the
encoder embedding sequence. Therefore, we shift the positional
embeddings on target speaker frames and repeat the previous
ones on the non-target ones, which ensures that the embeddings
the decoder attends to have continuous positions.

2.2. Frame-Level Diarization Dependent Transformations

As an alternative to query-key biasing, we can augment the
frame-level speech representations with an encoding of the type
of speech that is present in each frame of the audio. Figure 1 de-
picts our approach, dubbed Frame-Level Diarization Dependent
Transformations (FDDT), which is described in detail below.

Based on the diarization output, to each speech frame,
we assign one of four possible STNO labels: Silence, Target-
speaker speech, Non-target speaker(s) and Overlapping speech
containing the target-speaker. Here, we convert Whisper into

Figure 1: Proposed Diarization-Conditioned Model. An in-
put audio segment with possibly more than one speaker is
extended with hard or soft frame-level diarization outputs[
ptS ptT ptN ptO

]T for each of the STNO classes and ev-
ery frame at time t. Affine transformations shown as additions
to the left of the Whisper model are applied to the intermedi-
ate outputs Zl, of layer, l, to create new embeddings. The final
frame-level embedding is a convex combination of these embed-
dings for each frame.

a target-speaker ASR model by inserting an affine transforma-
tion (diagonal linear transformation and bias) at the input of ev-
ery encoder self-attention layer, which operates frame-by-frame
on the hidden representations. This affine transformation is con-
ditioned on the STNO labels, and it, therefore, changes from
frame to frame depending on the frame label, i.e., we have 4
different affine transformations (for each label), and the STNO
labels select which one is used for which frame. The trans-
formations are initialized to identity functions so as not to dis-
rupt the data flow in the well-trained Whisper model. The pa-
rameters of all the affine transformations are the new trainable
parameters, which are fine-tuned together with all the original
Whisper parameters for the target-speaker ASR task.

2.3. Target-speaker ASR decoding

During inference, real diarization system outputs can be used
instead of ground-truth diarization. Each input conversation is
decoded once for each speaker present in the diarization system
hypothesis. We use the Whisper sequential long-form decod-
ing, which also produces timestamps for the beginning and end
of each segment of each speaker. During inference, the frame-
level diarization outputs can be used to make either hard or soft
decisions about each frame label. When using soft decisions,
the soft labels are used as weights to obtain a convex combina-
tion of the 4 affine transformations.

2.4. Hybrid CTC/Attention fine-tuning of Whisper

For the systems based on FDDT, we use the Hybrid
CTC/Attention architecture [18] to mitigate the known issue
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of hallucinations, which can be observed for encoder-decoder
models [19]. However, using CTC with the Whisper vocabulary
can result in large memory requirements as well as inefficient
training and inference. Therefore, for the CTC branch, we used
a cascade of one self-attention layer, two convolutional layers
and a CTC head (a linear layer and softmax) appended to the
last layer of the Whisper encoder. The stride of two is used for
each convolutional layer, resulting in a final output frame rate
of 12.5 Hz (80ms for each frame). The output labels considered
by the CTC head are the blank symbol and all Whisper decoder
output tokens (including the time-stamp tokens). The combi-
nation of the scores from the Whisper decoder and the CTC
decoder is used in the final decoding only with small models as
described in [18]. Language and task-specific Whisper tokens
are masked for CTC.

2.5. Multichannel ASR decoding

We apply the hybrid CTC/attention model to multichannel ASR
by executing the single-channel ASR model separately on each
channel in parallel. Specifically, we average the encoder activa-
tions at the 8th layer across channels and propagate the result-
ing averaged activation through the remaining encoder layers
and the decoder. Inspired by Mošner et al. [20], we also ex-
perimented with different strategies to train the complete mul-
tichannel system and facilitate information exchange between
channels, but the results were not highly promising.

3. Diarization
Any diarization system could be used in the TS-ASR ap-
proaches described in Section 2. We describe some modifica-
tions to a standard Pyannote diarization pipeline [21] that were
not only helpful in the multichannel scenario but also for single-
channel diarization.

3.1. Single-channel Diarization

The single-channel speaker diarization system builds upon the
two-stage Pyannote diarization pipeline [21]. It first segments
the input signal into overlapping segments. Local end-to-end
diarization (EEND) is applied to each segment. For each seg-
ment and each speaker in the segment, an embedding is ex-
tracted using his/her non-overlapping speech. Speaker embed-
dings from all segments are clustered using agglomerative hi-
erarchical clustering (AHC) to find cross-segment speaker cor-
respondence. The AHC is applied with the constraint that em-
beddings coming from the same segment (which are different
speakers according to EEND) do not end up in the same clus-
ter. Finally, local EEND decisions, which are frame-by-frame
speaker activity probabilities, are aggregated over the overlap-
ping segments by averaging the probabilities of the correspond-
ing speakers in the corresponding (overlapping) frames. The
resulting soft attributions of all frames in the whole conversa-
tion to speakers form the output of the diarization system. This
output can be used to derive the hard or soft STNO labels de-
scribed in Section 2.2.

Our local EEND system uses a pre-trained WavLM Base+
model. Following the SUPERB strategy [22], a single sequence
of features is generated by taking a weighted average of indi-
vidual WavLM layer outputs. The weights are trainable param-
eters. This sequence is then fed to a stack of one linear layer,
layer norm, 4 conformer layers and a final classification head.
The classification head is trained on the local segments using
the powerset loss [23]. For the EEND training, the parameters

of WavLM and the newly added layers are jointly trained.

3.2. Multi-channel Diarization

Inspired by [20], we extend our single-channel system for multi-
channel processing as follows: The input signal from each chan-
nel is processed in parallel by the first 4 WavLM attention lay-
ers. The hidden activations are then averaged across channels
and processed by the remaining WavLM layers. The first 4 lay-
ers of WavLM are further extended to enable comparison and
exchange of information across channels. This allows the model
to access cross-channel information, which can help in extract-
ing important clues for diarization, such as identifying the di-
rection of arrival. Let Hl

c be the activations at the output of
l-th WavLM layer from c-th channel. For the communication
between channels, we first calculate the average activations

Tl =
1

C

C∑
c=1

Hl
c. (5)

These average activations are then frame-wise concatenated
with the original channel-specific activations and transformed
by a Linear layer back to the original dimensionality as

T̄l
c = LN(Linear(Hl

c||Tl)), (6)

where || and LN are concatenation and layer normalization,
respectively. The resulting sequence is added to the original
channel-specific activations, which gives us a new modified ac-
tivation sequence

Ĥl
c = Hl

c + T̄l
c, (7)

which serves as the input to the following WavLM layer pro-
cessing c-th channel. The layer normalization has a trainable
multiplicative parameter which is initialized to a very small
value (1e-2). Therefore, at the initialization, the matrices T̄l

c

also have very small values, so they do not disrupt the data flow
in the pre-trained WavLM model. Then the input to the follow-
ing Conformer layers is the weighted sum of averaged represen-
tations from all channels.

3.3. Diarization Systems

We used two diarization systems for the challenge: a single-
channel system and a multi-channel system. The single-channel
diarization system is described in Section 3.1. Specifically, we
use 8s overlapping segments with 0.8s shift. The Local end-
to-end diarization (EEND) is applied to each segment, where
at we allow at most 4 speakers per segment. For the powerset
loss, we assume a maximum of 4 speakers and 2 overlapping
speakers (forming 11 powerset classes).

The model is trained on the compound data set of the AMI
MixArray and beamformed CHiME-6 training data, the 200h
simulated data provided by the NOTSOFAR-1 organizers, and
the NOTSOFAR-1 training data. The dev2 set is used for val-
idation. The ResNet-34-based x-vector extractor trained using
the WeSpeaker toolkit [24] on the VoxCeleb2 dataset is used to
extract the local speaker embeddings.

For the multi-channel system, we trained on the compound
dataset of AMI, 200h simulated data, and NOTSOFAR-1 train-
ing data to train our multi-channel model.

4. Submitted systems
Results of the submitted systems in terms of time-constrained
minimum permutation Word Error Rate (tcpWER) are shown
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in Table 1. We also report the diarization error rate (DER) of
the diarization systems used for each system.

4.1. FDDT Large – single channel (System 1)

This system uses the Frame-Level Diarization Dependent
Transformations approach to the Target Speaker ASR described
in Section 2.2. It is based on the Whisper Large v3 model fine-
tuned on single-channel NOTSOFAR-1 training data and beam-
formed AMI. The Hybrid CTC/Attention approach described in
Section 2.4 is used to guide the fine-tuning of the system. How-
ever, the CTC is not used during decoding as it did not improve
the performance of this particular system in our experiments.

The model is trained in three stages. First, the parameters
of the original Whisper encoder are frozen, and the newly added
CTC parameters are trained for 2 epochs on 960 hours of Lib-
rispeech training data. Secondly, the CTC head is trained for 2
epochs on the single-channel NOTSOFAR-1 training data and
beamformed AMI training data. Finally, the whole system is
then fine-tuned for 10 epochs using both CTC and the sequence
cross-entropy objective as in [24].

Hard ground-truth STNO labels are used during training.
However, for the decoding of the development and evaluation
data, we found improved performance when using the soft prob-
abilistic STNO labels derived from the actual output of our di-
arization system, as described in Section 3.

The approximate total time for inference on NOTSOFAR-1
eval-small was 4.83 hours, 10 NVIDIA RTX A5000 GPUs, and
40 Intel(R) Xeon(R) CPU E5-2640 v4 CPUs were used. Fine-
tuning the model took approximately 20 hours on 4 NVIDIA
RTX A6000. 1065 hours of speech, including AMI and Lib-
rispeech were used.

4.2. FDDT Large+FT – single channel (System 2)

Th system from the previous section is further fine-tuned on the
NOTSOFAR-1 train and dev1 data for 2 epochs.

4.3. QK-Bias Large – single channel (qk biasing)

This system uses the query-key biasing approach to the Target
Speaker ASR described in Section 2.1. It is based on the Whis-
per Large v3 model fine-tuned on single-channel NOTSOFAR-
1 training data and beamformed AMI. During the decoding, the
query-key biasing is driven by the hard decisions made by the
single-channel variant of our diarization system described in
Section 3. The Hybrid CTC/Attention approach described in
Section 2.4 is not used for the system.

4.4. FDDT Small – multi-channel (system1 mc)

This system is the multi-channel variant of the Target Speaker
ASR based on the FDDT approach described in Sections 2.2
and 2.5. It is based on the Whisper Small model fine-tuned
on single-channel NOTSOFAR-1 training data and beamformed
AMI. The Hybrid CTC/Attention approach described in Sec-
tion 2.4 is used during both system fine-tuning and decoding.

4.5. GSS Med – multi-channel (system2 mc)

Our second multichannel system stands as a simple juxtapo-
sition to the original multichannel baseline, attempting to im-
prove on some of the components by utilizing our diarization
approach and a fine-tuned ASR model. First, we run multi-
channel diarization on the NOTSOFAR-1 data as described in
Section 3. Using the diarization outputs, we perform multichan-

Table 1: Comparison of Baseline non-target-speaker ASR
models and the target-speaker models developed during the
CHiME-8 challenge on the NOTSOFAR-1 dev2 set. DER for
the corresponding diarization system is also reported. Query-
key biasing (QK-Bias) appears to perform slightly worse than
Frame-Level Diarization Dependent Transformations (FDDT).

Model tcpWER [%] DER [%]

Baseline SC 45.8 -Baseline MC 31.6

QK-Bias Med 51.3

10.9QK-Bias Large 48.7
FDDT Large – sc 36.5

FDDT Large+FT – sc 35.9

FDDT Small – mc 36.9
10.4FDDT Large – mc 33.2

GSS Med – mc 29.6

nel source separation and enhancement using Guided Source
Separation (GSS) [25, 26] to obtain enhanced speech segments
for individual speakers. We subsequently fine-tune Whisper
Medium on the GSS segments produced for the train set of
NOTSOFAR-1. The fine-tuning runs for up to 5 epochs, us-
ing the dev2 GSS segments for validation. We select the best
checkpoint in terms of raw WER performance (20.5%) on the
dev2 GSS segments. We run decoding with a beam size of 10
and a length penalty of 0.5.

5. Conclusions
We proposed and tested two methods for addressing the
speaker-attributed ASR problem by converting pre-trained su-
pervised ASR models into target-speaker ASR models, directly
conditioned on diarization outputs. Our best models outper-
formed the baseline without requiring any additional speech
separation components.

However, we identified several limitations in our work.
Firstly, it remains unclear to what extent the method itself con-
tributes to the improvements, as opposed to the gains result-
ing from adapting the baseline system to the specific dataset.
Secondly, it is uncertain whether the method generalizes well
across different datasets or whether the method can be effec-
tively applied to other pre-trained systems. Additionally, some
experiments incorporated a CTC head while others did not, and
different model sizes were employed, making it difficult to ac-
curately assess the improvements.

Since the submission of this paper, and during the prepa-
ration of the camera-ready version, we have addressed some
of these limitations. Specifically, we evaluated our system on
the AMI, NOTSOFAR-1, and Libri2Mix datasets, demonstrat-
ing the generalization of the approach across different datasets.
We also analyzed the impact of including the CTC head, using
more data and parameters, and proposed an improved method
for initializing new parameters [27]. For our diarization system,
more experiments and analysis can be found in [28].
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