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Abstract
Finetuning large pretrained models demands considerable

computational resources, posing practical constraints. Major-
ity of the total number of parameters in these models are used
by fully connected layers. In this work, we consider applying
a semi-orthogonal constraint, followed by full finetuning to the
fully connected layers reduces model parameters significantly
without sacrificing efficacy in downstream tasks. Specifically,
we consider wav2vec2.0 XLS-R and Whisper models for Auto-
matic Speech Recognition and Language Recognition. Our re-
sults show that we can reduce the model size by approximately
24% during both training and inference time with 0.7% absolute
drop in performance for XLS-R and no drop in performance for
Whisper for ASR. In combination with performance-efficient
training with low-rank adapters, the resource requirements for
training can be further reduced by up to 90%.
Index Terms: parameter reduction, language identification,
speech recognition, wav2vec2.0

1. Introduction
Finetuning large pretrained models to achieve state-of-the-art
performance across various downstream tasks has become a
standard practice in machine learning. However, this approach
presents challenges, particularly in resource-constrained envi-
ronments where the computational demand of finetuning these
expansive models poses a significant obstacle. Recognizing this
limitation, researchers have directed their efforts towards miti-
gating the parameter budget of these models. One solution dur-
ing training time is to keep the weight matrices frozen and learn
the updates through adapters, an additional set of parameters for
transfer learning. This does not, however, reduce the computa-
tional requirements during inference. In this paper, we study
a simple parameter reduction approach when using pretrained
models for developing Automatic Speech Recognition (ASR)
and Language Identification (LID) systems.

Evidence from recent literature suggests that constraining
finetuning of large pretrained models to a low-rank provides
competitive, and sometimes better, performance on downstream
tasks [1, 2, 3]. This suggests that the models may be overparam-
eterized and parameter reduction techniques may benefit from
exploiting such redundancy. In [4], the authors demonstrate
that adapting only the Fully Connected (FC) layers in the MLP
component of the Transformer [5] alone may be sufficient for
many downstream tasks. Prior to Deep Neural Network (DNN)
based systems, reduction of parameters during acoustic model-
ing has been studied in [6, 7, 8] for Gaussaian Mixture Models
(GMM). In this paper, we study the extent of this overparam-
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eterization by applying Singular Value Decomposition (SVD)
to the linear layer weights of the MLP and choosing parame-
ters corresponding to only the highest eigenvalues, thereby re-
ducing the model size by at least 28%. This technique effec-
tively reduces the parameter budget during both finetuning and
evaluation stages. Application of SVD on the weights in deep
neural network architectures for speech processing tasks have
been explored extensively in the past [9, 10, 11, 12]. In [13],
the structure of SVD is applied on the output layer to reduce
the parameter by up to 30%. In [14], a semi-orthogonal struc-
ture is imposed within the FC layers right from the beginning
of model training to avoid training-time stability issues. The ef-
fect of semi-orthogonal constraint is studied in [15] for various
back-end classifiers during finetuning for LID.

Further, we also study combining low-rank factorization
with parameter-efficient finetuning. Specifically, we apply
Low-Rank Adapters (LoRA) [2] during finetuning after the FC
layers of the MLP have been reduced with SVD. Thus, we not
only exploit the parameter reduction from low-rank factoriza-
tion, but will also be able to utilize the benefits of Parame-
ter Efficient Training (PEFT). Two popular pretrained models
are considered: specifically the XLS-R [16] and Whisper [17]
medium models; one trained in self-supervised fashion while
the other trained in a weakly-supervised way. We consider two
tasks supported by both models: ASR and LID.

The rest of the paper is organized as follows: Section 2 ex-
plains the low-rank adaptation approach employed in this work.
The datasets used in training and evaluation of ASR and LID
tasks are described in Section 3. The experimental setup and
the results are presented in Section 4 and the findings of our
work are discussed in Section 5.

2. Low-rank Factorization
The Transformer [5] architecture provided a significant ad-
vancement in the field of natural language processing (NLP)
and is the foundation for numerous state-of-the-art models now
in speech processing. Each transformer layer consist of multi-
head self-attention (MHA) modules and feed-forward neural
networks (we refer to this as MLP from hereon), each followed
by layer normalization and residual connections to provide sta-
bility during training. In a commonly used configurations, both
the MHA and MLP components contribute almost equally to
the parameter count of models.

We consider the following two popular pretrained
transformer-based models in this work:

XLS-R [16]: Based on the wav2vec 2.0 architecture [18],
XLS-R is a large-scale multilingual model trained in self-
supervised fashion. It uses unlabeled speech from 128 lan-
guages including data from VoxPopuli, MLS, CommonVoice,
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Figure 1: Overview of a single transformer layer for various settings: (a) shows the overview of the standard transformer layer used
during full finetuning towards downstream tasks. (b) shows the transformer layer after applying matrix factorization. This is applied
for inference only of the finetuned model and during matrix factorized finetuning. (c) shows the transformer layer during low-rank
adaptation. n is number of transformer layers which is 24 for XLS-R model and 48 for Whisper model. A rank r is the dimension used
to apply SVD. In this work r = 512, 256, 128.

BABEL, and VoxLingua107 [19] amounting to a total of 436k
hours. There are 24 transformer layers resulting in 300M pa-
rameter model, of which 67% of the total parameter budget is
used by the FC layers in the MLP components.

Whisper [17]: A transformer-based encoder-decoder
general-purpose model for various speech processing tasks,
including multilingual speech recognition, speech translation,
spoken language identification, and voice activity detection.
Each task is represented by a special token that is jointly pre-
dicted by the decoder. It is trained on 680k hours of weakly-
labeled speech data. We use the 770M parameter ‘medium’
version of this model, which consists of 48 transformer layers
and is multilingual. The FC parameters take up 52% of the total
parameter count.

We aim to reduce the parameters of the FC layers which
results in fewer parameters during training and inference fol-
lowed by low-rank adaptation for faster training. The choice
of FC over the weights in the MHA is given as follows: the
weights for query, key and value are already low-rank in a mul-
tihead configuration. Moreover, as mentioned earlier, results
in [4, 2] clearly demonstrate that only updating the FC layers
with low-rank weight matrices provides majority of the boost in
performance from adapter-based methods. Thus, we propose to
study parameter pruning via low-rank matrix factorization using
SVD.

2.1. Low-rank matrix factorization with SVD

We apply SVD [20] to each linear layer in the MLP compo-
nent of the transformer module. Weight W of a linear layer
is factorized as UΣV, deriving two linear layers B = U
and A = ΣV. Effectively, we approximate W ≈ BA. In
both XLS-R and Whisper models, there are two linear layers
with a non-linearity inbetween. The first layer projects a 1024-
dimensional embedding to 4096 dimensions, and the second
one reverses this projection. Each of these linear layers is now

factorized into two linear components of rank r: one m × r
and another r × n, where the initial weight matrix is of shape
m × n. For r = 512, 256, 128, the size of the model reduces
up to ≈ 24%, 44% and 54% respectively (the exact reduction
is shared later in Section 4), thus reducing the total number of
model parameters during both finetuning and inference.

SVD is applied prior to model finetuning. The directions
corresponding to the lowest eigenvalues are removed. The mod-
els are then finetuned for 10 epochs for ASR and 2 epochs for
LID, respectively.

In order to preserve the orthogonality of the matrices, we
apply an orthonormal constraint after each update. We fol-
low the update procedure from [14]. Unlike in AdaLoRA [21]
(Adaptive Low Rank Adapters), the constraint is applied only
on U in the above formulation.

Model pruning with SVD has been explored in techniques
such as RankDyna [22], which uses an information criterion to
select the directions to prune out. One disadvantage with such
methods is the additional requirement of tracking the first order
and second order momentum of parameter groups. AdaLoRA
uses a similar approach during parameter-efficient finetuning to
impose a parameter budget on adapter layers. We consider rank
pruning strategies in the aforementioned works as a part of our
future investigation.

2.2. Low-rank Adaptation

Low-rank adaptation (LoRA) based methods are now a com-
mon approach for PEFT of large pretrained models [2, 21, 23].
In LoRA, model finetuning is expressed as an update ∆W to
the original model parameters W0, where a low-rank structure
is imposed on ∆W. Thus, the parameter size of ∆W is signif-
icantly lesser than W0. The resource requirements for finetun-
ing of large models are significantly reduced.

A key difference between finetuning after SVD and finetun-
ing with LoRA based methods is that the former constrains the
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directions of the low-rank structure implicitly by choosing the
eigenvectors as initial weights. It also limits the choices of the
rank as reducing the value significantly can affect performance
severely [22]. PEFT with LoRA therefore can be seen as a com-
plementary technique to SVD. Thus, after reducing the param-
eters with SVD, we freeze the model and update the weights
with LoRA instead of full-finetuning proposed in the previous
subsection.

3. Datasets
3.1. ASR

We use the AMI Meeting Corpus [24] for ASR evaluation. Only
the IHM part of the training and evaluation are used. The meet-
ings were recorded in English using three different rooms with
different acoustic properties, and include mostly non-native
speakers. In our experiments, the training, development and
test set consist of 77 h, 9 h and 8.7 h respectively. Three-fold
speed perturbation is applied on the training data [25].

3.2. LID

We train our LID system on Voxlingua107 train, and evaluate it
on Voxlingua107 dev and LRE17 eval sets.

Voxlingua107 [19]: The dataset consists of short speech
segments extracted from YouTube videos, and labeled accord-
ing to the language of the video title and description, with some
post-processing steps to filter out false positives [19]. It con-
tains 6628 h of speech from 107 languages which is used for
training. The manually annotated dev set provided for 33 lan-
guages is used for evaluations. The duration of this set is 4.5 h

LRE17: We consider another evaluation set i.e., the NIST
Language Recognition Evaluation dataset that consists of 14
languages and 3 parts: train, dev, and eval sets [26]. The splits
contain 2061 h, 21 h, and 236 h of data, respectively. The eval
set is used for our evaluations. In the files with duration greater
than 30 s, we consider only the first 30 s of the file. To evaluate
for language identification, the accent information is dropped in
order to evaluate the data with the Whisper model.

4. Experiments
Experiments are conducted to evaluate the following: (1) full
finetuning of models, (2) applying low-rank factorization dur-
ing full finetuning, (3) parameter efficient finetuning (PEFT)
with LoRA, and finally (4) PEFT with LoRA after low-rank
factorization. Model finetuning and inference are done one a
single GPU node with Nvidia RTX 3090. The next subsections
provide details about model finetuning and evaluation setups.
Model training after matrix factorization with SVD follow the
same setup as full-finetuning.

4.1. ASR finetuning

The espresso [27] toolkit which uses fairseq [28] is used for
finetuning XLS-R model. We use the end-to-end LF-MMI cri-
terion [29] with a learning rate of 1e-5. In addition to the pre-
trained parameters, three layers of factorized TDNN (TDNN-
F) [14] are added with a learning rate factor of 20 using the
implementation from Pkwrap [30]. The standard AMI setup
from Kaldi is modified to use only IHM recordings for training
and evaluation [25]. The model is finetuned for 200́00 updates
with the learning rate scheduler tuned as follows: 20% warm-
up, 60% constant learning rate, and 20% decay. The pretrained
model parameters are frozen for the first 500 updates.

The k2/Icefall framework 1 is used for finetuning Whisper
medium. Learning rate of 1e-5 and label smoothing loss with
smoothing factor 0.1 is used. The features are masked with
SpecAug during training [31]. AdamW [32] optimizer is used
for all setups in this paper. A lower-cased version of the tran-
scripts are used for training. finetuning is carried out for 10
epochs and the best model is chosen based on the WER on de-
velopment set.

4.2. LID finetuning

Whisper model is finetuned with VoxLingua107 dataset with 33
languages subset included in the Voxlingua107 dev set to allow
for rapid finetuning.

In Whisper, we used the start of the sentence token to ex-
tract only the language labels. During finetuning and evaluation,
we do not constrain the languages to be one among the 33. That
is, the classifier is allowed to predict any of the 99 languages.
The classification is obtained by taking the language token with
the maximum value over the logit vector obtained at the end of
processing an audio.

4.3. Low rank adaptation

For experiments with XLS-R we implemented the low-rank
adapters in the fairseq toolkit. For experiments with k2/ICefall
we used the peft package’s LoRA implementation. The param-
eter α, which adjusts the weight used (α/r where r is the rank
of the matrix), is adjusted such that the weight is always 0.5.

4.4. Results

4.4.1. Rank of updates after full-finetuning

The ASR and LID systems are trained and evaluated indepen-
dently. Before discussing the results on the two downstream
tasks, we first analyze the rank of the updates on weight ma-
trices obtained after regular finetuning. This is done in order
to contrast the claim that task-dependent finetuning is low-rank
in nature. Let W0 is the weight matrix of a linear layer in the
pretrained model and Wf is the corresponding weight matrix
obtained after finetuning. According to the adapter terminol-
ogy, ∆W = Wf −W0. We then evaluate the rank of ∆W for
each weight matrix in each linear layer of the pretrained model.
In every case, the matrix is full-rank (the rank is 1024 in the
case of FC weights in the MLP layers) suggesting that the full
finetuning may be inefficient.

4.4.2. ASR results

The performances of the ASR systems are presented in Table 1.
We report Word Error Rate (WER%) for both dev and eval splits
of the AMI dataset. All the ASR systems are evaluated after text
normalization. The baseline WER% with Whisper is signifi-
cantly better than that of the XLS-R model (10.8% vs 12.4%
WER). For the XLS-R system, 12.4% WER is obtained after
full finetuning. Matrix factorization results in a degradation of
0.7% WER absolute with a reduction of 23.8% of the parame-
ters. Further reduction of the rank of the matrix to 256 results in
total degradation of 1.5% WER (which is not as severe as reduc-
ing to 128 dimension with a total degradation of ≈ 7% in WER).
Similar trends are observed with the Whisper model. However,
this could be partially attributed to the size of the model and the
amount of training data used. The degradation when reducing

1https://github.com/k2-fsa/icefall
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Table 1: WER(%) of AMI dev and test sets evaluated with various rank for SVD on ASR task. No FT: Zero-shot evaluation, FT: full
finetuning and LoRA indicates parameter efficient finetuning with LoRA.

Rank Config
XLS-R Whisper medium

No. of params(M) WER% No. of params(M) WER%
Training Inference dev eval Training Inference dev eval

Full No FT - - - - 776 776 23.3 22.9
FT 315 315 14.3 12.4 776 776 13.4 10.8
LoRA 28 315 15.0 13.6 55 776 11.1 9.6

512 FT 240 240 15.0 13.1 600 600 13.7 11.1
LoRA 32 240 15.6 14.0 55 600 12.2 10.6

256 FT 177 177 15.7 13.9 485 485 14.8 11.9
LoRA 32 177 17.3 15.6 55 485 14.9 13.8

128 FT 146 146 20.5 19.3 422 422 16.8 14.0
LoRA 32 146 20.4 18.6 55 422 21.9 21.5

Table 2: LID Accuracy on Voxlingua dev and LRE17 test sets
for various rank in Whisper models in LID task. †: the numbers
in the parentheses indicate the percentage of reduction in the
number of parameters.

Rank Config No. of params (M) † Accuracy(%)

Training Inference dev test

Full
No FT 776

776
92.6 86.1

FT 776 97.1 91.2
LoRA 55 (92.9) 96.4 90.8

512 FT 600 (22.7) 600 (22.7) 95.4 84.7
LoRA 55 (92.9) 96.0 90.5

256 FT 485 (37.5) 485 (37.5) 92.8 80.5
LoRA 55 (92.9) 90.3 80.1

128 FT 422 (45.0) 422 (45.0) 47.6 40.6
LoRA 55 (92.9) 93.4 76.9

the rank to 512 and 256 is limited (0.3% and 1% absolute).
In case of the Whisper model, applying LoRA alone pro-

vided the best ASR performance (9.6% WER), which to the best
our knowledge is the best ASR performance achieved on AMI-
IHM data yet. The combination of factorization and LoRA
performs as well as full-finetuning even after 22% reduction in
model size. In addition, we are also able to take advantage of
PEFT with only 55M parameters required during training.

When reducing the rank to 256 or 128 prior to training, a
degradation in ASR performance was observed. However, the
degradation with rank 256, where the model size reduces by up
to 48.5%, the worst possible WER was only 11.9% with Whis-
per and 13.9% with XLS-R. WERs were beyond 20% when
further reducing the rank from 256 to 128, suggesting the im-
portance of information lost in the particular directions dropped.

4.4.3. LID results

The LID system is trained with only the Whisper model and
evaluated for Voxlingua dev and LRE17 test sets using the LID
accuracy(%). We observe trends similar to that reported in
the previous section for ASR. The performance gap is negligi-
ble when combining low-rank factorization and finetuning with
LoRA. The drop in performance is more noticeable on out-
of-domain test set (LRE17) when using ranks of 256 and 128
for factorization. In particular, training stability was a concern
when finetuning without adapters when using a rank of 128 for

Table 3: Results of dev and eval sets of AMI when using or-
thonormal constraint during finetuning of the matrix factorized
layers for XLS-R and Whisper models.

Rank WER(%)

dev eval dev eval

XLS-R Whisper

512 15.6 14.6 13.7 11.1
+ Orthonormal constraint 15.0 13.1 13.7 11.2

256 16.0 14.9 14.8 11.9
+ Orthonormal constraint 15.7 13.9 14.9 12.0

128 17.3 15.7 16.8 14.0
+ Orthonormal constraint 20.5 19.3 17.0 14.3

factorization.

4.4.4. Effect of Orthonormal constraint

The effect of applying the orthonormal constraint after low-rank
factorization is demonstrated in the results in Table 3. We only
present the results on ASR systems for brevity. For ranks 512
and 256, the orthonormal constraint provides gains in WER%
of up to 0.4% absolute. The advantage is observed only with
the XLS-R system. With the Whisper models, no performance
benefits are observed. When the rank is reduced to 128, a degra-
dation of in WER up to 3.6% absolute is observed. Thus, for
our experiments we did not employ the orthonormal constraint
when using rank=128.

5. Conclusion

In this paper, we studied the application of low-rank factoriza-
tion with SVD on the fully connected layers of the feedforward
components of the Transformer model for speech and language
recognition tasks. We studied the technique independently and
in combination with parameter-efficient finetuning with Low
Rank adapters (LoRA). We observe that by reducing the rank of
the fully connected layers from 1024 to 512, thereby reducing
model parameter effectively by 22.7% for the Whisper medium
model and 28% for the XLS-R model, no performance degra-
dation was observed. Further reduction of the rank to 256 in-
troduced performance trade-offs. Our future work aims at ad-
dressing this behaviour.
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