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ABSTRACT

Self-supervised models trained with high linguistic diversity,
such as the XLS-R model, can be effectively fine-tuned for
the language recognition task. Typically, a back-end classifier
followed by statistics pooling layer are added during train-
ing. Commonly used back-end classifiers require a large num-
ber of parameters to be trained, which is not ideal in limited
data conditions. In this work, we explore smaller parame-
ter back-ends using factorized Time Delay Neural Network
(TDNN-F). The TDNN-F architecture is also integrated into
Emphasized Channel Attention, Propagation and Aggregation-
TDNN (ECAPA-TDNN) models, termed ECAPA-TDNN-F,
reducing the number of parameters by 30 to 50% absolute,
with competitive accuracies and no change in minimum cost.
The results show that the ECAPA-TDNN-F can be extended
to tasks where ECAPA-TDNN is suitable. We also test the
effectiveness of a linear classifier and a variant, the Orthonor-
mal linear classifier, previously used in x-vector type systems.
The models are trained with NIST LRE17 data and evalu-
ated on NIST LRE17, LRE22 and the ATCO2 LID datasets.
Both linear classifiers outperform conventional back-ends with
improvements in accuracy between 0.9% and 9.1%.

Index Terms— Language Identification, Transformers,
Wav2Vec2, fine-tuning, low-resource, out-of-domain,

1. INTRODUCTION

Language Identification (LID) aims to automatically identify
the language spoken in a given speech segment. While numer-
ous studies have achieved impressive results in LID task by
using large, well-balanced datasets, the task remains challeng-
ing when dealing with low-resource and out-of-distribution
datasets. In such scenarios, the scarcity of labeled examples
and the presence of linguistic variations pose significant hur-
dles in developing practical LID systems.

This work was supported by Armasuisse Science and Technology.

Fine-tuning large, self-supervised, pre-trained models, such
as wav2vec 2.0 [1], has been shown to significantly improve
performances on many downstream tasks [2, 3, 4] including
LID [5, 6]. When fine-tuning such models for LID, a classifi-
cation module followed by a statistics pooling module [7] are
added prior to the final softmax layer. Common choices for
model architectures used for the classification are: linear clas-
sifiers [2], transformers [8], TDNN and Emphasized Channel
Attention, Propagation and Aggregation in Time Delay Neural
Network (ECAPA-TDNN) [9]. Transformers and ECAPA-
TDNN have been shown to provide superior performance over
linear classifiers when there is sufficient data to train. However,
classifiers with fewer parameters may be preferred in condi-
tions with limited number of classes and data to fine-tune, a
typical case in language recognition evaluations [10, 11].

Given the effectiveness of TDNN-based classifiers, this paper
explores the use of factorized TDNN layers (TDNN-F, [12])
for LID, which have been shown to effectively combine the
contextual modelling capacity of TDNN, while significantly
limiting the size of the models. TDNN-F models that fol-
low wav2vec 2.0 models, such as the XLSR-53, have been
effectively used for speech recognition [3].

In this paper, we propose to apply Factorized TDNN models
for LID, resulting in two classification modules: (1) TDNN-F,
and (2) ECAPA-TDNN-F, where TDNN-F replaces the TDNN
components in ECAPA-TDNN achieving parameter reduction
up to 50%. In addition, we propose to exploit the orthonormal
constraint employed in the TDNN-F architecture for the linear
classifier mentioned earlier. The constraint alleviates the strong
diagonal covariance assumptions in the statistics pooling layer,
demonstrated with x-vector based systems [13].

We compare the performance of the XLS-R model [14] on
low-resource and out-of-domain data conditions for LID. The
model is fine-tuned with the LRE17 dataset, and evaluated on
two unseen and out-of-distribution sets – LRE22 and air-traffic
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Fig. 1. Overview of the fine-tuning pipeline for LID. The
back-end classifier block represents the different architectures
explored in this work. The two stages of LID: (a) embeddings
generation and, (b) language classification.

communication data 1(collected using very high frequency
receives and thus very noisy. Our experiments show that the
Orthonormal linear classifier performs the best on all test sets.

Section 2 describes the baseline approaches for fine-tuning
pre-trained models for LID. In Section 3, we described the
proposed approaches that apply TDNN-F and Orthonormal
constraints to the back-end classifiers. Section 4 describes
the training, development and test sets used in this work. The
results are presented in Section 5. An overview of the findings
in this work is provided in Section 6.

2. FINE-TUNING XLS-R FOR LID

Prior work on LID has been significantly shaped by innova-
tive technologies from speaker recognition tasks, such as use
of SGMMs [15], i-vectors [16], online i-vectors [17] dealing
with short segments, or phonetically aware d-vectors [18]. In
our experiments we fine-tune the pre-trained 300M parameter
version of the XLS-R [14] model2 that has been pre-trained
with 128 languages and around 430,000 h of data using the
espresso [19] toolkit which internally uses fairseq [20]. As
shown in Figure 1, the XLS-R model is employed as an en-
coder and fine-tuned with LRE17 train data to extract em-
beddings. Further, a Probabilistic Linear Discriminant Analy-
sis (PLDA) [21] classifier is trained with the dev set of each
dataset (depending on the evaluation condition) using the em-
beddings generated from the fine-tuned model. As a part of our
baseline systems, we use the following classifier architectures:
linear, ECAPA-TDNN, Transformer. Each of these approaches
are described below:

1https://atco2.org/
2https://github.com/facebookresearch/fairseq/

tree/main/examples/wav2vec/xlsr

Mulit-feature Attention (MFA)
(Conv 1d + Relu + BN)

Attentive statistics pooling
+ BN

FC + BN

TDNN 1
(Conv 1d + Relu + BN)

SE-Res2Net

SE-Res2Net

TDNN2
(Conv 1d + Relu +

BN)

SEBlock

Res2NET

TDNN2
(Conv 1d + Relu +

BN)

SE-Res2Net

SE-Res2Net

Fig. 2. Overview of the ECAPA-TDNN model architecture.
Different colours indicate the possibility of applying the or-
thonormal constraint in the ECAPA-TDNN-F model for each
block. Green: orthonormal constraint is always applied. Blue:
orthonormal constraint is applied in certain configurations.
Shaded Red: the constraint is not applied.

Linear layer: A linear layer of output dimension 512 is added
prior to statistics pooling.

ECAPA-TDNN [9]: In speaker verification and language iden-
tification tasks, ECAPA-TDNN model have shown to provide
state-of-the-art performance. We use the SpeechBrain [22]
implementation along with their default configuration.

Transformer Layer [8]: a single transformer layer with the
same configuration as other transformer layers in the XLS-R
model is added after the XLS-R encoder.

In order to generate the audio-level embeddings, we employ
statistics pooling mechanism for all the components mentioned
above. The embeddings generated from the fine-tuned models
is then used for the PLDA classifier and scored using the
Kaldi [23] toolkit.

3. ORTHONORMALLY CONSTRAINED
CLASSIFIERS

The orthonormal constraint for TDNN was introduced in [12].
The resulting TDNN model, namely factorized TDNN (TDNN-
F), has been successfully applied for many speech applications:
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speech recognition, speaker and language recognition. Each
TDNN-F layer reduces the number of parameters in the TDNN
module by applying the orthonormal constraint (inspired by
Singular Value Decomposition). In this technique, the weight
parameters W, say of dimension D1 ×D2, of the linear layer
are split into BA where, B ∼ D1 × d and A ∼ d × D2.
Orthonormal constraint is applied on A during training such
that ATA ≈ I. It is easy to see that the parameter reduction
can be obtained by setting a low value for d. In the Kaldi
implementation, the value for d is typically 160. We used the
Pytorch implementation of this constraint from Pkwrap [24],
which applies the constraint in every training iteration (in the
original implementation in Kaldi parameters are updated with
probability 0.25). The learning rate is updated accordingly.

We propose to use three classifiers based on the orthonormal
constraint:
Orthonormal Linear layer: The linear layer of an output
dimension 512 is subject to orthonormal constraint. Note that
there is no parameter reduction in this case. The orthonormal
transform is only intended to compute diagonal covariance
in the statistics pooling layer. This operation was typical in
x-vector based systems [23].
ECAPA-TDNN-F: Figure 2 shows the ECAPA-TDNN model
architecture. We apply orthonormal constraint to the Conv1d
layers of the model. Since we use the implementation from
Speechbrain (including hyper-parameter settings), we override
the Conv1d to recast the weights from D1 ×D2 × k to first
D1 × k ×D2 and then to D1 × kD2. The orthonormal con-
straint is then applied on this weight matrix. Here, D1 is the
number of out channels, D2 is the number of in channels and
k is the kernel size. We experiment with the application of
the parameter reduction in different components in the model
architecture.
TDNN-F [12]: We also experiment with the TDNN-F ar-
chitecture following its use in ASR with the XLSR LF-MMI
architecture [3]. A context size of 3 is used for all the layers,
with bottleneck dimension 160 and layer dimension 1024.

4. DATASETS

This sections briefly describes the datasets used for training
and evaluation of the LID systems.

LRE17: The NIST Language Recognition Evaluation dataset
consists of 14 languages and 3 parts: train, dev, and eval [10].
The splits contain 2061 h, 21 h, and 236 h of data respectively.
Three-way speed perturbation [25] is applied on the LRE17
train data for fine-tuning. We filter out the LRE17 dev data to
use only the audio files that are less than 100 s. On the LRE17
eval data, silence removal is applied on all audios that have
length more than 100 s.

LRE22 [11]: The data comprises of 14 languages from

African countries. The dev and test splits contain 30 h and
193 h of audio respectively. The evaluation focused on devel-
oping technologies to improve LID for low-resource languages
given the average amount of dev data for each language is
around 2 h.

ATCO2: The ATCO2 LID data was collected as a part of
the ATCO2 project to develop and evaluate techniques for
English/Non English – being Czech and French – classifica-
tion [26]. This set is considered as the out-of-distribution
data as it belongs to a completely different domain compared
to LRE17 and LRE22, and the amount of annotated data is
limited. In addition, the speech data obtained from the air-
traffic communication domain can be extremely noisy. The
ATCO2 data is annotated for LID and is split between develop-
ment (14.4 h) and evaluation sets (11.6 h). ATCO2 is publicly
available 3. In our experiments, Czech, English and French
languages are used for evaluations.

For each eval set, the corresponding dev data is used to train
the PLDA classifier.

5. EXPERIMENTS

In all our experiments, we fine-tune the XLS-R model with the
LRE17 train split with a learning rate of 3e-05 for 42’000 steps
with a batch size of 8 along with the cross-entropy loss. The
back-end classifiers are trained with a gradient multiplier 20.
We report the LID Accuracy(%), F1-score for our experiments.
We also report min.C for LRE17 and LRE22 which is a metric
provided by NIST [11].

Table 1 presents the results of using different back-end clas-
sifier architectures. The results show that systems using only
linear layers (Linear layer in baseline, Orthonormal linear in
proposed methods) consistently outperforms other baseline
back-end classifier architectures. This could be attributed to
the low-resource nature of the fine-tuning set. Moreover, the
linear layers generalize better to out of domain sets. The Or-
thonormal linear performs better in two out of three conditions
compared to the linear layer, with absolute improvement in
accuracy up to 0.9% (relative improvement in error of 9%) and
1% in F-1 score. Although ECAPA-TDNN and transformer
back-ends provide competitive results, the number of param-
eters during fine-tuning increases significantly (from 8 to 10
times).

The TDNN-F model outperforms the ECAPA-TDNN and
Transformer models on only the seen condition set with im-
provements in accuracy up to 2.6% (13.2% relative improve-
ment in error rate), indicating its tendency to overfit. We also
compared the LRE17 with the baseline x-vector system pre-

3https://www.atco2.org/data
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Table 1. Results of LRE17, LRE22 and ATCO2 test sets evaluated with different back-end configurations. The number of
parameters is measured only on the back-end classifiers. All systems are trained on the LRE17 train set, but dataset-specific
PLDA models are trained for LID. min.C: minimum decision cost function for LRE datasets. *: for the configuration of
ECAPA-TDNN-F models please refer to Table 2.

Back-end No. of Accuracy(%) F1-score min.C

Config params (M) LRE17 LRE22 ATCO2 LRE17 LRE22 ATCO2 LRE17 LRE22

Baselines
Linear layers 0.5 83.1 70.4 90.1 0.83 0.72 0.79 0.20 0.30

ECAPA-TDNN 10.0 80.4 59.7 87.7 0.81 0.62 0.73 0.22 0.42
Transformer layer 9.0 81.8 61.3 90.5 0.81 0.63 0.79 0.22 0.40

Proposed

Orthonormal linear 0.5 83.7 67.0 91.0 0.84 0.68 0.80 0.19 0.35
TDNN-F 2.0 83.0 56.8 85.9 0.83 0.59 0.70 0.19 0.45

ECAPA-TDNN-F∗ 7.0 81.7 58.8 87.4 0.82 0.62 0.74 0.20 0.44
ECAPA-TDNN-F∗ 5.0 80.8 57.9 87.2 0.81 0.6 0.73 0.22 0.44

Other baselines
x-bLSTM [27] - 68.7 - - - - - - -

Whisper (medium) - - - 56.4 - - - - -

Table 2. Results of LRE17, LRE22 and ATCO2 test sets
evaluated with different bottleneck configuration for ECAPA-
TDNN-F. A bottleneck dimension of 16 is used for Res2Net
and 128 for the other blocks. See Figure 2 for the module
details.

Constrained No. of Accuracy(%)

module params (M) LRE17 LRE22 ATCO2

None 10.0 80.4 59.7 87.7

TDNN2 9.3 80.8 58.8 87.6
+ Res2Net 9.0 80.0 58.7 87.7

+ TDNN1 7.0 81.7 58.8 87.4
+ MFA 5.0 80.8 57.9 87.2
+ FC 4.0 77.5 56.1 63.0

sented in [27] and observed the increase in the accuracy by
9.2% absolute. On the ATCO2 set, the accuracy was 91% com-
pared to the Whisper model [28] which provides an accuracy
of 56.4%.

Next, we compare the results of ECAPA-TDNN-F and
ECAPA-TDNN in Table 1. The results show that the perfor-
mance of ECAPA-TDNN can be preserved even after reducing
the parameters by 30%, and when reduced drastically by
50% we observe a relative degradation in accuracy by 3% for
LRE22 and by 0.5% for ATCO2. However, no degradation in
min cost was observed. Unlike TDNN-F, the ECAPA-TDNN-
F maintains its performance on unseen conditions compared
to ECAPA-TDNN.

Table 2 shows the effect of applying TDNN-F layers to various
TDNN modules in ECAPA-TDNN model. Specifically, we
study the effect of replacing with TDNN-F components. Our
results indicate that the replacement is effective (i.e., reduces

parameters without significantly affecting performance), as
long as the final FC layer is not parameter deficient. Our
results opens up new avenues of exploring the use of ECAPA-
TDNN-F in tasks where ECAPA-TDNN has been shown to
be effective. The severe degradation for ATCO2 when using
TDNN-F for the FC component can be attributed to the size
(10x smaller than LRE22) and noisy nature of the dataset.

6. CONCLUSIONS

In this paper, we explored different back-end classifier archi-
tecture for XLS-R based LID: Linear, ECAPA-TDNN, Trans-
former, Orthonormal Linear, TDNN-F and ECAPA-TDNN-F.
The models were trained with LRE17 train data and evalu-
ated on LRE17 test set and two other low-resource (LRE22)
and out-of-distribution (ATCO2) datasets. With the Orthonor-
mal linear classifier, by adding a simple linear layer with an
orthonormal constraint we obtained improvements in accu-
racy and F1 score in two out of three conditions over using a
linear layer in the back-end. When fine-tuning with limited
data, a linear layer – with or without Orthonormal constraint –
outperforms other common architecture choices. Using only
TDNN-F instead of ECAPA-TDNN or the Transformer im-
proved the in-domain performance by up to 2.3% absolute.
Finally, ECAPA-TDNN-F replaces the TDNN layers in the
ECAPA-TDNN with TDNN-F layers reducing number of pa-
rameters by up to 50%. When reducing by only 30% no
significant degradation was observed compared to ECAPA-
TDNN, and with 50% reduction we still achieved competitive
results.
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