
Speech Communication 162 (2024) 103104

A
0

Contents lists available at ScienceDirect

Speech Communication

journal homepage: www.elsevier.com/locate/specom

Advancing speaker embedding learning: Wespeaker toolkit for research and
production
Shuai Wang a,b,g,∗, Zhengyang Chen c, Bing Han c, Hongji Wang d,g, Chengdong Liang g,
Binbin Zhang g, Xu Xiang c, Wen Ding e, Johan Rohdin f, Anna Silnova f, Yanmin Qian c,
Haizhou Li b,a

a Shenzhen Institute of Big Data, Shenzhen, Guangdong, China
b School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
c Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
d Tencent Ethereal Audio Lab, Tencent Corporation, Shenzhen, China
e NVIDIA, Shanghai, China
f Brno University of Technology, Faculty of Information Technology, IT4I Centre of Excellence, Czechia
g WeNet Open Source Community, Suzhou, Jiangsu, China

A R T I C L E I N F O

Dataset link: https://github.com/wenet-e2e/we
speaker

Keywords:
Wespeaker
Speaker embedding learning
SSL
Open-source

A B S T R A C T

Speaker modeling plays a crucial role in various tasks, and fixed-dimensional vector representations, known
as speaker embeddings, are the predominant modeling approach. These embeddings are typically evaluated
within the framework of speaker verification, yet their utility extends to a broad scope of related tasks
including speaker diarization, speech synthesis, voice conversion, and target speaker extraction. This paper
presents Wespeaker, a user-friendly toolkit designed for both research and production purposes, dedicated
to the learning of speaker embeddings. Wespeaker offers scalable data management, state-of-the-art speaker
embedding models, and self-supervised learning training schemes with the potential to leverage large-scale
unlabeled real-world data. The toolkit incorporates structured recipes that have been successfully adopted
in winning systems across various speaker verification challenges, ensuring highly competitive results. For
production-oriented development, Wespeaker integrates CPU- and GPU-compatible deployment and runtime
codes, supporting mainstream platforms such as Windows, Linux, Mac and on-device chips such as horizon
X3’PI. Wespeaker also provides off-the-shelf high-quality speaker embeddings by providing various pretrained
models, which can be effortlessly applied to different tasks that require speaker modeling. The toolkit is
publicly available at https://github.com/wenet-e2e/wespeaker.
1. Introduction

Speech contains rich information, and speaker information is one
of its most crucial aspects. Speaker information modeling is essential
for speaker recognition tasks, which are widely used in security access
systems, telephone banking, and other domains to enhance system
security and improve user experience. Moreover, speaker information
modeling is extensively utilized in various areas such as speaker diariza-
tion, speech synthesis, voice conversion, and target speaker extraction.
Among various modeling strategies, deep speaker embeddings (Variani
et al., 2014; Snyder et al., 2018; Zeinali et al., 2019; Desplanques et al.,
2020) have become the standard representation for speaker identity
in these related tasks. In speaker recognition, these embeddings are

∗ Corresponding author.
E-mail addresses: wangshuai@cuhk.edu.cn (S. Wang), zhengyang.chen@sjtu.edu.cn (Z. Chen), hanbing97@sjtu.edu.cn (B. Han), jijijiang77@sjtu.edu.cn

(H. Wang), chengdong01.liang@horizon.cc (C. Liang), binbin.zhang@horizon.cc (B. Zhang), chinoiserie@sjtu.edu.cn (X. Xiang), wend@nvidia.com (W. Ding),
rohdin@fit.vut.cz (J. Rohdin), isilnova@fit.vut.cz (A. Silnova), yanminqian@sjtu.edu.cn (Y. Qian), haizhouli@cuhk.edu.cn (H. Li).

inputted into scoring back-ends like cosine similarity or probabilistic
linear discriminant analysis (PLDA) to make acceptance decisions. A
similar application is found in speaker diarization, where the obtained
scores are used for further clustering. In tasks like target speaker
extraction (Wang et al., 2018b; Zmolikova et al., 2023) and speech
generation (Jia et al., 2018; Lu et al., 2019; Cooper et al., 2020;
Cai et al., 2020; Cho et al., 2022; Zhao et al., 2023), deep speaker
embeddings serve as auxiliary input to indicate the speaker’s identity.
Most existing deep speaker embedding learning systems are based on
supervised training. The mainstream approach is to train a neural
network with speaker classification as the target, thereby extracting the
corresponding deep speaker embeddings from a specific layer (Snyder
vailable online 14 July 2024
167-6393/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.specom.2024.103104
Received 4 February 2024; Received in revised form 30 April 2024; Accepted 10 J
data mining, AI training, and similar technologies.

uly 2024

https://www.elsevier.com/locate/specom
https://www.elsevier.com/locate/specom
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
mailto:wangshuai@cuhk.edu.cn
mailto:zhengyang.chen@sjtu.edu.cn
mailto:hanbing97@sjtu.edu.cn
mailto:jijijiang77@sjtu.edu.cn
mailto:chengdong01.liang@horizon.cc
mailto:binbin.zhang@horizon.cc
mailto:chinoiserie@sjtu.edu.cn
mailto:wend@nvidia.com
mailto:rohdin@fit.vut.cz
mailto:isilnova@fit.vut.cz
mailto:yanminqian@sjtu.edu.cn
mailto:haizhouli@cuhk.edu.cn
https://doi.org/10.1016/j.specom.2024.103104
https://doi.org/10.1016/j.specom.2024.103104
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2024.103104&domain=pdf

Speech Communication 162 (2024) 103104S. Wang et al.

a
T
p
n
r
T
i
u

p
d

i
t
s
c
l
s
l
2
r

i

Table 1
Existing open-source toolkits which support deep speaker embedding learning.
Toolkit Speaker-task specific Backbone Support SSL Support Deployment Support Back-ends

Kaldi (Povey et al., 2011) No TDNN No No Cosine, PLDA

SpeechBrain (Ravanelli et al., 2021) No TDNN, ECAPA-TDNN, ResNet No No Cosine

NeMo No TitaNet No Yes Cosine

VoxCeleb_Trainer (Nagrani et al., 2020b) Yes RawNet, ResNet34 No No Cosine

ASV-Subtools (Tong et al., 2021) Yes TDNN, ECAPA-TDNN, ResNet, Conformer No No Cosine, PLDA

3D-Speaker Yes CAM++, ERes2Net,ECAPA-TDNN RDINO No Cosine

Wespeaker Yes
TDNN, ECAPA-TDNN SimCLR

Yes
Cosine

ResNet, ERes2Net MoCo PLDA
CAM++, RepVGG DINO TPSDA
et al., 2018; Zeinali et al., 2019). Nevertheless, collecting large-scale
labeled data presents a challenge and may encroach upon personal
privacy, particularly considering that the quantity of data (number
of speakers) significantly influences the quality of learned speaker
embeddings. To leverage the massive data without speaker labels, self-
supervised learning algorithms such as SimCLR (Chen et al., 2020),
MoCo (He et al., 2020), and DINO (Caron et al., 2021), which have been
widely applied in other fields, have also been introduced into the field
of speaker modeling (Cai et al., 2021; Han et al., 2022; Cho et al., 2022;
Zhang and Yu, 2022; Chen et al., 2023a), showing promising potential.

On the other hand, researchers are also designing and releasing
various datasets. These datasets primarily fall into two categories. The
first type is deliberately recorded (Larcher et al., 2012; Panayotov et al.,
2015; Zheng et al., 2023), while the second type is semi-automatically
generated by collecting videos from the internet, utilizing a labeling
pipeline incorporating facial recognition, voice tracking, and manual
cleaning. The latter type usually exhibits better generalization ability
since they are collected from real scenarios. Open-source datasets like
VoxCeleb (Nagrani et al., 2020b) and CNCeleb (Li et al., 2022) have
enabled researchers to assess and compare system performance, both in
supervised and unsupervised methods. Despite the availability of these
datasets, the literature often reveals inconsistencies in directly compar-
ing results on the same dataset, even when researchers claim to employ
similar model structures. Concurrently, competitions like the VoxSRC
series1 (Chung et al., 2019; Nagrani et al., 2020a; Brown et al., 2022)
nd CNSRC 20222 play a significant role in promoting related datasets.
hese competitions stimulate researchers’ creativity and engineering
rowess, resulting in new state-of-the-art (SOTA) results. However, a
oticeable disparity typically exists between the results reported in
esearch papers and the descriptions of systems used in competitions.
his discrepancy may arise because the former often overlooks the

ncorporation of certain techniques and dedicated engineering efforts
tilized in the latter.

To some extent, the aforementioned challenges hinder direct com-
arisons of work from different groups and have also spurred the
evelopment of open-source tools.

The speech processing community has demonstrated high activity
n the open-source domain. Initially, foundational speech processing
oolkits like HTK (Young et al., 2002) and Kaldi (Povey et al., 2011)
erved as crucial resources for both researchers and industrial appli-
ations. These toolkits were instrumental before the advent of deep
earning frameworks such as PyTorch (Paszke et al., 2019) and Ten-
orFlow (Abadi et al., 2016). More recently, PyTorch-based toolkits
ike SpeechBrain Ravanelli et al. (2021) and Espnet (Watanabe et al.,
018) have emerged, offering a more accessible interface for novice
esearchers and facilitating rapid prototyping.

In contrast to the aforementioned general-purpose speech process-
ng toolkits, Wenet (Yao et al., 2021; Zhang et al., 2022) is specifically

1 https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc
2 http://www.cnceleb.org/competition
2

designed for end-to-end speech recognition. Its primary objective is
to bridge the gap between research and deployment, focusing on en-
hancing the seamless integration of speech recognition models from
experimental phases to real-world applications.

As part of the Wenet open-source projects, we released the initial
version of Wespeaker in (Wang et al., 2023b). Since the first release,
we have made significant updates, including the addition of different
types of self-supervised algorithms, more recipes, and codes specifically
designed for production. This paper aims to provide a comprehensive
review of the design and capabilities of Wespeaker, as well as include
the latest updates and performance comparisons across various toolkits,
model architectures, and datasets. A collection and comparison of
different open-source toolkits that enables speaker embedding learning
is listed in Table 1.

The key features/advantages of the Wespeaker toolkit are as follows,

• Competitive Results: Compared with other open-source imple-
mentations (Ravanelli et al., 2021; Tong et al., 2021), we achieve
very competitive performance in all the recipes, including the
VoxCeleb, CNCeleb, and NIST SRE. Many tricks used in the win-
ning systems of the related competitions are re-implemented in
Wespeaker to boost the system’s performance. We hope Wes-
peaker can provide the researchers with a competitive starting
point for their algorithm innovation.

• Light-Weight: Wespeaker is designed specifically for deep speaker
embedding learning with clean and simple codes. It is purely
built upon PyTorch and its ecosystem and has no dependencies
on Kaldi (Povey et al., 2011).

• Unified IO (UIO): A unified IO system similar to the one used
in Wenet (Zhang et al., 2022) is introduced, providing a unified
interface that can elastically support training with a few hours to
millions of hours of data.

• On-the-Fly Feature Preparation: Unlike the traditional feature
preparation procedure, which performs utterance segmentation,
data augmentation, and feature extraction in an offline man-
ner, Wespeaker performs all the above steps in an on-the-fly
manner. Different augmentation methods, including signal-level
ones such as noise corruption, reverberation, resampling, speed
perturbation, and feature-level SpecAug (Park et al., 2019), are
supported.

• SSL Support: To leverage unlabeled data, Wespeaker presents
the implementation of several popular self-supervised learning
algorithms, including SimCLR (Chen et al., 2020), MoCo (He
et al., 2020) and DINO (Caron et al., 2021), which allows users
to potentially utilize large-scale data obtained in real-world sce-
narios (Wang et al., 2023a).

• Production Ready: All models in Wespeaker can be easily ex-
ported by torch Just In Time (JIT) or as the ONNX format, which
can be easily adopted in the deployment environment. Sample
deployment codes are also provided.

• Command Line Interface (CLI) Support: Wespeaker can be eas-

ily installed with python pip, with access to various pretrained

https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc
http://www.cnceleb.org/competition

Speech Communication 162 (2024) 103104S. Wang et al.
models,3 allowing users to easily obtain off-the-shelf high-quality
speaker embeddings. These embeddings can be directly applied
to speaker-related tasks such as speech synthesis (Jia et al., 2018)
and target speaker extraction (Xu et al., 2020).

Overall, Wespeaker is likely to be of interest to various user groups
in different ways:

1. For researchers entering the field, we provide step-by-step tuto-
rials that help them quickly grasp the state-of-the-art systems in
this domain.4

2. For other researchers in this field, we offer competitive baseline
systems, allowing for fair algorithm comparisons. Recipes for
various standard datasets such as VoxCeleb and NIST SRE are
provided.

3. For industry professionals, Wespeaker supports industrial-scale
data management, making it easy for them to train models on
their own datasets. Additionally, we provide frameworks for self-
supervised learning, which have the potential to leverage large
amounts of unlabeled data. Wespeaker also provides deploy-
ment support on different platforms, which helps to build fast
prototypes.

4. For researchers working on other tasks that require speaker
modeling, Wespeaker offers off-the-shelf usage. This includes
APIs for extracting embeddings, computing speaker similarity,
performing diarization, .etc. We also provide a range of mod-
els to choose from, facilitating their direct application to their
specific tasks.

In summary, Wespeaker strives to be a comprehensive and user-friendly
toolkit for speaker representation learning. By providing an intuitive in-
terface and high-performance models, Wespeaker caters to the needs of
diverse users. Our goal is to contribute to advancements in research and
applications of speaker embedding learning through this toolkit and its
related resources. In this article, we give a thorough introduction to the
design principles and functionalities of Wespeaker.

2. Background on deep speaker embedding learning

2.1. Discriminative speaker embedding learning

For a standard deep speaker embedding learning system, the input
is frame-level acoustic features (e.g., filter banks) and the expected
output is segment-level embeddings. Such systems usually consist of
several frame-level layers to process the input features, followed by a
pooling layer to aggregate the encoded frame-level information into
segment-level representations, and then several (commonly one or
two) segment-level transform layers that map these representations
to speaker labels. Moreover, a classification loss is adopted to pro-
vide a speaker-discriminative supervision signal. A typical architec-
ture is illustrated in Fig. 1, which represents the common structure
shared by many mainstream speaker models, including x-vector (Sny-
der et al., 2018), r-vector (Zeinali et al., 2019; Wang et al., 2019), and
ECAPA-TDNN (Desplanques et al., 2020).

We refer to these classification-based methods as Discriminative
Speaker Embedding Learning (Wang et al., 2019). Within this frame-
work, speaker labels are crucial for computing the classification loss.
This requirement presents challenges in terms of obtaining training
datasets and utilizing large-scale in-the-wild data effectively.

2.2. Self-supervised speaker embedding learning

In the development of deep speaker representation learning, another
type of method previously referred to as metric learning (Chung et al.,

3 https://github.com/wenet-e2e/wespeaker/blob/master/docs/pretrained.
md

4 https://wenet.org.cn/wespeaker/index.html
3

Fig. 1. A typical discriminative deep speaker embedding learning system.

2020a) has emerged. This approach learns representations with speaker
identity modeling capability by contrasting positive and negative ex-
amples (Zhang et al., 2018; Wan et al., 2018; Huang et al., 2018a).
However, the learning methods during that period still required the use
of speaker labels for constructing positive and negative pairs. The self-
supervised learning methods to be introduced below are quite similar
to these methods, but further define positive and negative examples
based on a label-free hypothesis: different segments extracted from the
same utterance belong to the same speaker (positive samples), while those
from different utterances belong to different speakers (negative samples).

In Wespeaker, we implemented three widely recognized self-super-
vised learning (SSL) methods including SimCLR (Chen et al., 2020),
MoCo (He et al., 2020), and DINO (Caron et al., 2021). The learning
frameworks of these three paradigms are illustrated in Fig. 2, and we
will provide a brief introduction to each of them in the following
sections.

2.2.1. SimCLR
SimCLR (Simple Contrastive Learning of Representations) (Chen

et al., 2020) is a self-supervised learning algorithm that uses con-
trastive learning to learn representations from unlabeled data, orig-
inally designed for visual representation learning. In the context of
speech representation learning, the specific approach is as follows: To
construct a batch consisting of 𝑁 speech samples, for each speech
sample, two random segments are cropped and subjected to different
data augmentation techniques. These segments are then fed into the
same speaker encoder, producing speaker embeddings. Subsequently,
an MLP-based non-linear transformation is applied to remove irrelevant
information, yielding representations for optimization (Chen et al.,
2020). Based on the assumption that samples originating from the same
speech segment are positive pairs, while the remaining 2𝑁 − 1 pairs
are negative, the model is optimized using the contrastive loss named
InfoNCE (Oord et al., 2018).

2.2.2. MoCo
MoCo (He et al., 2020), short for Momentum Contrast, is another

self-supervised learning method that is also built based on contrastive
loss. The main idea of MoCo is to build a large and consistent memory
bank of data samples and their encoded representations and to mini-
mize the distance between matching pairs of queries and keys while
maximizing the distance between non-matching pairs. The memory
bank is maintained as a queue of data samples, where the newest
samples are enqueued and the oldest ones are dequeued.

https://github.com/wenet-e2e/wespeaker/blob/master/docs/pretrained.md
https://github.com/wenet-e2e/wespeaker/blob/master/docs/pretrained.md
https://wenet.org.cn/wespeaker/index.html

Speech Communication 162 (2024) 103104S. Wang et al.
Fig. 2. Frameworks of the Contrastive Self-supervised Learning Algorithms: (a) SimCLR, (b) MoCo, and (c) DINO. Chunks from utterance A form a positive pair, while the chunks
from utterance A and utterance B form a negative pair. Note that although the MLP layer is a commonly used setup in the literature, we have made it an optional configuration
in Wespeaker since it does not have a significant impact on performance.
Fig. 3. The overall structure of Wespeaker.
2.2.3. DINO
Different from SimCLR and MoCo, DINO (DIstillation of knowledge

with NO labels) (Caron et al., 2021) adopts a different strategy for con-
structing training samples. Its optimization no longer relies on negative
samples but maximizes the similarity between positive sample pairs,
thereby avoiding potential errors introduced during the construction of
negative samples (such as mistakenly treating samples from the same
speaker within a batch as different speakers based on assumptions). As
shown in Fig. 2(c), DINO adopts a teacher–student architecture with
momentum updates, which is similar to MoCo (He et al., 2020). In
addition, positive sample pairs in DINO have unequal-length segments.
Longer segments are inputted into the teacher model, and the results
are sharpened to serve as the target for model optimization. Shorter
segments are inputted into the student model, and gradient backpropa-
gation is performed using cross-entropy loss. In terms of performance,
DINO demonstrates significant improvements (Zhang and Yu, 2022;
Chen et al., 2023a; Han et al., 2024) compared to the other two
frameworks.

3. Wespeaker

3.1. Overall structure

Fig. 3 shows the overall structure and pipeline of Wespeaker. A
standard procedure contains data management on the disk, online fea-
ture preparation, and model training. Once the model has converged,
it can be easily exported to a run-time format and ready for further
4

deployment. The extracted speaker embeddings can then be applied to
downstream tasks, such as speaker verification and diarization.

3.2. Data management

Wespeaker offers support for three distinct modes of data manage-
ment: raw mode, shard mode, and feat mode. The feat mode is specifically
designed for loading pre-extracted features from the disk, whereas
the other two modes, raw and shard, are intended for loading files
in wave format. As shown in Fig. 4, these three modes are unified
under the Unified IO (UIO) framework within Wespeaker, enabling
various data organization and retrieval methods for both small and
large datasets. This unified approach ensures efficient data reading,
even for industrial-scale datasets.

3.2.1. Raw mode
Firstly, we support loading the raw wave files from the disk directly,

which is called ‘‘raw mode’’ in Wespeaker. It is suitable and convenient
for small-dataset training or testing cases. The raw mode requires
frequent opening and closing of small wave files, which is very IO-
consuming and makes training slow, especially for large-scale training
sets.

3.2.2. Shard mode
Production-scale corpus usually contains tens of thousands of hours

of speech, which are comprised of massive small files. To avoid the pos-
sible consequent out-of-memory (OOM) and slow-training problems, we

Speech Communication 162 (2024) 103104S. Wang et al.
Fig. 4. Unified IO in Wespeaker.

introduce the unified IO (UIO) mechanism of Wenet5 to the data man-
agement in Wespeaker. This mechanism was inspired by the TFRecord
format used in Tensorflow (Abadi et al., 2016) and AIStore (Aizman
et al., 2019), which packs each set of small files into a bigger shard
via the GNU tar. As shown in Fig. 4, for the large dataset, on-the-
fly decompression will be performed to sequentially read the shard
files into the memory during the training stage. On the other hand,
for the small dataset, Wespeaker supports the traditional data loading
functions to load the raw files from the disk directly.

3.2.3. Feat mode
While Wespeaker is primarily designed to be independent of Kaldi,

we recognize that many users may have pre-extracted features in Kaldi
format with various configurations. In order to facilitate the reuse of
these existing features, we provide a ‘‘feat mode’’ to support the loading
of Kaldi-style features, thus addressing this common requirement.

3.3. On-the-fly feature preparation

Traditional feature preparation for speaker embedding learning is
usually done offline. A typical offline procedure could comprise re-
sampling, data augmentation, data slicing, and feature extraction. The
offline feature preparation generates the final training examples and
saves them on the disk, which will remain unchanged during the
whole training process. Wespeaker loads the original wave data and
performs all these steps in an on-the-fly manner, which has two main
advantages: (1) There is no need to save the augmented wave files and
processed features, which significantly saves the disk cost. (2) Online
augmentation makes it possible for the model to see different training
examples at different epochs, this uncertainty and randomness improve
the robustness of the resultant model.

The supported online processors are summarized in Table 2, while
Fig. 5 presents the pipeline of online feature preparation in Wespeaker.
Wespeaker notably facilitates effortless configuration for organizing
diverse processors into a pipeline, ensuring both efficiency and ease
of extension.

3.4. SOTA model implementation

Wespeaker supports different popular speaker embedding learning
models, margin-based softmax training objectives, and several pooling
functions.

5 https://wenet.org.cn/wenet/UIO.html
5

Table 2
Description of Online Feature Processors.

Operation Description

Filter Filter out very short utterances and randomly chunk
over-length utterances.

Local shuffle Create and shuffle a local buffer for sample
randomness across different epochs.

Spk2id Convert speaker names into index based speaker IDs.

Resample Resample data to the desired sample rate.

Speed perturb Adjust the speed of the training data with a certain
probability.

Random chunk Randomly divide the training data into equal-length
chunks and apply repeated padding to shorter
segments.

VAD Filter out the non-speech part.

Noise, Reverb Augment the data by introducing noise or simulating
reverberation.

Compute Fbank Extract filter banks (Fbank) features from raw PCM
data.

CMVN Apply cepstral mean and variance normalization per
chunk.

SpecAug Utilize Spec-Augmentation (Park et al., 2019) on the
feature.

Batch Organize the data into fixed-size batches.

• TDNN based x-vector (Snyder et al., 2018), this is a milestone
work that leads the following deep speaker embedding era.

• ResNet based r-vector and its deeper version, this is the best sys-
tem of VoxSRC 2019 (Zeinali et al., 2019) and CNSRC 2022 (Chen
et al., 2022a).

• ECAPA-TDNN, an improved version of TDNN by incorporating
channel attention and multi-level feature aggregation, this is the
champion system of VoxSRC 2020 (Desplanques et al., 2020).

• RepVGG decouples the training time and inference time architec-
ture, resulting in good performance and inference speed. This is
the best system of VoxSRC 2021 (Zhao et al., 2021).

• CAM++, a modified densely connected time delay neural net-
work (D-TDNN) that utilizes a context-aware masking mecha-
nism (Wang et al., 2023c). It also incorporates a novel multi-
granularity pooling technique to capture contextual information
at various levels.

• ERes2Net, an enhanced Res2Net architecture to improve the
robustness of speaker embeddings by aggregating global signals
from multi-scale features (Chen et al., 2023b).

Pooling functions aggregate frame-level features into segment-
level representations. To be more formulated, 𝑁 frames of 𝑑-dimensi-
onal deep features 𝐗 = {𝐱1,… , 𝐱𝑛,… , 𝐱𝑁} can be obtained from frame-
level transformation, a pooling layer is adopted to aggregate 𝐗 to
a single representation 𝐳. Wespeaker supports the statistics-based and
attention-based ones.

Statistics-based pooling functions have long been used in speaker
embedding learning and can be categorized into three types, based
on the statistics they utilize. These include Temporal Average Pooling,
denoted as TAP, Temporal Standard Deviation Pooling (Wang et al.,
2021), represented as TSDP, and Temporal Statistics Pooling (Snyder
et al., 2018), referred to as TSTP. The latter encompasses both first and
second-order statistics.

TAP(𝐗) = 𝝁 = 1
𝑁

𝑁
∑

𝑛=1
𝐱𝑛 (1)

TSDP(𝐗) = 𝝈 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛
𝐱𝑛 ⊙ 𝐱𝑛 − 𝝁⊙ 𝝁 (2)

 (𝐗) = [𝝁⊤,𝝈⊤]⊤ (3)
TSTP

https://wenet.org.cn/wenet/UIO.html

Speech Communication 162 (2024) 103104S. Wang et al.

t
c
h
A

f

𝛼

3

3

i
t
b
e
e
A

Fig. 5. The pipeline of online feature preparation for both the supervised and self-supervised learning paradigms.
s
c
t
s
i

3

t
r
f
s

𝑔

𝑚

w
o

3

p
s
f
a

For attention-based pooling methods, we provide the implementa-
ion of attentive statistics pooling (ASTP) and its variants: Channel- and
ontext-dependent ASTP (CC-ASTP) (Desplanques et al., 2020), Multi-
ead ASTP (MH-ASTP) (India et al., 2019) and Multi-query multi-head
STP (MQMH-ASTP) (Zhao et al., 2022).

Compared to the normal TSTP, ASTP compute the 𝝁 and 𝝈 in the
ollowing way:

𝑒𝑛 = 𝐯⊤𝑓
(

𝐖𝐱𝑛 + 𝐛
)

+ 𝑘 (4)

𝑛 =
exp

(

𝑒𝑛
)

∑𝑁
𝜏 exp

(

𝑒𝜏
)

(5)

𝝁 =
𝑁
∑

𝑛
𝛼𝑛𝐱𝑛 (6)

𝝈 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛
𝛼𝑛𝐱𝑛 ⊙ 𝐱𝑛 − 𝝁⊙ 𝝁 (7)

where 𝐖 and 𝐛 represent learnable parameters that are used to trans-
form 𝐱𝑛 into a lower dimension for the subsequent attention compu-
tation. The self-attention score, obtained from the non-linear function
𝑓 (⋅) (by default, tanh in Wespeaker), is further processed through a
linear layer with weights 𝐯 and bias 𝑘. This transformation results
in the scalar score 𝑒𝑡. The other variants follow a similar process
but differ in detailed computation. For instance, CC-ASTP involves a
channel-dependent parameter computation process. Specifically, 𝝁 and
𝝈 are calculated for each channel, resulting in 𝝁𝑐 and 𝝈𝑐 . Similarly,
intermediate variables such as 𝑒𝑛, 𝑘, 𝛼𝑛 are computed individually for
each channel, yielding 𝑒𝑛𝑐 , 𝑘𝑐 , 𝛼𝑛𝑐 .

.5. Training strategies

.5.1. Training objectives
Loss functions play a crucial role in deep speaker embedding learn-

ng. We provide support for various types of loss functions, including
he standard softmax cross-entropy loss, as well as different margin-
ased variants (Hajibabaei and Dai, 2018; Xiang et al., 2019; Han
t al., 2023). These variants include A-softmax (Liu et al., 2017; Huang
t al., 2018b; Wen et al., 2021), AM-softmax (Wang et al., 2018a), and
6

AM-softmax (Deng et al., 2019). v
In addition to supporting different loss functions, we also provide
upport for commonly used techniques such as the inter-topk and sub-
enter algorithms (Zhao et al., 2022). These techniques aim to enhance
he discriminative ability of the learned embeddings by considering
pecific subsets of samples within a mini-batch or using sub-centers to
mprove intra-class compactness.

.5.2. Learning rate scheduling
Wespeaker implements the learning rate schedule as the composi-

ion of two functions. The variation function of the learning rate with
espect to time 𝑙𝑟(𝑡) can be represented by the product of warmup
unction 𝑔(𝑡) and exponential descent function ℎ(𝑡): 𝑙𝑟(𝑡) = 𝑔(𝑡)ℎ(𝑡). The
pecific expressions of 𝑔(𝑡) and ℎ(𝑡) are:

(𝑡) =

{ 𝑡
𝑇warm

, 𝑡 < 𝑇warm.

1, 𝑇warm ≤ 𝑡 < 𝑇 .
(8)

ℎ(𝑡) = 𝜂0 ⋅ exp
(𝑡
𝑇

ln (
𝜂𝑇
𝜂0

)
)

(9)

where 𝑡, 𝑇warm, 𝑇 represents the current, the warm-up, and the to-
tal iterations, 𝜂0 and 𝜂𝑇 denotes the initial and final learning rate,
respectively.

3.5.3. Margin scheduling
The margin scheduler is a three-stage function 𝑚(𝑡):

(𝑡) =

⎧

⎪

⎨

⎪

⎩

0, 𝑡 < 𝑇1.
𝑓 (𝑡), 𝑇1 ≤ 𝑡 < 𝑇2.
𝑀, 𝑇2 ≤ 𝑡 < 𝑇 .

(10)

here 0 ≤ 𝑇1 ≤ 𝑇2 ≤ 𝑇 , 𝑀 is the final margin in loss and 𝑓 (𝑡) is a linear
r logarithmic growth function from 0 to 𝑀 .

.5.4. Large margin fine-tuning
The large margin fine-tuning strategy was first proposed in Thien-

ondt et al. (2021) and widely used in speaker verification challenge
ystems (Chen et al., 2022a; Zhao et al., 2021; Makarov et al., 2022) to
urther enhance the system’s performance. This strategy is performed
s an additional fine-tuning stage based on a well-trained speaker
erification model. In this stage, the model will be trained with a larger

Speech Communication 162 (2024) 103104S. Wang et al.

t
𝜼
r

𝐳

T
(
b

𝜼

p
m
a
c
c
d
p

3

a
i
t
s
V
t
t
2
i
i
m
i

3

i
N
s

4

t
b
h

margin and longer training segments relative to the normal training
stage. For Wespeaker implementation, we use AAM loss with a margin
of 0.5 and 6 s training segments.

3.6. Back-end support

For the deep speaker embeddings supervised by large-margin soft-
max losses, the simple cosine similarity can serve as a good scoring
back-end. Before the era of large-margin embeddings, parametric back-
ends such as Probabilistic Linear Discriminant Analysis (PLDA) were
more widely used. Wespeaker implements both scoring back-ends.

3.6.1. Two-cov PLDA and unsupervised adaptation
In the two-covariance variant of Probabilistic Linear Discriminant

Analysis model, the differences between speakers (Inter-speaker vari-
ability) and the differences within a speaker’s different audio sessions
(Inter-session variability) are described using the across-class covari-
ance matrix 𝜮ac and the within-class covariance matrix 𝜮wc, respec-
ively. Two-covariance PLDA assumes that the speaker representation

is generated through two sampling steps. First, latent variable 𝐳
epresenting the speaker is sampled from the prior distribution:

̂ ∼ 𝑝(𝐳) = (𝐳;𝝁,𝜮ac). (11)

hen, for each specific speaker represented by �̂�, the observations
speaker representations) are samples from within-class normal distri-
ution:

∼ 𝑝(𝜼|�̂�) = (𝜼; �̂�,𝜮wc). (12)

For recipes such as NIST SRE, where indomain unlabeled data is
rovided, we also provide the unsupervised PLDA adaptation imple-
entation. This method essentially estimates the excess variance in the

daptation data and distributes a portion of it to the PLDA across-class
ovariance matrix and another portion of it to the PLDA within-class
ovariance matrix.6 With this feature, we can use unlabeled target
omain data for fast domain adaptation, thereby enhancing the model’s
erformance on the test set.

.6.2. TPSDA
Toroidal Probabilistic Spherical Discriminant Analysis (TPSDA) is

model assuming that the observations live on the unit hypersphere,
.e., the speaker representations are length-normalized which is often
he case even when other scoring backends are used. TPSDA can be
een as analogous to PLDA, with Normal distributions replaced by
on Mises–Fisher (VMF). TPSDA has been demonstrated to surpass the

raditional PLDA model in performance when applied to discrimina-
ively trained speaker embeddings (Silnova et al., 2023; Brümmer et al.,
022). We perceive this model as having significant potential as a scor-
ng back-end, and consequently, we have integrated its implementation
nto Wespeaker. However, it is important to note that this is currently
ore of an experimental feature, which we plan to refine and improve

n future iterations.

.6.3. Score normalization
Adaptive Symmetric Score Normalization (AS-Norm) is implemented

n Wespeaker, averaging the normalized scores from Z-Norm and T-
orm (Matejka et al., 2017), to normalize the speaker verification

cores.

. Deployment and product-oriented setups

For the models trained in Wespeaker, we can easily export them
o ‘‘tensorrt’’ or ‘‘onnx’’ format, which can be deployed on the Triton

6 See https://github.com/kaldi-asr/kaldi/blob/master/src/ivector/plda.cc.
7

Inference Server, supporting speaker embedding extraction and diariza-
tion tasks. Detailed information including the instructions and per-
formance can be found at https://github.com/wenet-e2e/wespeaker/
tree/master/runtime/server. Currently, a C++ API library and runnable
demos are provided while the users can also implement their cus-
tomized system by using the C++ library. We support three main-
stream platforms, namely Windows, Linux, and mac. Detailed informa-
tion can be found at https://github.com/wenet-e2e/wespeaker/tree/
master/runtime/onnxruntime. For on-device runtime, we support ex-
port ‘‘onnx’’ format to ‘‘horizon’’ format, which can be deployed on the
horizon X3’PI. Detailed information including the instructions and per-
formance can be found at https://github.com/wenet-e2e/wespeaker/
tree/master/runtime/horizonbpu. Furthermore, since Wespeaker is de-
signed as a general speaker embedding learner, we also provide the
python bindings and deploy it via standard pip packaging, which en-
ables effortless utilization of the pre-trained models for various down-
stream tasks.7

5. Experiments and recipes

As described in the above sections, deep speaker embeddings could
be applied to different downstream tasks, whereas this paper focuses
on speaker verification and speaker diarization.

5.1. Basic setups for speaker embedding learning

For the training setups of all speaker models in the following sec-
tions, we adopted the shard UIO method and applied the same online
data augmentation in the training process.

The audios from the MUSAN dataset (Snyder et al., 2015) are used
as additive noises, while the simulated room impulse responses (RIRs)8

are used for the reverberation. For each utterance in the training set,
we apply additive noise or reverberation augmentation (not both at
the same time) with a probability of 0.6. For speed perturbation, we
randomly change the speed of an utterance with a ratio of 0.9 or
1.1, and the augmented audios will be treated as from new speakers
due to the pitch shift after the augmentation. Moreover, the ratio of
speeds 0.9, 1.0, and 1.1 is set as 1:1:1. The acoustic features are 80-
dimensional log Mel-filter banks (Fbank) with a 10 ms frameshift and
a 25 ms frame window. All training data are chunked into 200 frames
and CMN (without CVN) is also applied. Note that SpecAug is not used
in any experiment. For VoxCeleb and CNCeleb, AAM loss is used as
the optimization objective, with the margin scheduler as described in
Section 3.5.3, the large-margin finetuning described in Section 3.5.4 is
applied with a margin of 0.5 and segmental length of 6 s.

5.2. Speaker verification

For our speaker verification experiments, we have included two
publicly available datasets: VoxCeleb and CNCeleb. Additionally, we
incorporated NIST SRE, given the longstanding adoption of the SRE
series in the speaker recognition community over the past two decades.

It is worth noting that, in our experiments related to VoxCeleb,
we aim to present results comprehensively. This includes results from
various supervised training models, different self-supervised training
methods, as well as comparisons of model parameters and inference
speeds across different models. As for CNCeleb and NIST SRE, we pro-
vide corresponding basic recipes for reference. Users can easily adapt
the more complex models and training patterns used with VoxCeleb to
other datasets.

7 https://github.com/wenet-e2e/wespeaker/tree/master/runtime/
inding/python, a toy demo on speaker verification can be found at
ttps://huggingface.co/spaces/wenet/wespeaker_demo.

8 https://www.openslr.org/28

https://github.com/kaldi-asr/kaldi/blob/master/src/ivector/plda.cc
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/server
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/server
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/server
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/onnxruntime
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/onnxruntime
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/onnxruntime
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/horizonbpu
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/horizonbpu
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/horizonbpu
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/binding/python
https://github.com/wenet-e2e/wespeaker/tree/master/runtime/binding/python
https://huggingface.co/spaces/wenet/wespeaker_demo
https://www.openslr.org/28

Speech Communication 162 (2024) 103104S. Wang et al.
Table 3
Supervised results achieved using different architectures on the VoxCeleb dataset, ‘‘dev’’ of part 2 is used as the training set.
Literature/Toolkits Architecture Voxceleb1_O Voxceleb1_E Voxceleb1_H

EER(%) minDCF EER(%) minDCF EER(%) minDCF

Desplanques et al. (2020) ECAPA-TDNN 0.870 0.107 1.120 0.132 2.120 0.210

Zeinali et al. (2019) ResNet34 1.310 0.154 1.380 0.163 2.500 0.233

AsvSubtoolsb

ECAPA-TDNN 0.856 – – – – –
Conformer 0.792 – – – – –
ResNet34 1.538 – 1.705 – 2.985 –
Extended-TDNNa 1.729 – – – – –

SpeechBrainc

TDNNa 3.23 – – – – –
ECAPA-TDNNa 0.80 – – – – –
ResNet-TDNNa 0.95 – – – – –
ECAPA-TDNN 1.30 – 1.98 – 3.62 –

Nemod
TDNNa 1.96 – – – – –
ECAPA-TDNNa 0.92 – – – – –
titanet_largea 0.66 – – – – –

3d-speakere CAM++ 0.73 0.091 – – – –
ERes2Net 0.97 0.090 – – – –

Wespeaker

TDNN 1.590 0.166 1.641 0.170 2.726 0.248
ECAPA-TDNN 0.728 0.099 0.929 0.100 1.721 0.169
CAM++ 0.654 0.087 0.805 0.092 1.576 0.164
ERes2Net 0.744 0.074 0.896 0.092 1.603 0.151
RepVGG 0.750 0.083 0.846 0.090 1.495 0.141

ResNet34 0.723 0.069 0.867 0.097 1.532 0.146
ResNet50 0.803 0.061 0.887 0.092 1.519 0.136
ResNet101 0.542 0.052 0.758 0.079 1.398 0.128
ResNet152 0.495 0.033 0.685 0.069 1.205 0.105
ResNet221 0.505 0.045 0.676 0.067 1.213 0.111
ResNet293 0.447 0.043 0.657 0.066 1.183 0.111

a Models with ∗ are trained with the combined dataset of Vox1 dev and Vox2 dev, while others are trained with only Vox2 dev.
b Results from https://github.com/Snowdar/asv-subtools
c Results from https://github.com/speechbrain/speechbrain/tree/develop/recipes/VoxCeleb/SpeakerRec
d Results from https://github.com/NVIDIA/NeMo/tree/main/examples/speaker_tasks/recognition
e Results from https://github.com/alibaba-damo-academy/3D-Speaker/tree/3dspeaker/egs/voxceleb/
For all recipes on the speaker verification task, we demonstrate the
results in terms of Equal Error Rate (EER) and minimum detection cost
(minDCF) with 𝑃𝚝𝚊𝚛 = 0.01. Scores are post-processed using AS-Norm
to boost the systems’ performance.

5.2.1. VoxCeleb
VoxCeleb dataset (Nagrani et al., 2020b) was introduced by Oxford

University and has emerged as one of the most widely utilized text-
independent speaker recognition datasets. Following the segmentation
of the VoxSRC challenge, we only use the VoxCeleb2 dev as the training
set, which contains more than one million audios from 5994 speakers.

For all the systems on the VoxCeleb datasets demonstrated in Ta-
ble 3, cosine similarity is adopted as the scoring backend. Large-margin
finetuning and AS-Norm are applied for all Wespeaker systems. The re-
sults show that our implementation achieves very competitive numbers
compared with the original ones in the literature and other open-source
toolkits. Scaling the ResNet deeper can further boost the performance
significantly. The best system, ResNet293, achieves impressive perfor-
mance with EER values of 0.447%, 0.657%, and 1.183% on the three
respective evaluation sets. However, it is important to note that despite
its strong performance, using such a large model results in increased
memory usage, higher computational resource consumption, and longer
latency. To provide a more intuitive understanding, we have presented
the corresponding parameter count, memory usage, MACs (Multiply-
Accumulate operations), and RTF (Real-Time Factor) in Table 4. For
all model architectures, only one embedding layer is used and the
embedding size is set to 256 for a fair comparison.

Self-supervised learning (SSL) has attracted many researchers in
speaker verification because it effectively alleviates the problem of lack
of speaker labels. In Wespeaker, we provide open-source implementa-
tions of several mainstream SSL frameworks for speaker verification on
the VoxCeleb dataset, including SimCLR, MoCo, and the very popular
8

Table 4
Comparison of model parameters, memory cost, MACs, and RTF, the batch-size is set

to 16 and frame-number is set to 100.
Architecture Params (M) Memory (G) MACs (G) RTF

TDNN 3.645 0.055 3.990 0.0127
ECAPA-TDNN(C512) 6.387 0.193 8.320 0.0183
ECAPA-TDNN(C1024) 14.85 0.354 21.23 0.0417
CAM++ 7.176 0.701 9.010 0.0229
ERes2Net 7.266 2.427 27.17 0.0525
RepVGG 6.264 0.423 37.38 0.0551

ResNet34 6.634 1.053 36.50 0.0607
ResNet50 11.13 3.484 40.91 0.0732
ResNet101 15.89 5.174 78.79 0.1246
ResNet152 19.81 7.254 116.6 0.1793
ResNet221 23.79 11.20 167.9 0.2675
ResNet293 28.62 15.15 221.4 0.3640

DINO. The results of different frameworks and backbones are presented
in Table 5. The negative-pair-free DINO achieves significant perfor-
mance superiority when compared to contrastive learning-based meth-
ods such as SimCLR and MoCo. Furthermore, ECAPA-TDNN(C1024)-
based DINO achieved EERs of 2.627%, 2.665%, and 4.644% on three
test trials of Voxceleb without using any human-labeled data, which is
a very strong and competitive result.

5.2.2. CNCeleb
For the CNCeleb recipe, we combine the 1996 speakers from

CNCeleb2 and 797 speakers from the CNCeleb1 dev set as the training
set and evaluate on the CNCeleb1 test set. Although the collection
procedure of the CNCeleb dataset (Li et al., 2022) is similar to the
one of VoxCeleb, many recordings are shorter than 2 s in this dataset.
Therefore, in the data preparation, we first concatenate the short audios

https://github.com/Snowdar/asv-subtools
https://github.com/speechbrain/speechbrain/tree/develop/recipes/VoxCeleb/SpeakerRec
https://github.com/NVIDIA/NeMo/tree/main/examples/speaker_tasks/recognition
https://github.com/alibaba-damo-academy/3D-Speaker/tree/3dspeaker/egs/voxceleb/

Speech Communication 162 (2024) 103104S. Wang et al.

d

Table 5
Performance (EER%) of SSL-based systems on the VoxCeleb evaluation set.
Toolkits Paradigm Architecture VoxCeleb1_O VoxCeleb1_E VoxCeleb1_H

3d-speaker RDINO ECAPA-TDNN (C1024) 3.16 – –

Wespeaker

SimCLR ECAPA-TDNN (C512) 8.523 9.417 14.907
ECAPA-TDNN (C1024) 8.318 8.770 14.665

MoCo ECAPA-TDNN (C512) 8.709 9.287 14.756
ECAPA-TDNN (C1024) 8.473 8.946 14.635

DINO ResNet34 3.170 3.324 5.821
DINO ECAPA-TDNN (C512) 3.016 3.093 5.538
DINO ECAPA-TDNN (C1024) 2.627 2.665 4.644
)

C
e
2

b
d
d
w
A
t

T
d
w

5

i
s
o
f
t
d
w

5

s
G
a
V

e
m
a

t
t
o
o
2

Table 6
Results on the CNCeleb evaluation set.
Toolkits Architecture EER(%) minDCF

ASVSubtools ResNet34 9.141 0.463

3D-Speaker
ECAPA-TDNN (C1024) 8.01 0.445
CAM++ 6.78 0.393
ERes2Net 6.69 0.388

Wespeaker

TDNN 8.960 0.446
ECAPA-TDNN (C1024) 7.395 0.372
CAM++ 7.052 0.368
ERes2Net 6.474 0.343
ResNet34 6.492 0.354
ResNet221 5.655 0.330

from the same genre and same speaker to construct audios longer than
5 s.

The results obtained using different backbones are exhibited in
Table 6. Unlike the VoxCeleb evaluation protocol, CNCeleb assumes
each speaker is enrolled with multiple sessions. Embeddings for all en-
rollment sessions for each speaker are extracted and averaged to obtain
the final enrollment embedding. This method has shown considerable
performance improvements in our experiments compared to simply
concatenating all enrollment utterances to extract a single embedding.

5.2.3. NIST speaker recognition evaluation (SRE)
The NIST SRE, which began in 1996, is a long-standing speaker

recognition evaluation event. Since then, NIST has organized an SRE
every 1–2 years to promote research and development in the field.
Each evaluation introduces new datasets to adapt to technological
advancements and changing application requirements. Over the years,
the NIST SRE has accumulated a large collection of telephone channel
datasets.

Unlike VoxCeleb scenario, NIST SREs mainly focused on 8k tele-
phone channel data, covering various noise scenarios and languages.
There is a significant difference between the training and testing data,
making the task more challenging. Compared to the VoxCeleb Recipe,
we have made the following modifications:

• Voice activity detection: Due to the presence of a large number
of silent segments in the SRE data, we added silence detection
during the data preprocessing stage to more effectively process
the speech data.

• Pipe reading support: SRE data is in .sph format, which most
speech reading tools do not support. To allow Wespeaker to better
read .sph format data, we supported the functionality of reading
speech data from pipes during the data preprocessing stage.

• Unsupervised PLDA adaptation: In the SRE Recipe, there is a
significant domain mismatch between the test data (SRE16/SRE18
and the training data. To improve the performance on the test set,
we support the kaldi-style PLDA unsupervised domain adaptation
as described in Section 3.6.1.

For the SRE recipe, we followed a similar setup as the ABC systems
eveloped for the NIST SRE21 evaluation (Alam et al., 2022). As
9

training data, we used the CTS Superset (Sadjadi, 2021) plus VoxCeleb
1 dev+test and VoxCeleb 2 dev, downsampled to 8 kHz and passed
through the GSM codec provided by SoX.9 We used the same augmen-
tation settings as for the VoxCeleb recipe. The feature configuration was
also the same except that we used 64-dimensional filterbanks instead of
80-dimensional. As preprocessing before the backend, the embeddings
were centered, length-normalized, subjected to LDA including a second
centering and, finally, length-normalized again. The backends and the
LDA transform were trained on the augmented CTS superset, i.e., Vox-

eleb was not included. We evaluate the systems on NIST SRE16 (Seyed
t al., 2017), SRE18 (Sadjadi et al., 2019), and SRE21 (Sadjadi et al.,
021).

Table 7 presents the results obtained with cosine, PLDA, and TPSDA
ackends trained on top of the embeddings with dimensionality re-
uced to 100 by LDA. For SRE16 and SRE18, unlabeled adaptation
atasets are available so for them we also present the results obtained
ith adapted PLDA. The results are similar to results obtained during
BC’s NIST SRE21 efforts with similar architectures trained using other

oolkits.
Contrary to the findings in Silnova et al. (2023), the results for

PSDA are somewhat worse than for PLDA. This could be because of a
ifferent preprocessing chain before the backend. Further investigation
ill be carried out.

.3. Speaker diarization

Speaker diarization (SD) is the task of splitting an audio recording
nto acoustically homogeneous clusters according to the identity of each
peaker. Most diarization systems are based on clustering-based meth-
ds that typically consist of two steps: segmentation and clustering. The
irst step aims at partitioning the audio recording into segments, such
hat each segment only contains one speaker. The second step aims at
ividing segments into clusters based on the identity of each speaker,
here the spectral clustering method is adopted in Wespeaker.

.3.1. VoxConverse
VoxConverse dataset (Chung et al., 2020b), a ‘‘in the wild’’ large-

cale speaker diarization dataset, was created by the Visual Geometry
roup at Oxford. The dataset was collected from YouTube videos with
semi-automatic pipeline and released for the diarization track in

oxSRC 2020.
The VoxConverse recipe shows how to leverage a pre-trained speaker

mbedding extractor for speaker diarization. The pre-trained ResNet34
odel is used to extract speaker embeddings and spectral clustering is

pplied to cluster the embeddings.
As demonstrated in Table 8, we have achieved robust results on

he VoxConverse dev dataset using two types of Voice Activity De-
ection (VAD). With oracle VAD derived from manual annotations
f the dataset, the pipeline achieves a Diarization Error Rate (DER)
f 4.2% on the dev set. When employing Silero-VAD (Silero Team,
021) as the system VAD, the DER is 6.5%. These results highlight the

9 https://sourceforge.net/projects/sox/

https://sourceforge.net/projects/sox/

Speech Communication 162 (2024) 103104S. Wang et al.

c
d
s

6

o
e
d
d
s
r
f
d
w
i

Table 7
Performance comparison of Wespeaker systems on NIST SRE 2016, 2018, and 2021.

System Loss Scoring Method SRE16 Cantonese SRE16 Tagalog SRE18 CMN2 Eval SRE21 Eval

EER (%) minDCF EER (%) minDCF EER (%) minDCF EER (%) minDCF

ResNet34

Softmax

Cosine 4.161 0.330 15.98 0.926 7.839 0.528 11.33 0.670
PLDA 3.467 0.293 16.03 0.977 6.962 0.491 10.10 0.624
Adapted PLDA 2.741 0.213 8.962 0.614 6.949 0.512 – –
TPSDA 3.954 0.330 11.88 0.729 7.221 0.530 10.69 0.695

AAM-softmax

Cosine 3.809 0.327 13.79 0.868 7.433 0.519 12.60 0.704
PLDA 3.513 0.310 13.83 0.920 7.291 0.502 12.18 0.692
Adapted PLDA 3.467 0.289 12.20 0.798 6.344 0.557 – –
TPSDA 4.135 0.380 11.88 0.751 7.121 0.541 12.45 0.760

ResNet101

Softmax

Cosine 3.410 0.283 14.41 0.893 7.119 0.491 9.885 0.623
PLDA 2.840 0.256 14.33 0.961 6.357 0.458 9.061 0.582
Adapted PLDA 2.150 0.186 8.382 0.583 6.683 0.494 – –
TPSDA 3.134 0.291 11.24 0.688 6.393 0.487 9.050 0.630

AAM-softmax

Cosine 2.736 0.257 11.70 0.754 6.411 0.467 11.24 0.671
PLDA 2.586 0.233 11.91 0.769 6.265 0.450 10.99 0.660
Adapted PLDA 2.353 0.211 9.598 0.593 7.857 0.513 – –
TPSDA 3.104 0.307 10.488 0.698 6.155 0.474 10.69 0.722
s
i
e
i
e
u
D

e
C
e
M
W
f

e
t
M

t

Table 8
Results on the VoxConverse dataset.
Set System VAD MISS(%) FA(%) SC(%) DER(%)

dev

Chung et al. (2020b)a – 2.4 2.3 3.0 7.7

Wespeaker
oracle 2.3 0.0 1.9 4.2

silero 3.8 0.7 2.0 6.5

pyannotec 2.7 0.2 1.8 4.8

test
pyannoteb pyannotec 2.3 1.8 2.7 6.8

Wespeaker silero 4.0 2.4 3.5 9.8

pyannotec 3.2 0.7 3.0 7.0

a Audio–Visual system
b https://huggingface.co/pyannote/speaker-diarization-3.1
c Access needs token verification, thus not integrated in Wespeaker

effectiveness of the deep speaker embedding learning capabilities of the
Wespeaker toolkit. Furthermore, we demonstrate that integrating VAD
from pyannote.audio can lead to further performance enhancements,
indicating that optimizing VAD is a promising direction for future work.

5.3.2. GPU clustering
To speed up the clustering and diarization process, Cupy (Okuta

et al., 2017) and CuML (Raschka et al., 2020) are utilized to perform
GPU-based spectral clustering. All operations of speaker embeddings
are using Cupy and we use GPU Kmeans algorithm implementation
from CuML. Similar performances of the VoxConverse development
set can be obtained from our experiments but with about 3× speedup
ompared with CPU clustering. With GPU clustering, the whole speaker
iarization modules can be run in GPUs thus a GPU-based SD inference
olution has been provided using NVIDIA Triton Server in Wespeaker.

. Conclusion and future work

In this work, we introduced Wespeaker, a research and product-
riented speaker embedding learning toolkit. Wespeaker offers an el-
gant code framework and dataset-based recipes, along with efficient
ata management capabilities that enable scalability to large-scale in-
ustrial datasets. Researchers and students can swiftly construct main-
tream models and achieve highly competitive performance, facilitating
apid exploration and iteration in related research. For industry pro-
essionals and individuals seeking to leverage speaker embeddings in
ownstream tasks such as diarization and target speaker extraction,
e provide off-the-shelf deployment codes, user-friendly installation

nstructions, and various pre-trained models to select from.
10
Wespeaker aims to foster advancements in the field of speaker repre-
entation learning and actively meet the demands of speaker modeling
n various downstream applications. Since the initial release (Wang
t al., 2023b), we are pleased to report that this toolkit has been
ntegrated or utilized in well-known toolkits such as Espnet (Watanabe
t al., 2018), and pyannote.audio (Baroudi et al., 2023), it also assists
sers to achieve impressive rankings in competitions (Park et al., 2023;
u et al., 2023; Baroudi et al., 2023; Yan et al., 2023).

In the future, Wespeaker will prioritize the following directions:
ffective adaptation of large pre-trained models (Hsu et al., 2021;
hen et al., 2022b; Peng et al., 2023), compression of model size (Liu
t al., 2022, 2023), and integration with more speaker-related tasks.
oreover, Wespeaker will try to benefit from other projects within the
enet Community, exploiting the state-of-the-art modeling strategies

rom other tasks.10 Through these focus areas, Wespeaker strives to stay
at the forefront of speaker representation learning, address practical de-
ployment challenges, and continue supporting advancements in various
speaker-related tasks.

CRediT authorship contribution statement

Shuai Wang: Writing – review & editing, Writing – original draft,
Validation, Supervision, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Zhengyang Chen: Writing – review &
diting, Validation, Software, Methodology, Investigation, Data cura-
ion. Bing Han: Writing – review & editing, Validation, Software,
ethodology, Investigation, Formal analysis, Data curation. Hongji

Wang: Writing – review & editing, Validation, Software, Project admin-
istration, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Chengdong Liang: Writing – original draft, Valida-
ion, Software, Investigation. Binbin Zhang: Software, Investigation,

Conceptualization. Xu Xiang: Software, Methodology, Investigation.
Wen Ding: Software. Johan Rohdin: Software, Investigation. Anna
Silnova: Writing – review & editing, Software, Investigation. Yanmin
Qian: Writing – review & editing, Supervision. Haizhou Li: Writing –
review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

10 For instance, recent research show that ASR pre-trained models can
greatly boost the performance of SV systems (Liao et al., 2023; Cai et al.,
2023).

https://huggingface.co/pyannote/speaker-diarization-3.1

Speech Communication 162 (2024) 103104S. Wang et al.
Data availability

The project is available at https://github.com/wenet-e2e/wespeak
er.

Acknowledgments

Shuai Wang is currently supported by Internal Project of Shenzhen
Research Institute of Big Data under grant No. J00220230014. The
people from SJTU are supported in part by China NSFC projects
under Grants 62122050 and 62071288, and in part by Shanghai
Municipal Science and Technology Commission Project under Grant
2021SHZDZX0102. We would like to express our gratitude to the Wenet
open-source community, whose dedication and collective efforts have
played a pivotal role in the success and growth of Wespeaker.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al., 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Aizman, A., Maltby, G., Breuel, T., 2019. High performance I/O for large scale deep
learning. In: 2019 IEEE International Conference on Big Data. Big Data, IEEE, pp.
5965–5967.

Alam, J., Beneěs, R., Beszédeš, M., Burget, L., Dahmane, M., andHamed Ghodrati, A.F.,
Glembek, O., Kang, W.H., Pavel, Matějka, L.M., Plchot, O., Rohdin, J., Silnova, A.,
Stafylakis, T., 2022. Development of ABC systems for the 2021 edition of
NIST speaker recognition evaluation. In: The Speaker and Language Recognition
Workshop. Odyssey 2022, ISCA, pp. 346–353.

Baroudi, S., Bredin, H., Plaquet, A., Pellegrini, T., 2023. pyannote. audio speaker
diarization pipeline at VoxSRC 2023.

Brown, A., Huh, J., Chung, J.S., Nagrani, A., Zisserman, A., 2022. VoxSRC 2021: The
third VoxCeleb speaker recognition challenge. arXiv preprint arXiv:2201.04583.

Brümmer, N., Swart, A., Mošner, L., Silnova, A., Plchot, O., Stafylakis, T., Burget, L.,
2022. Probabilistic spherical discriminant analysis: An alternative to plda for
length-normalized embeddings. arXiv preprint arXiv:2203.14893.

Cai, D., Wang, W., Li, M., 2021. An Iterative Framework for Self-Supervised Deep
Speaker Representation Learning. IEEE, pp. 6728–6732.

Cai, D., Wang, W., Li, M., Xia, R., Huang, C., 2023. Pretraining conformer with asr for
speaker verification. In: ICASSP 2023. IEEE, pp. 1–5.

Cai, Z., Zhang, C., Li, M., 2020. From speaker verification to multispeaker speech
synthesis, deep transfer with feedback constraint. arXiv preprint arXiv:2005.04587.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.,
2021. Emerging properties in self-supervised vision transformers. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 9650–9660.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A simple framework for
contrastive learning of visual representations. In: International Conference on
Machine Learning. PMLR, pp. 1597–1607.

Chen, Z., Liu, B., Han, B., Zhang, L., Qian, Y., 2022a. The SJTU X-LANCE lab system
for CNSRC 2022. arXiv preprint arXiv:2206.11699.

Chen, Z., Qian, Y., Han, B., Qian, Y., Zeng, M., 2023a. A comprehensive study on self-
supervised distillation for speaker representation learning. In: 2022 IEEE Spoken
Language Technology Workshop. SLT, IEEE, pp. 599–604.

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li, J., Kanda, N., Yoshioka, T.,
Xiao, X., et al., 2022b. Wavlm: Large-scale self-supervised pre-training for full stack
speech processing. IEEE J. Sel. Top. Sign. Proces. 16 (6), 1505–1518.

Chen, Y., Zheng, S., Wang, H., Cheng, L., Chen, Q., Qi, J., 2023b. An enhanced
Res2Net with local and global feature fusion for speaker verification. arXiv preprint
arXiv:2305.12838.

Cho, J., Villalba, J., Moro-Velazquez, L., Dehak, N., 2022. Non-contrastive self-
supervised learning for utterance-level information extraction from speech. IEEE
J. Sel. Top. Sign. Proces. 16 (6), 1284–1295.

Chung, J.S., Huh, J., Mun, S., Lee, M., Heo, H.-S., Choe, S., Ham, C., Jung, S., Lee, B.-J.,
Han, I., 2020a. In defence of metric learning for speaker recognition. In: Proc.
Interspeech 2020. pp. 2977–2981. http://dx.doi.org/10.21437/Interspeech.2020-
1064.

Chung, J.S., Huh, J., Nagrani, A., Afouras, T., Zisserman, A., 2020b. Spot the
conversation: speaker diarisation in the wild. arXiv preprint arXiv:2007.01216.

Chung, J.S., Nagrani, A., Coto, E., Xie, W., McLaren, M., Reynolds, D.A., Zisserman, A.,
2019. VoxSRC 2019: The first VoxCeleb speaker recognition challenge. arXiv
preprint arXiv:1912.02522.

Cooper, E., Lai, C.I., Yasuda, Y., Fang, F., Wang, X., Chen, N., Yamagishi, J., 2020. Zero-
shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings.
In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing. ICASSP, IEEE, pp. 6184–6188.
11
Deng, J., Guo, J., Niannan, X., Zafeiriou, S., 2019. ArcFace: Additive angular margin
loss for deep face recognition. In: The IEEE Conference on Computer Vision and
Pattern Recognition. CVPR.

Desplanques, B., Thienpondt, J., Demuynck, K., 2020. ECAPA-TDNN: Emphasized
channel attention, propagation and aggregation in tdnn based speaker verification.
In: Proc. Interspeech. pp. 3830–3834.

Du, M., Fang, X., Li, J., 2023. ChinaTelecom system description to VoxCeleb speaker
recognition challenge 2023. arXiv preprint arXiv:2308.08181.

Hajibabaei, M., Dai, D., 2018. Unified hypersphere embedding for speaker recognition.
arXiv preprint arXiv:1807.08312.

Han, B., Chen, Z., Qian, Y., 2022. Self-supervised speaker verification using dy-
namic loss-gate and label correction. pp. 4780–4784. http://dx.doi.org/10.21437/
Interspeech.2022-742.

Han, B., Chen, Z., Qian, Y., 2023. Exploring binary classification loss for speaker
verification. In: ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing. ICASSP, IEEE, pp. 1–5.

Han, B., Chen, Z., Qian, Y., 2024. Self-supervised learning with cluster-aware-DINO
for high-performance robust speaker verification. IEEE/ACM Trans. Audio Speech
Lang. Process. 32, 529–541. http://dx.doi.org/10.1109/TASLP.2023.3331949.

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9729–9738.

Hsu, W.-N., Bolte, B., Tsai, Y.-H.H., Lakhotia, K., Salakhutdinov, R., Mohamed, A.,
2021. Hubert: Self-supervised speech representation learning by masked prediction
of hidden units. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3451–3460.

Huang, Z., Wang, S., Qian, Y., 2018a. Joint i-vector with end-to-end system for short du-
ration text-independent speaker verification. In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing. ICASSP, IEEE, pp. 4869–4873.

Huang, Z., Wang, S., Yu, K., 2018b. Angular softmax for short-duration text-independent
speaker verification. In: Proc. Interspeech. pp. 3623–3627.

India, M., Safari, P., Hernando, J., 2019. Self multi-head attention for speaker
recognition. arXiv preprint arXiv:1906.09890.

Jia, Y., Zhang, Y., Weiss, R., Wang, Q., Shen, J., Ren, F., Nguyen, P., Pang, R.,
Lopez Moreno, I., Wu, Y., et al., 2018. Transfer learning from speaker verification
to multispeaker text-to-speech synthesis. Adv. Neural Inf. Process. Syst. 31.

Larcher, A., Lee, K.A., Ma, B., Li, H., 2012. The RSR2015: Database for text-dependent
speaker verification using multiple pass-phrases. In: Annual Conference of the
International Speech Communication Association. Interspeech.

Li, L., Liu, R., Kang, J., Fan, Y., Cui, H., Cai, Y., Vipperla, R., Zheng, T.F., Wang, D.,
2022. CN-celeb: multi-genre speaker recognition. Speech Commun. 137, 77–91.

Liao, D., Jiang, T., Wang, F., Li, L., Hong, Q., 2023. Towards a unified conformer
structure: from asr to asv task. In: ICASSP 2023. IEEE, pp. 1–5.

Liu, B., Chen, Z., Wang, S., Wang, H., Han, B., Qian, Y., 2022. DF-RESNet: Boosting
speaker verification performance with depth-first design.

Liu, T., Lee, K.A., Wang, Q., Li, H., 2023. Golden gemini is all you need: Finding the
sweet spots for speaker verification. arXiv preprint arXiv:2312.03620.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L., 2017. Sphereface: Deep hypersphere
embedding for face recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 212–220.

Lu, H., Wu, Z., Dai, D., Li, R., Kang, S., Jia, J., Meng, H., 2019. One-shot voice
conversion with global speaker embeddings. In: Interspeech. pp. 669–673.

Makarov, R., Torgashov, N., Alenin, A., Yakovlev, I., Okhotnikov, A., 2022. ID R&D
system description to VoxCeleb speaker recognition challenge 2022.

Matejka, P., Novotnỳ, O., Plchot, O., Burget, L., Sánchez, M.D., Cernockỳ, J., 2017.
Analysis of score normalization in multilingual speaker recognition. In: Proc.
Interspeech. pp. 1567–1571.

Nagrani, A., Chung, J.S., Huh, J., Brown, A., Coto, E., Xie, W., McLaren, M.,
Reynolds, D.A., Zisserman, A., 2020a. Voxsrc 2020: The second voxceleb speaker
recognition challenge. arXiv preprint arXiv:2012.06867.

Nagrani, A., Chung, J.S., Xie, W., Zisserman, A., 2020b. Voxceleb: Large-scale speaker
verification in the wild. Comput. Speech Lang. 60, 101027.

Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C., 2017. CuPy: A numpy-compatible
library for NVIDIA GPU calculations. In: Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural
Information Processing Systems. NIPS, URL http://learningsys.org/nips17/assets/
papers/paper_16.pdf.

Oord, A.v.d., Li, Y., Vinyals, O., 2018. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748.

Panayotov, V., Chen, G., Povey, D., Khudanpur, S., 2015. Librispeech: an asr corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing. ICASSP, IEEE, pp. 5206–5210.

Park, D.S., Chan, W., Zhang, Y., Chiu, C.C., Zoph, B., Cubuk, E.D., Le, Q.V.,
2019. Specaugment: A simple data augmentation method for automatic speech
recognition. arXiv preprint arXiv:1904.08779.

Park, D., Kim, J.W., Kim, K.R., Lee, D.H., Kim, H.K., 2023. GIST-AiTeR speaker
diarization system for VoxCeleb speaker recognition challenge (VoxSRC) 2023.
arXiv preprint arXiv:2308.07788.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32.

https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
https://github.com/wenet-e2e/wespeaker
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb2
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb2
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb2
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb2
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb2
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb3
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb4
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb4
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb4
http://arxiv.org/abs/2201.04583
http://arxiv.org/abs/2203.14893
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb7
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb7
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb7
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb8
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb8
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb8
http://arxiv.org/abs/2005.04587
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb10
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb10
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb10
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb10
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb10
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb11
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb11
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb11
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb11
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb11
http://arxiv.org/abs/2206.11699
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb13
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb13
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb13
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb13
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb13
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb14
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb14
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb14
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb14
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb14
http://arxiv.org/abs/2305.12838
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb16
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb16
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb16
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb16
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb16
http://dx.doi.org/10.21437/Interspeech.2020-1064
http://dx.doi.org/10.21437/Interspeech.2020-1064
http://dx.doi.org/10.21437/Interspeech.2020-1064
http://arxiv.org/abs/2007.01216
http://arxiv.org/abs/1912.02522
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb20
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb21
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb21
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb21
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb21
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb21
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb22
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb22
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb22
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb22
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb22
http://arxiv.org/abs/2308.08181
http://arxiv.org/abs/1807.08312
http://dx.doi.org/10.21437/Interspeech.2022-742
http://dx.doi.org/10.21437/Interspeech.2022-742
http://dx.doi.org/10.21437/Interspeech.2022-742
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb26
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb26
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb26
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb26
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb26
http://dx.doi.org/10.1109/TASLP.2023.3331949
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb28
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb28
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb28
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb28
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb28
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb29
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb29
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb29
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb29
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb29
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb30
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb30
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb30
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb30
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb30
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb31
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb31
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb31
http://arxiv.org/abs/1906.09890
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb33
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb33
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb33
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb33
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb33
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb34
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb34
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb34
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb34
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb34
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb35
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb35
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb35
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb36
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb36
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb36
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb37
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb37
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb37
http://arxiv.org/abs/2312.03620
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb39
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb39
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb39
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb39
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb39
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb40
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb40
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb40
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb41
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb41
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb41
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb42
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb42
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb42
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb42
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb42
http://arxiv.org/abs/2012.06867
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb44
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb44
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb44
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://arxiv.org/abs/1807.03748
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb47
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb47
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb47
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb47
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb47
http://arxiv.org/abs/1904.08779
http://arxiv.org/abs/2308.07788
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb50
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb50
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb50
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb50
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb50

Speech Communication 162 (2024) 103104S. Wang et al.

P

R

R

S

S

S

S

S

S

S

S

T

T

V

W

W

W

Peng, J., Stafylakis, T., Gu, R., Plchot, O., Mošner, L., Burget, L., Černockỳ, J., 2023.
Parameter-efficient transfer learning of pre-trained transformer models for speaker
verification using adapters. In: ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing. ICASSP, IEEE, pp. 1–5.

ovey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., et al., 2011. The kaldi speech
recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding. IEEE Signal Processing Society.

aschka, S., Patterson, J., Nolet, C., 2020. Machine learning in python: Main devel-
opments and technology trends in data science, machine learning, and artificial
intelligence. arXiv preprint arXiv:2002.04803.

avanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Sub-
akan, C., Dawalatabad, N., Heba, A., Zhong, J., et al., 2021. SpeechBrain: A
general-purpose speech toolkit. arXiv preprint arXiv:2106.04624.

adjadi, O., 2021. NIST SRE CTS Superset: A Large-Scale Dataset for Telephony Speaker
Recognition. NIST SRE website, URL https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=933116.

adjadi, O., Greenberg, C., Singer, E., Mason, L., Reynolds, D., 2021. NIST 2021 Speaker
Recognition Evaluation Plan. NIST SRE, URL https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=932697.

adjadi, O., Greenberg, C., Singer, E., Reynolds, D., Mason, L., Hernandez-Cordero, J.,
2019. The 2018 NIST speaker recognition evaluation. In: INTERSPEECH. Graz, AT,
URL https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927673.

eyed, Kheyrkhah, T., Tong, A., Greenberg, C., Olson, D., Singer, E., Mason, L.,
Hernandez-Cordero, J., 2017. The 2016 NIST speaker recognition evaluation. In:
Interspeech 2017. Stockholm, -1, URL https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=922849.

ilero Team, 2021. Silero VAD: pre-trained enterprise-grade voice activity detector
(VAD), number detector and language classifier. GitHub repository, GitHub, https:
//github.com/snakers4/silero-vad.

ilnova, A., Brümmer, N., Swart, A., Burget, L., 2023. Toroidal probabilistic spherical
discriminant analysis. In: ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing. ICASSP, pp. 1–5. http://dx.doi.org/10.
1109/ICASSP49357.2023.10095580.

nyder, D., Chen, G., Povey, D., 2015. MUSAN: A music, speech, and noise corpus.
arXiv:1510.08484.

nyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S., 2018. X-vectors:
Robust dnn embeddings for speaker recognition. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE, pp.
5329–5333.

hienpondt, J., Desplanques, B., Demuynck, K., 2021. The idlab voxsrc-20 submission:
Large margin fine-tuning and quality-aware score calibration in dnn based speaker
verification. In: ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing. ICASSP, IEEE, pp. 5814–5818.

ong, F., Zhao, M., Zhou, J., Lu, H., Li, Z., Li, L., Hong, Q., 2021. ASV-subtools:
Open source toolkit for automatic speaker verification. In: ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE,
pp. 6184–6188.

ariani, E., Lei, X., McDermott, E., Moreno, I.L., Gonzalez-Dominguez, J., 2014. Deep
neural networks for small footprint text-dependent speaker verification. In: 2014
IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP,
IEEE, pp. 4052–4056.

an, L., Wang, Q., Papir, A., Moreno, I.L., 2018. Generalized end-to-end loss for speaker
verification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing. ICASSP, IEEE, pp. 4879–4883.

ang, S., Bai, Q., Liu, Q., Yu, J., Chen, Z., Han, B., Qian, Y., Li, H., 2023a. Leveraging
in-the-wild data for effective self-supervised pretraining in speaker recognition.
arXiv preprint arXiv:2309.11730.

ang, F., Cheng, J., Liu, W., Liu, H., 2018a. Additive margin softmax for face
verification. IEEE Signal Process. Lett. 25 (7), 926–930.
12
Wang, S., Huang, Z., Qian, Y., Yu, K., 2019. Discriminative neural embedding learning
for short-duration text-independent speaker verification. IEEE/ACM Trans. Audio
Speech Lang. Process. 27 (11), 1686–1696.

Wang, H., Liang, C., Wang, S., Chen, Z., Zhang, B., Xiang, X., Deng, Y., Qian, Y.,
2023b. Wespeaker: A research and production oriented speaker embedding learning
toolkit. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing. ICASSP, IEEE, pp. 1–5.

Wang, Q., Muckenhirn, H., Wilson, K., Sridhar, P., Wu, Z., Hershey, J., Saurous, R.A.,
Weiss, R.J., Jia, Y., Moreno, I.L., 2018b. Voicefilter: Targeted voice separation by
speaker-conditioned spectrogram masking. arXiv preprint arXiv:1810.04826.

Wang, S., Yang, Y., Qian, Y., Yu, K., 2021. Revisiting the statistics pooling layer in deep
speaker embedding learning. In: 2021 12th International Symposium on Chinese
Spoken Language Processing. ISCSLP, IEEE, pp. 1–5.

Wang, H., Zheng, S., Chen, Y., Cheng, L., Chen, Q., 2023c. CAM++: A fast and efficient
network for speaker verification using context-aware masking. arXiv preprint arXiv:
2303.00332.

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N.E.Y.,
Heymann, J., Wiesner, M., Chen, N., et al., 2018. ESPnet: End-to-end speech
processing toolkit. In: Proc. Interspeech. pp. 2207–2211.

Wen, Y., Liu, W., Weller, A., Raj, B., Singh, R., 2021. Sphereface2: Binary classification
is all you need for deep face recognition. arXiv preprint arXiv:2108.01513.

Xiang, X., Wang, S., Huang, H., Qian, Y., Yu, K., 2019. Margin matters: Towards
more discriminative deep neural network embeddings for speaker recognition. In:
2019 Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference. APSIPA ASC, IEEE, pp. 1652–1656.

Xu, C., Rao, W., Chng, E.S., Li, H., 2020. Spex: Multi-scale time domain speaker
extraction network. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1370–1384.

Yan, X., Yang, Y., Guo, Z., Peng, L., Xie, L., 2023. The NPU-elevoc personalized speech
enhancement system for icassp2023 DNS challenge. In: ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE,
pp. 1–2.

Yao, Z., Wu, D., Wang, X., Zhang, B., Yu, F., Yang, C., Peng, Z., Chen, X., Xie, L.,
Lei, X., 2021. WeNet: Production oriented streaming and non-streaming end-to-end
speech recognition toolkit. In: Proc. Interspeech.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J.,
Ollason, D., Povey, D., et al., 2002. The HTK Book, Vol. 3, No. 175. Cambridge
university engineering department, p. 12.

Zeinali, H., Wang, S., Silnova, A., Matějka, Plchot, O., 2019. But system description to
voxceleb speaker recognition challenge 2019. arXiv preprint arXiv:1910.12592.

Zhang, C., Koishida, K., Hansen, J.H., 2018. Text-independent speaker verification
based on triplet convolutional neural network embeddings. IEEE/ACM Trans. Audio
Speech Lang. Process. 26 (9), 1633–1644.

Zhang, B., Wu, D., Peng, Z., Song, X., Yao, Z., Lv, H., Xie, L., Yang, C., Pan, F., Niu, J.,
2022. WeNet 2.0: More productive end-to-end speech recognition toolkit. In: Proc.
Interspeech. pp. 1661–1665.

Zhang, C., Yu, D., 2022. C3-DINO: Joint contrastive and non-contrastive self-supervised
learning for speaker verification. IEEE J. Sel. Top. Sign. Proces. 16 (6), 1273–1283.

Zhao, M., Ma, Y., Ding, Y., Zheng, Y., Liu, M., Xu, M., 2022. Multi-query multi-head
attention pooling and inter-topk penalty for speaker verification. In: ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing.
ICASSP, IEEE, pp. 6737–6741.

Zhao, M., Ma, Y., Liu, M., Xu, M., 2021. The speakin system for voxceleb speaker
recognition challange 2021. arXiv preprint arXiv:2109.01989.

Zhao, X., Wang, S., Chao, Y., Wu, Z., Meng, H., 2023. Adversarial speaker disentan-
glement using unannotated external data for self-supervised representation based
voice conversion. arXiv preprint arXiv:2305.09167.

Zheng, S., Cheng, L., Chen, Y., Wang, H., Chen, Q., 2023. 3D-speaker: A large-scale
multi-device, multi-distance, and multi-dialect corpus for speech representation
disentanglement. arXiv preprint arXiv:2306.15354.

Zmolikova, K., Delcroix, M., Ochiai, T., Kinoshita, K., Černockỳ, J., Yu, D., 2023. Neural
target speech extraction: An overview. IEEE Signal Process. Mag. 40 (3), 8–29.

http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb51
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb52
http://arxiv.org/abs/2002.04803
http://arxiv.org/abs/2106.04624
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933116
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933116
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933116
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932697
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932697
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932697
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927673
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922849
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922849
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922849
https://github.com/snakers4/silero-vad
https://github.com/snakers4/silero-vad
https://github.com/snakers4/silero-vad
http://dx.doi.org/10.1109/ICASSP49357.2023.10095580
http://dx.doi.org/10.1109/ICASSP49357.2023.10095580
http://dx.doi.org/10.1109/ICASSP49357.2023.10095580
http://arxiv.org/abs/1510.08484
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb62
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb63
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb64
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb65
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb66
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb66
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb66
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb66
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb66
http://arxiv.org/abs/2309.11730
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb68
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb68
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb68
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb69
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb69
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb69
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb69
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb69
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb70
http://arxiv.org/abs/1810.04826
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb72
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb72
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb72
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb72
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb72
http://arxiv.org/abs/2303.00332
http://arxiv.org/abs/2303.00332
http://arxiv.org/abs/2303.00332
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb74
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb74
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb74
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb74
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb74
http://arxiv.org/abs/2108.01513
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb76
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb77
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb77
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb77
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb78
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb79
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb79
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb79
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb79
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb79
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb80
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb80
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb80
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb80
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb80
http://arxiv.org/abs/1910.12592
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb82
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb82
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb82
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb82
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb82
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb83
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb83
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb83
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb83
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb83
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb84
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb84
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb84
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb85
http://arxiv.org/abs/2109.01989
http://arxiv.org/abs/2305.09167
http://arxiv.org/abs/2306.15354
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb89
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb89
http://refhub.elsevier.com/S0167-6393(24)00076-1/sb89

	Advancing speaker embedding learning: Wespeaker toolkit for research and production
	Introduction
	Background on Deep Speaker Embedding Learning
	Discriminative Speaker Embedding Learning
	Self-Supervised Speaker Embedding Learning
	SimCLR
	MoCo
	DINO

	Wespeaker
	Overall Structure
	Data Management
	Raw Mode
	Shard Mode
	Feat Mode

	On-the-Fly Feature Preparation
	SOTA Model Implementation
	Training Strategies
	Training Objectives
	Learning Rate Scheduling
	Margin Scheduling
	Large Margin Fine-tuning

	Back-End Support
	Two-Cov PLDA and Unsupervised Adaptation
	TPSDA
	Score Normalization

	Deployment and Product-Oriented Setups
	Experiments and Recipes
	Basic Setups for Speaker Embedding Learning
	Speaker Verification
	VoxCeleb
	CNCeleb
	NIST Speaker Recognition Evaluation (SRE)

	Speaker Diarization
	VoxConverse
	GPU Clustering

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

