
Hardware accelerated packet filter
for 100Gbps

User documentation

Lukáš Kekely, Martin Žádník

Technical documentation FIT-TR-2014-XXX





Hardware pa
ket �lter for 100GbpsLuká² Kekely, Martin �ádníkFakulta informa£ní
h te
hnologiíVysoké u£ení te
hni
ké v Brn¥Boºet¥
hova 1/2, 612 66 Brno
{xkekel00, izadnik}�fit.vutbr.
zAbstrakt Rapidly growing speed and 
omplexity of 
omputer networksimpose new requirements on fast lookup stru
tures whi
h are utilized inmany networking appli
ations (SDN, �rewalls, NATs, et
.). A lot of hashor hash-CAM based lookup 
on
epts have been proposed but they usu-ally su�er from the low memory utilization or insu�
ient lookup per-forman
e. Therefore, we propose a novel lookup 
on
ept based on thewell-known 
u
koo hashing, whi
h 
an a
hieve good memory utilization,supplemented by a binary sear
h tree for o�oading the 
olliding keysand supporting LPM lookup. We also propose a hardware ar
hite
tureimplementing this lookup 
on
ept in the FPGA. Our solution is suitablefor lookup of the variable-length keys in 100+Gbps networks. Memoryutilization of the proposed 
on
ept is 
arefully evaluated and it is shownthat the 
on
ept is s
alable to external memory 
omponents.1 Introdu
tionThe speed and 
omplexity of network is growing rapidly, 
reating a demand fornew approa
hes to a high-speed pa
ket pro
essing. One major trend is to makehardware as simple as possible o�oading the 
omplexity of a 
ontrol path intothe software, e.g. software-de�ned networking (SDN) [5℄. The o�oad requiresthe hardware to look up a pie
e of data (e.g. a
tion, state) asso
iated to a �owkey (e.g. IP pre�x, IP address or tuple of sour
e and destination IP addresses,ports and proto
ol) per ea
h arriving pa
ket. Moreover the asso
iated data are
reated dynami
ally, usually with every new �ow. The fast lookup is essentialnot only for SDN appli
ations but also in other existing appli
ations (e.g. NATs,�rewalls, load-balan
ers and network probes [1℄).Field Programmable Gate Arrays (FPGA) are popular platforms utilized innetworking appli
ations targeting high-speed pa
ket pro
essing (e.g. [4℄). Traditi-onally, the lookup was performed by external Ternary Content-Addressable Me-mory (TCAM) or internal TCAM implemented in FPGA logi
. Various memory-oriented approa
hes have been proposed and applied, repla
ing the resour
e aswell as power demanding TCAM. A 
ommon drawba
k of the memory-orientedapproa
h is ine�
ient memory utilization and slow lookup requiring multiplememory a

esses. 1



We propose a fast lookup 
on
ept designed spe
i�
ally for FPGA-orientedplatforms. The 
on
ept 
ombines two well-known memory-oriented lookup al-gorithms � 
u
koo hashing [6℄ and binary sear
h tree (adapted for best/longestpre�x mat
hing [3℄). Ea
h algorithm e�
iently 
omplements the other in areawhere the other fails. The 
on
ept a
hieves almost 100% memory utilizationwith e�
ient utilization of the memory and logi
 resour
es in 
omparison to theTCAM or Hash-CAM 
on
epts [9℄. At the same time, our 
on
ept allows fast lo-okups (200 mil. lookups/s designed for 100+ Gbps solutions). Our 
ontributionsalso in
lude: (a) the possibility to utilize external memory when the number ofrules 
annot �t in the internal FPGA memory, (b) in
reasing the lookup fun
ti-onality with the longest pre�x mat
h, (
) e�
ient implementation of the wholes
heme in FPGA in
luding the update logi
 enabling on-the-�y updates and (d)evaluation of the 
on
ept in terms of a
hievable memory and logi
 utilization.The rest of the paper is organized as follows. Related work on lookup algori-thms is dis
ussed in Se
tion 2. Se
tion 3 provides design obje
tives and introdu-
es the proposed 
on
ept. The FPGA implementation is des
ribed in Se
tion 4.Se
tion 5 evaluates the 
on
ept as well as provides the synthesis results. Thepaper is 
on
luded with future work in Se
tion 6.2 Related WorkA naive approa
h to the lookup is represented by a linear sear
h.Unfortunately,the linear sear
h requires too many memory a

esses and, therefore, is too slowto satisfy the needs for the fast lookup. Various approa
hes have been proposedto speed up the lookup up to the point of a 
onstant time and low number ofmemory a

esses. These approa
hes take advantage of the parti
ular spe
i�
ationof the lookup task, key stru
ture, key set 
hara
teristi
s, target platform andothers.The basi
 lookup tests whether an element (a key) is a member of a set. Ifthe appli
ation 
an tolerate small per
entage of false positive results (the keyis 
onsidered to be part of the set although it is not) then Bloom �lter and itsimprovements [7℄ have been shown to a
hieve near optimal memory utilizationwith low number of memory a

esses.But in many 
ases the appli
ation requires to assign some data per ea
hkey. Here, TCAM has traditionally been used, but due to its high 
ost, highresour
e as well as power 
onsumption, it is often repla
ed by memory-orientedapproa
hes. The basi
 approa
h is to utilize naive hash table (NHT). The hashedkey is used as an index into a memory lo
ation with the key (or its �ngerprintto verify su

essful lookup) and the asso
iated data. If a new key is inserted andthe lo
ation is already o

upied, a new memory lo
ation is allo
ated and linkedto the o

upied lo
ation, forming a list of lo
ations. A hardware implementationof the NHT divides the memory into an equally-sized bu
kets (ea
h holding Npossible lo
ations). The issue of su
h an approa
h is that it requires multiple (N)a

esses to the memory and some of the bu
kets over�ow whereas some may notbe utilized at all. An exemplary hardware implementation of NHT approa
h2



using hash-CAM is des
ribed in [10℄. If more than N 
olliding keys o

ur, anadditional TCAM is used to store the over�owing keys. An improved approa
halso utilizes another hash fun
tion in order to in
rease hash table utilization andde
rease the required size of the additional TCAM (ea
h key 
an be stored in
2N lo
ations). The main drawba
k of this approa
h is that this approa
h 
anonly be e�e
tively implemented using internal FPGA memory sin
e the 2N hashtables are implemented using parallel memories. Also the utilization in
reaseswith lower value of N but the size of the 
ostly TCAM must then be in
reased inorder to store all the 
olliding keys. Song et al. [8℄ extended the NHT approa
hwith 
ounting Bloom �lters to optimize utilization of the bu
kets by 
ountingtheir o

upan
y, but the issue of multiple memory a

esses remained.The goal of 
u
koo hashing [6℄ is to redu
e the number of memory a

essesduring a lookup and thus speeding-up a lookup operation. Standard 
u
koo ha-shing utilizes two hash tables with two di�erent hash fun
tions but it 
an begeneralized for a higher number of hash tables (hash fun
tions). Standard 
u
-koo hashing with two hash tables T1, T2 and two hash fun
tions h1, h2 stores akey x either in position T1[h1(x)] or T2[h2(x)], but never in both. Therefore, thelookup as well as the deletion of a key 
an be easily performed in 
onstant time.Insertion of a key x starts by 
he
king the positions T1[h1(x)] and T2[h2(x)]. If atleast one of them is free, the key is inserted. But if none of them is free, the key
x is still inserted to the position T1[h1(x)], thus evi
ting the stored key y. Sub-sequently, the algorithm inserts the key y to the position T2[h2(y)]. If T2[h2(y)]is not free, the stored key z is evi
ted. Note that it is su�
ient to a

ess only theposition T2[h2(y)] and not T1[h1(y)] sin
e T1[h1(y)] was the previous position of
y and is now o

upied by x. These steps are repeated until the free position isfound or a pre-de�ned number of steps is rea
hed. If the insertion pro
edure wasnot su

essful, new hash fun
tions h1 and h2 have to be sele
ted and 
ompleterehashing takes pla
e (una

eptable in online appli
ations). Cu
koo hashing gu-arantees 
onstant lookup time but the utilization of memory rea
hes only about50% for two hash tables and two hash fun
tions on average.There has been an implementation of 
u
koo hashing in FPGA for the pur-pose of pattern mat
hing [9℄. This ar
hite
ture 
ontains dedi
ated mat
hingblo
ks for all patterns of the same length (up to the length of 16 
hara
ters).Ea
h mat
hing blo
k 
onsists of two single-port 
u
koo hash tables for storingaddresses to the dual-port memory storing the database of patterns. The ar
hi-te
ture also 
ontains two multiplexers and a 
ontrol logi
 whi
h together allowperforming either a pattern mat
hing operation or a pattern database update(insertion or deletion of a pattern). The approa
h o�ers only medium memoryutilization sin
e it does not utilize any type of over�ow memory and also 
annots
ale well to external memory sin
e it is tailored to the properties of FPGAinternal memory.The advan
ed lookup pro
edures also in
lude pre�x mat
hing (PM, i.e. thereis a single pre�x for a given key in the set but it is not known apriori) and longestpre�x mat
h (LPM, i.e. sele
ting the longest mat
hing pre�x from the set for agiven key). Although the LPM itself is out of the primary s
ope in this paper,3



the unique 
ombination of 
u
koo hash and binary sear
h tree renders it possiblefor our implementation to support LPM lookup.3 DesignThe 
ore fun
tionality of our lookup s
hema is based on 
u
koo hashing prin
ipledes
ribed in the previous se
tion. We sele
ted this prin
iple be
ause it has anadvantage of a very fast lookup with only a few memory a

esses needed for ea
hsear
h. This feature favors the usage of 
u
koo hashing even on ar
hite
tureswith limited memory interfa
e throughput (e.g. external memory). Also, thefun
tionality of update operations (insert/delete key) used in 
u
koo hashing israther simple and 
an be e�e
tively implemented in hardware enabling on-the-�yupdates.On the other hand, 
u
koo hashing 
an su�er from a low a
hievable utili-zation of the memory 
aused by hash 
on�i
ts. To address this problem, ourdesign augments basi
 
u
koo hashing prin
iple by the usage of a stash for of-�oading the 
on�i
ting keys. The proposed design of 
u
koo hashing with thestash is not entirely new. It has been already des
ribed in [2℄, where the authorsproposed and evaluated the usage of only a very small stash (
apa
ity under 5keys implemented in TCAM) to improve the worst 
ase memory utilization of
u
koo hashing.In our design we propose and evaluate the usage of a signi�
antly largerstash � a stash with the 
apa
ity 
omparable to the 
apa
ity of the used 
u
koohash tables to improve not only the worst 
ase but also to improve averagememory utilization. Furthermore, our stash also supports LPM lookups, thusaugmenting the lookup fun
tionality of the basi
 
u
koo hashing. The lookupsupport of not only the whole keys but also key pre�xes 
an be very usefulin many di�erent areas (e.g. pa
ket �ltering). Instead of TCAM, we proposean FPGA implementation of a well-known binary sear
h algorithm adapted forthe LPM lookup (des
ribed in [3℄) as an e�e
tive approa
h to implement thelarger stash. The key idea behind the adaptation of the binary sear
h for LPMis to re
ognize ea
h pre�x p as a range of keys (values) from kp
min to kp

max,where kp
min is the lowest key with pre�x p and kp

max is the highest key withpre�x p. Now for ea
h pre�x p in the lookup set both kp
min and kp

max valuesare stored in a sorted array, kp
min is asso
iated with data of pre�x p and kp

maxis asso
iated with data of the longest pre�x from the set whi
h is a sub-pre�xof p. Furthermore, if for two pre�xes p1, p2, where p1 is shorter than p2, keys
kp1

min = kp2

min resp. kp1

max = kp2

max, the relation between keys is 
onsidered to be
kp1

min < kp2

min resp. kp1

max > kp2

max during sorting. Also, sear
hed key k su
h as
k = kp

min resp. k = kp
max is 
onsidered k > kp

min resp. k < kp
max. A lookup of kis then implemented as a standard binary sear
h and the data of the last visitedsmaller key than k are used as a result. From the adaptation des
ription it is
lear, that ea
h pre�x o

upies two re
ords in the memory.The binary sear
h o�ers basi
ally the opposite features in 
omparison withthe 
u
koo hashing � the key lookup requires relatively large number of sub-4



Lookup

Engine

Key Data

Found

K
e
y

D
a
ta

In
s
e
rt

D
e
le
te

B
u
s
y

F
u
ll

Configuration
InterfaceObrázek 1. General lookup engine interfa
e (some signals are omitted for 
larity).sequent memory a

esses, but the a
hievable memory utilization is always 100%.Be
ause of the large number of memory a

esses, binary sear
h based lookupshould be implemented only in the internal FPGA memory. In order to a
hievehigh lookup throughput, the implementation of the binary sear
h must not besequential but rather divided into pipelined stages. This 
an be a
hieved by es-tablishing a tree stru
ture in the sear
hed array (binary sear
h tree �BST) andsli
ing it by the tree levels (ea
h tree level forms a pipeline stage). Finally, thefun
tionality of update operations in the des
ribed BST 
an be easily implemen-ted in the hardware with support of on-the-�y updates.4 FPGA ar
hite
ture4.1 Lookup engine interfa
e and fun
tionalityWe start the des
ription by the general design of an interfa
e and fun
tionalityof a lookup engine (either 
u
koo or BST). Both engines implement the same in-terfa
e independently on the details of their lookup pro
edure. Fig. 1 illustratesparti
ular signals forming the interfa
e. The signals 
an be divided into 3 basi
groups: input (left), output (right) and 
on�guration (bottom). The only inputof a lookup engine is the value of a key to sear
h. The lookup implementationshould be able to pro
ess new input key every 
lo
k 
y
le. For ea
h input key,the engine produ
es one result on the output based on performed lookup. Thelookup result 
onsists of arbitrary data (e.g. routing de
ision, mat
hed key iden-ti�
ation) asso
iated with the sear
hed key and one bit information about thekey lookup su

ess (Found). When the input key is not found, the value of dataon the output is unspe
i�ed (invalid).The 
on�guration signals 
an be further divided into two subgroups: updaterequests and status �ags. The update requests are used to manage an a
tive keyset and the asso
iated data in the engine. The keys 
an be inserted or deletedone by one. When insertion of a new key is requested, the value of the key andthe asso
iated data must be both spe
i�ed. If the key is already in the set, theinsertion fails and the set remains un
hained (same keys would qui
kly buildup a list of 
hained re
ords). When deletion of a key is requested, only thevalue of the key itself needs to be spe
i�ed (the asso
iated data are ignored).Furthermore, when the lookup engine supports LPM, the key value in the updaterequest must be a

ompanied by the length of a valid pre�x. The status �ags5



Memory

Table 1Hash 1

Table 2Hash 2

Table dHash d

=

=

=

Key

=

R
e

s
u

lt A
g

g
re

g
a

tio
n

Data

Found

Reconfig.
Controller Register

Configuration InterfaceObrázek 2. Con
eptual s
hema of 
u
koo hash based lookup engine.inform about the spe
ial states of lookup engine 
on�guration logi
. An a
tivebusy �ag means that an update of a key set is running and new updates 
annotbe requested until the update �nishes. The �ag is a
tivated by the engine rightafter ea
h valid request and remains a
tive for �nite time. A full �ag is a
tivatedwhen the supported lookup 
apa
ity is rea
hed and new key insertions 
annotbe requested. Delete requests are still possible even when the full �ag is a
tiveand they 
an lead to its dea
tivation. When no deletes are issued, the full �ag
an remain a
tive for in�nite time or is dea
tivated if the 
on�i
ts are resolvedeventually.Finally, the lookup engine (and its interfa
e) is 
on�gurable by these threebasi
 generi
 parameters: key width (maximum width of key representation inbits), data width (width of data representation in bits), maximum 
apa
ity(theoreti
al size limit for the set of keys, representation may di�er).4.2 Cu
koo hash lookup engineFig. 2 depi
ts a basi
 s
hema of 
u
koo hash engine implementation. The lookuppro
ess starts by parallel 
omputing of key hash values (outputs of hash blo
ks).As the basis for the hash blo
ks we utilize CRC implementation generated for
ommonly used polynomials. The lookup 
ontinues with hash values being usedas addresses for reading re
ords from hash tables in memory. Ea
h re
ord formsa pair 
omposed of a key and data asso
iated with the key. A re
ord 
an also bestored in a register outside the tables (the purpose of the register is explainedin the next paragraph). Subsequently, the input key is 
ompared with the keysfrom the memory (and the register) re
ords for equality. At most one 
omparisonmay be su

essful, be
ause ea
h unique key appears only in a single pla
e at atime. Therefore, aggregation of result is very simple � if none of the 
omparedkeys is equal to the sear
hed key, the found �ag is not set, otherwise it is set anddata asso
iated with the mat
hing key are provided.Update of an a
tive key set is entirely managed by the re
on�guration 
on-troller based on requests re
eived from the 
on�guration interfa
e. When inser-6



ting a new key, the 
ontroller 
an take advantage of the re
on�guration registerin
luded in the lookup path. Using this register the 
ontroller 
an evi
t re
ordsfrom hash tables on-the-�y preserving the set of a
tive keys. More pre
isely, theinsertion of a new key x starts with storing x in the register. Then all possible lo-
ations for x in the hash tables (Ti[hi(x)]) are 
he
ked sequentially. If one of themis empty, x is inserted into the table and the re
on�guration ends. Otherwisea vi
tim y is sele
ted and evi
ted from the table, leaving free spa
e for x. Theevi
ted re
ord y is a
tually swapped with x and the insertion 
ontinues with yex
ept x 
annot be sele
ted as the next vi
tim. The re
on�guration 
y
le 
anrepeat itself multiple times, until the register is freed or 
an even repeat itselfin�nite times when a 
hain of 
ollisions o

ur. Until the register is freed the
u
koo hash engine is 
onsidered full, but not busy. Therefore, deletion of a keyis possible even during a
tive insertion re
on�guration. Deletion of x starts bypausing the re
on�guration pro
ess and 
ontinues with sequential 
he
king ofall possible lo
ations for x (i.e. the register and all Ti[hi(x)] sin
e our imple-mentation supports arbitrary number of hash tables). If a key identi
al to x isfound in one of those positions, it is invalidated. After the deletion ends, there
on�guration pro
ess is resumed. During the deletion pro
ess, the 
u
koo hashengine is 
onsidered busy.The maximum 
apa
ity of the 
u
koo hash engine 
an be 
on�gured by twovalues: d � the number of used hash tables (hash fun
tions) and t � the size ofindividual table. Theoreti
al 
apa
ity limit is de�ned by formula Ccuckoo = d ×

t + 1. The plus one a

ounts for the additional re
on�guration register.4.3 Binary sear
h tree lookup engineFig. 3 depi
ts a basi
 s
hema of our BST lookup engine. The engine starts thelookup by a pipelined and sequential sear
h of an input key (red arrows) throughthe levels of the tree. Ea
h tree level forms a pipeline stage with its dedi
atedpie
e of memory and a key 
omparator. The output of a stage is an address of anode where to 
ontinue binary sear
h in the next tree level and the sear
hed key.The address from the last tree level is used to address the data array 
ontainingasso
iated data to the key. The lookup result must be 
orre
ted a

ording to are
ord in the re
on�guration register due to atomi
ity of operations.Update of an a
tive key set is entirely managed by the re
on�guration 
ont-roller based on requests re
eived from the 
on�guration interfa
e. The 
ontroller
an take advantage of the single re
on�guration register in
luded in the lookuppath during the update. More pre
isely, the update (deletion of x or insertionof x) starts with storing the re
ord x in the register. Subsequently, the updatepro
ess 
onsists of three sequential steps. (1) The key x is sear
hed in the treesequentially. The sear
h must fail when inserting x. The sear
h must su

eedwhen deleting x. (2) The re
ord x is a
tivated in the register to 
orre
t thelookup pro
ess in the last stage. (3) Sequential re
on�guration is performed tomerge x into the nodes and the data array. Finally, the update pro
ess ends andthe re
on�guration register is freed. During the update pro
ess, the BST engineis 
onsidered busy. Therefore, deletion and insertion 
annot be a
tive together as7



Key Data

Found

Configuration Interface

L
e
v
e
l n

-1

L
e
v
e
l 1

L
e
v
e
l 0

Binary Search Tree

R
e
s
u
lt

C
o
rre

c
tio

n

D
a
ta

A
rra

y

RegisterReconfig. ControllerObrázek 3. Con
eptual s
hema of binary sear
h tree based lookup engine.
Obrázek 4. Con
eptual s
hema of our top-level lookup engine.in 
u
koo hash engine. The full status may be issued after the su

essful insertionand 
an only end after su

essful deletion.The 
apa
ity of the BST based engine 
an be 
on�gured by the number ofBST levels l. The 
apa
ity is then de�ned by formula Cbst = 2l

− 1 when adap-tation for LPM is not used or Cbst = 2l−1
− 1 when LPM lookup is supported.Our implementation supports the adaptation for LPM, but if LPM is not ne-eded, it 
an be easily modi�ed (simpli�ed) to support only pre
ise key lookupgaining two times higher 
apa
ity.4.4 Top-level lookup engineFig. 4 depi
ts a top-level s
hema of our 
u
koo hash with BST stash lookupengine implementation. The lookup of an input key (red arrows) is implementedin both 
u
koo hash and BST engines in parallel. The results are then storedin FIFOs, be
ause the two engines do not have same pro
essing delays. Resultaggregation then sele
ts data from engine with su

essful lookup. When bothengines su

essfully �nd a key, the result from 
u
koo hash is preferred, be
ausein that 
ase the result from BST is only for a mat
hing pre�x, but the resultfrom 
u
koo hash is for the whole mat
hing key.Re
on�guration of the key sets in both engines is managed by the top levelre
on�guration 
ontroller. All updates for pre�xes are dire
tly forwarded intothe BST stash. Deletions of the whole keys are implemented in both engines8



in parallel. Insertions of the whole keys are forwarded into the 
u
koo hash.If 
u
koo hash rea
hes full state (its re
on�guration register is o

upied) andnew key insertion is requested, then the key that is 
urrently in 
u
koo hashre
on�guration register is moved into the stash and the new key is inserted into
u
koo hash. The top-level engine is in the full state when both the 
u
koo hashand the BST stash are full. The top engine is in busy state when at least one ofthem is busy. Furthermore, in our implementation the 
on�guration interfa
e ofthe top-level lookup engine is 
onne
ted to the blo
k with address de
oder andregisters for key, data, requests and status �ags. This blo
k is then a

essiblefrom the software using standard memory interfa
e. This way the managementof the a
tive key set 
an be easily 
ontrolled from the software.The maximum 
apa
ity of the 
u
koo hash with stash lookup engine 
an bede�ned by three parameters: parameters d and t of the 
u
koo hash and the stashsize s. Theoreti
al 
apa
ity limit is then de�ned by formula Ctotal = d× t+1+s.5 Evaluation and resultsThe proposed ar
hite
ture was implemented in VHDL and synthesized intoFPGA. We 
ondu
ted experiments to evaluate a
hievable memory utilizationand FPGA resour
es 
onsumption in di�erent 
on�gurations of the ar
hite
ture.The results of these evaluations are summed up in this se
tion.We start the evaluation by experiments on a
hievable memory utilizationof our 
on
ept. The a
hieved utilization 
an be 
omputed in two basi
 ways:
Ucuckoo = (n − m)/Ccuckoo, Utotal = n/Ctotal, where n is the total number ofsu

essfully inserted keys before the memory be
ame full and m is the numberof keys that resides in the stash. Be
ause, our implementation uses stash whi
h
an be always �lled up to 100% of its 
apa
ity, we 
an always put m = s. Thevalues of n must be a
quired from the test runs.In the �rst series of tests we have evaluated the relation between a
hievablememory utilization of 
u
koo hash and the used sizes of stash for di�erent pa-rameters. The results of these evaluations are shown in the graphs in Fig. 5, 6and 7. We have tested three di�erent values of d parameter (2, 3 and 4), threedi�erent values of t parameter (128, 1 024 and 8 192) and multiple values of s(from 0 to t). We have also tested di�erent key sizes (32 b, 64 b and 128 b), butthe a
hieved results have been very similar, therefore we do not show di�erentgraphs for ea
h key size. The memory utilization plotted in the graphs is Ucuckooand the size of the stash (s) is plotted as a portion of t. The graphs show mean(thi
k darker lines) and minimal resp. maximal (thin lighter lines) a
hieved uti-lizations from 10 000 tests with random generated keys for ea
h 
ombination ofvalues of d, t and s. From data plotted in the graphs it is 
lear that the meana
hieved memory utilization of 
u
koo hash is independent on the values of t. Pa-rameter t only in�uen
es the di�eren
e between minimal and maximal a
hievedutilization, when the span is higher for smaller values of t.Moreover, Fig. 5 shows that the in�uen
e of stash size to the a
hievablememory utilization is signi�
ant for two 
u
koo hash tables � the mean utilization9



raises from 50% in the 
ase without the stash to 75% with s = t/10 or evenaround 90% for s > t/2. Also the di�eren
es between minimal and maximala
hieved utilizations are redu
ed with the raising size of stash. Fig. 6 and 7 showthat the importan
e of stash in 
ase of more than two 
u
koo hash tables is notthat high as for two tables. But as you 
an see, it 
an help to a
hieve nearly100% mean memory utilization of 
u
koo hash tables.The se
ond series of memory utilization tests is oriented to more pre
iseexamination of a
hievable memory utilizations for a few sele
ted sizes of stash.The results of these evaluations are shown in the graphs in Fig. 8, 9 and 10. Herewe have also tested three di�erent values of d parameter (2, 3 and 4), but only asingle value of t = 1 024 and only a few values of s (0, t/64, t/16, t/4, t/2 and t).The graphs show histograms of probability (per
entage of all 
ondu
ted tests)that a
hieved pre
isely the spe
i�ed utilization (Ucuckoo used) with highlightedmean (dashed line) and minimal resp. maximal utilizations (points). The areaunder ea
h histogram line is exa
tly 100% even though the individual values arerather small. The results are from 1 000 000 tests with random generated keysfor ea
h 
ombination of values of d and s. From data plotted in the graphs itis 
lear that the dispersion of a
hieved utilizations is lower for the rising stashsize. Also the e�e
t of stashes with size s < t/16 for the 
u
koo hash with d > 2is negligible.The dispersion redu
tion is noti
eable espe
ially for the 
u
koo hash withtwo tables (Fig. 8). For two tables without a stash there is a very real 
han
e ofa
hieving memory utilization that is signi�
antly lower than the mean utilization(marked by red arrows). The solution to this problem is even a relatively smallstash (s = t/64 or s = t/16). This parti
ular situation is very important when
u
koo hash is implemented using large external memory to store 
u
koo hashtables. The bottlene
k in su
h an implementation lays in the throughput ofexternal memory interfa
e, whi
h limits the number of usable 
u
koo hash tablesusually to only 2. These results suggests that stash of size s = t/64 or s = t/16
an signi�
antly improve the a
hievable memory utilizations in exa
tly this 
ase.So for example, the implementation of 
u
koo hash with d = 2 and t = 220 inexternal memory require stash with size only s = 220/16 = 65 536 to a
hievemean external memory utilization of 70% (mean 
apa
ity over 1.5 million keys)with very low 
han
e to a
hieve utilization under 65%.Finally, we present the FPGA resour
es requirements of our lookup enginesin sele
ted 
on�gurations. The requirements in terms of LUTs, registers andBlo
kRAMs are shown in Tables: 1 for 
u
koo hash based lookup engine alone,2 for binary sear
h tree based stash alone and 3 for the top-level lookup enginear
hite
ture. Also the maximal 
lo
k frequen
ies are shown. Values in tables area
quired from the synthesis by XST tool for the XilinxVirtex-7 870HT FPGAand data width of 32 bits. Variable key widths (32 and 128 bits as lengths of IPv4and IPv6 addresses were sele
ted) and 
apa
ity parameters are shown dire
tlyin the tables. Furthermore, Table 3 have 
olumns with mean a
hievable memoryutilization (Utotal is used) and 
apa
ity based on test results presented earlierin this se
tion. Also, a
hieved frequen
ies over 200MHz and the fa
t that ea
h10



Key FPGA Resour
es Frequen
yWidth d t LUTs FFs BRAMs [MHz℄32 2 1 024 592 186 3 284.71532 2 8 192 630 195 25 277.31332 3 1 024 827 223 5 265.60032 3 8 192 863 235 38 287.11532 4 1 024 1 053 260 6 277.79532 4 8 192 1 138 275 50 235.238128 2 1 024 2 075 322 9 264.886128 2 8 192 2 190 331 73 265.799128 3 1 024 2 798 367 14 261.985128 3 8 192 2 927 379 110 262.953128 4 1 024 3 500 412 18 263.576128 4 8 192 3 655 427 146 263.902Tabulka 1. FPGA resour
es requirements of our 
u
koo hash implementation in se-le
ted 
on�gurations.lookup implementation is 
apable of one lookup on ea
h 
lo
k 
y
le suggest,that our ar
hite
ture is 
apable of over 200million lookups per se
ond, whi
h issu�
ient for pa
ket �ltering on 100+Gbps networks.6 Con
lusionThe paper proposed a new lookup 
on
ept based on the well-known 
u
koo hashaugmented by the adapted binary sear
h tree for o�oading the 
olliding keys andsupporting LPM lookup. The proposed ar
hite
ture elaborated the 
ombinationof the 
u
koo hash engine with BST engine with a fo
us on parallel implemen-tation in FPGA. The 
on
ept was evaluated in terms of a
hievable memoryutilization as well as utilization of memory and logi
 resour
es of the FPGA.The results show that the 
on
ept is feasible allowing not only fast lookups forevery arriving pa
ket on the 100+Gbps links but also e�e
tive utilization ofFPGA resour
es.Our future work will test the 
on
ept in use 
ases of pa
ket �ltering in legalinter
eption probe and as a �ow 
a
he lookup pro
edure in a software de�nedmonitoring probe [1℄. In both these use 
ases the LPM support is vital as thepre�xes would have to be represented by multiple exa
t mat
h rules.Referen
e1. Kekely, L.; Pus, V.; Korenek, J.: Software De�ned Monitoring of Appli
ationProto
ols. In INFOCOM, To be published, 2014.2. Kirs
h, A.; Mitzenma
her, M.; Wieder, U.: More Robust Hashing: Cu
kooHashing with a Stash. In ESA, LNCS, Springer, 2008, ISBN 978-3-540-87743-1.11



Key FPGA Resour
es Frequen
yWidth Capa
ity LUTs FFs BRAMs [MHz℄32 255 1 618 1 024 3 323.23632 511 1 744 1 117 5 319.47232 1 023 1 833 1 098 7 283.62432 2 047 1 916 1 151 12 282.01632 4 095 1 987 1 205 21 280.58032 8 191 2 115 1 260 41 275.558128 255 5 173 2 974 6 309.900128 511 5 593 3 205 10 266.280128 1 023 5 865 3 144 15 290.370128 2 047 6 153 3 293 25 278.861128 4 095 6 318 3 443 46 277.439128 8 191 6 731 3 594 90 275.461Tabulka 2. FPGA resour
es requirements of our binary sear
h tree implementationin sele
ted 
on�gurations.Key FPGA Resour
es Frequen
y Mean MeanWidth d t s LUTs FFs BRAMs [MHz℄ Utilization Capa
ity32 2 8 192 2 047 3 721 2 111 45 264.116 83.5% 15 38832 3 8 192 4 095 4 138 2 221 71 265.437 96.7% 27 711128 2 1 024 255 8 336 4 059 15 257.631 83.5% 1 923128 3 1 024 511 9 564 4 304 23 263.704 96.7% 3 463Tabulka 3. FPGA resour
es requirements and memory utilizations of our lookupengine implementation.3. Lampson, B.; Srinivasan, V.; Varghese, G.: IP Lookups Using Multiway andMulti
olumn Sear
h. In INFOCOM, 1998, s. 1248�1256.4. Naous, J.; et al.: Implementing an OpenFlow Swit
h on the NetFPGA Platform.In Pro
eedings of ANCS, NY, USA, 2008, ISBN 978-1-60558-346-4, s. 1�9.5. ONF Market Edu
ation Committee: Software-De�ned Networking: The NewNorm for Networks. Onf white paper, Palo Alto, CA, USA, 2012.6. Pagh, R.; Rodler, F. F.: Cu
koo Hashing. J. Algorithms, ro£ník 51, £. 2, Kv¥ten2004: s. 122�144, ISSN 0196-6774.7. Putze, F.; Sanders, P.; Singler, J.: Ca
he-, Hash-, and Spa
e-e�
ient BloomFilters. J. Exp. Algorithmi
s, ro£ník 14, Leden 2010: s. 4:4.4�4:4.18, ISSN1084-6654, doi:10.1145/1498698.1594230.8. Song, H.; et al.: Fast Hash Table Lookup Using Extended Bloom Filter: An Aidto Network Pro
essing. SIGCOMM Comput. Commun., 2005, ISSN 0146-4833,doi:10.1145/1090191.1080114.9. Tran, T.; Kittitornkun, S.: FPGA-Based Cu
koo Hashing for Pattern Mat
hingin NIDS/NIPS. In MNGNS, LNCS, 2007, ISBN 978-3-540-75475-6.10. Yang, X.; et al.: High-Performan
e random data lookup for network pro
essing.In SOC Conferen
e, 2010, ISSN Pending, s. 272�277.12



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

s [% of t] 

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 5. A
hievable memory utilization for 
u
koo hash with two tables (d = 2)for di�erent sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
85

90

95

100

s [% of t]

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 6. A
hievable memory utilization for 
u
koo hash with three tables (d = 3)for di�erent sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
90

92

94

96

98

100

s [% of t] 

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 7. A
hievable memory utilization for 
u
koo hash with four tables (d = 4)for di�erent sizes of stash. 13



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 8. Probability distribution of a
hievable memory utilization for 
u
koo hashwith two tables (d = 2, t = 1024).

85 90 95 100
0

1

2

3

4

5

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 9. Probability distribution of a
hievable memory utilization for 
u
koo hashwith three tables (d = 3, t = 1024).

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

1

2

3

4

5

6

7

8

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 10. Probability distribution of a
hievable memory utilization for 
u
koo hashwith four tables (d = 4, t = 1024). 14


