Hardware accelerated packet filter
for 100Gbps

User documentation

Lukas Kekely, Martin Zadnik

Technical documentation FIT-TR-2014-XXX

Hardware packet filter for 100Gbps

Lukas Kekely, Martin Zadnik

Fakulta informacnich technologii
Vysoké uceni technické v Brné
Bozetéchova 1/2, 612 66 Brno

{xkekel00, izadnik}@fit.vutbr.cz

Abstrakt Rapidly growing speed and complexity of computer networks
impose new requirements on fast lookup structures which are utilized in
many networking applications (SDN, firewalls, NATS, etc.). A lot of hash
or hash-CAM based lookup concepts have been proposed but they usu-
ally suffer from the low memory utilization or insufficient lookup per-
formance. Therefore, we propose a novel lookup concept based on the
well-known cuckoo hashing, which can achieve good memory utilization,
supplemented by a binary search tree for offloading the colliding keys
and supporting LPM lookup. We also propose a hardware architecture
implementing this lookup concept in the FPGA. Our solution is suitable
for lookup of the variable-length keys in 100+ Gbps networks. Memory
utilization of the proposed concept is carefully evaluated and it is shown
that the concept is scalable to external memory components.

1 Introduction

The speed and complexity of network is growing rapidly, creating a demand for
new approaches to a high-speed packet processing. One major trend is to make
hardware as simple as possible offloading the complexity of a control path into
the software, e.g. software-defined networking (SDN) [5]. The offload requires
the hardware to look up a piece of data (e.g. action, state) associated to a flow
key (e.g. IP prefix, IP address or tuple of source and destination IP addresses,
ports and protocol) per each arriving packet. Moreover the associated data are
created dynamically, usually with every new flow. The fast lookup is essential
not only for SDN applications but also in other existing applications (e.g. NATs,
firewalls, load-balancers and network probes [1]).

Field Programmable Gate Arrays (FPGA) are popular platforms utilized in
networking applications targeting high-speed packet processing (e.g. [4]). Traditi-
onally, the lookup was performed by external Ternary Content-Addressable Me-
mory (TCAM) or internal TCAM implemented in FPGA logic. Various memory-
oriented approaches have been proposed and applied, replacing the resource as
well as power demanding TCAM. A common drawback of the memory-oriented
approach is inefficient memory utilization and slow lookup requiring multiple
INemory accesses.

We propose a fast lookup concept designed specifically for FPGA-oriented
platforms. The concept combines two well-known memory-oriented lookup al-
gorithms —cuckoo hashing [6] and binary search tree (adapted for best/longest
prefix matching [3]). Each algorithm efficiently complements the other in area
where the other fails. The concept achieves almost 100% memory utilization
with efficient utilization of the memory and logic resources in comparison to the
TCAM or Hash-CAM concepts [9]. At the same time, our concept allows fast lo-
okups (200 mil. lookups/s designed for 100+ Gbps solutions). Our contributions
also include: (a) the possibility to utilize external memory when the number of
rules cannot fit in the internal FPGA memory, (b) increasing the lookup functi-
onality with the longest prefix match, (c) efficient implementation of the whole
scheme in FPGA including the update logic enabling on-the-fly updates and (d)
evaluation of the concept in terms of achievable memory and logic utilization.

The rest of the paper is organized as follows. Related work on lookup algori-
thms is discussed in Section 2. Section 3 provides design objectives and introdu-
ces the proposed concept. The FPGA implementation is described in Section 4.
Section 5 evaluates the concept as well as provides the synthesis results. The
paper is concluded with future work in Section 6.

2 Related Work

A naive approach to the lookup is represented by a linear search.Unfortunately,
the linear search requires too many memory accesses and, therefore, is too slow
to satisfy the needs for the fast lookup. Various approaches have been proposed
to speed up the lookup up to the point of a constant time and low number of
memory accesses. These approaches take advantage of the particular specification
of the lookup task, key structure, key set characteristics, target platform and
others.

The basic lookup tests whether an element (a key) is a member of a set. If
the application can tolerate small percentage of false positive results (the key
is considered to be part of the set although it is not) then Bloom filter and its
improvements [7] have been shown to achieve near optimal memory utilization
with low number of memory accesses.

But in many cases the application requires to assign some data per each
key. Here, TCAM has traditionally been used, but due to its high cost, high
resource as well as power consumption, it is often replaced by memory-oriented
approaches. The basic approach is to utilize naive hash table (NHT'). The hashed
key is used as an index into a memory location with the key (or its fingerprint
to verify successful lookup) and the associated data. If a new key is inserted and
the location is already occupied, a new memory location is allocated and linked
to the occupied location, forming a list of locations. A hardware implementation
of the NHT divides the memory into an equally-sized buckets (each holding N
possible locations). The issue of such an approach is that it requires multiple (V)
accesses to the memory and some of the buckets overflow whereas some may not
be utilized at all. An exemplary hardware implementation of NHT approach

using hash-CAM is described in [10]. If more than N colliding keys occur, an
additional TCAM is used to store the overflowing keys. An improved approach
also utilizes another hash function in order to increase hash table utilization and
decrease the required size of the additional TCAM (each key can be stored in
2N locations). The main drawback of this approach is that this approach can
only be effectively implemented using internal FPGA memory since the 2NV hash
tables are implemented using parallel memories. Also the utilization increases
with lower value of N but the size of the costly TCAM must then be increased in
order to store all the colliding keys. Song et al. [8] extended the NHT approach
with counting Bloom filters to optimize utilization of the buckets by counting
their occupancy, but the issue of multiple memory accesses remained.

The goal of cuckoo hashing [6] is to reduce the number of memory accesses
during a lookup and thus speeding-up a lookup operation. Standard cuckoo ha-
shing utilizes two hash tables with two different hash functions but it can be
generalized for a higher number of hash tables (hash functions). Standard cuc-
koo hashing with two hash tables 77, 7% and two hash functions hq, ho stores a
key x either in position T} [h1(2)] or Te[ha(z)], but never in both. Therefore, the
lookup as well as the deletion of a key can be easily performed in constant time.
Insertion of a key x starts by checking the positions T3 [(2)] and T [ha(2)]. If at
least one of them is free, the key is inserted. But if none of them is free, the key
x is still inserted to the position Tj[h1(z)], thus evicting the stored key y. Sub-
sequently, the algorithm inserts the key y to the position Ts[ha(y)]. If T2[ha(y)]
is not free, the stored key z is evicted. Note that it is sufficient to access only the
position Ts[ha(y)] and not T1[h1(y)] since T1[h1(y)] was the previous position of
y and is now occupied by x. These steps are repeated until the free position is
found or a pre-defined number of steps is reached. If the insertion procedure was
not successful, new hash functions h; and hs have to be selected and complete
rehashing takes place (unacceptable in online applications). Cuckoo hashing gu-
arantees constant lookup time but the utilization of memory reaches only about
50 % for two hash tables and two hash functions on average.

There has been an implementation of cuckoo hashing in FPGA for the pur-
pose of pattern matching [9]. This architecture contains dedicated matching
blocks for all patterns of the same length (up to the length of 16 characters).
Each matching block consists of two single-port cuckoo hash tables for storing
addresses to the dual-port memory storing the database of patterns. The archi-
tecture also contains two multiplexers and a control logic which together allow
performing either a pattern matching operation or a pattern database update
(insertion or deletion of a pattern). The approach offers only medium memory
utilization since it does not utilize any type of overflow memory and also cannot
scale well to external memory since it is tailored to the properties of FPGA
internal memory.

The advanced lookup procedures also include prefix matching (PM, i.e. there
is a single prefix for a given key in the set but it is not known apriori) and longest
prefix match (LPM, i.e. selecting the longest matching prefix from the set for a
given key). Although the LPM itself is out of the primary scope in this paper,

the unique combination of cuckoo hash and binary search tree renders it possible
for our implementation to support LPM lookup.

3 Design

The core functionality of our lookup schema is based on cuckoo hashing principle
described in the previous section. We selected this principle because it has an
advantage of a very fast lookup with only a few memory accesses needed for each
search. This feature favors the usage of cuckoo hashing even on architectures
with limited memory interface throughput (e.g. external memory). Also, the
functionality of update operations (insert/delete key) used in cuckoo hashing is
rather simple and can be effectively implemented in hardware enabling on-the-fly
updates.

On the other hand, cuckoo hashing can suffer from a low achievable utili-
zation of the memory caused by hash conflicts. To address this problem, our
design augments basic cuckoo hashing principle by the usage of a stash for of-
floading the conflicting keys. The proposed design of cuckoo hashing with the
stash is not entirely new. It has been already described in [2], where the authors
proposed and evaluated the usage of only a very small stash (capacity under 5
keys implemented in TCAM) to improve the worst case memory utilization of
cuckoo hashing.

In our design we propose and evaluate the usage of a significantly larger
stash —a stash with the capacity comparable to the capacity of the used cuckoo
hash tables to improve not only the worst case but also to improve average
memory utilization. Furthermore, our stash also supports LPM lookups, thus
augmenting the lookup functionality of the basic cuckoo hashing. The lookup
support of not only the whole keys but also key prefixes can be very useful
in many different areas (e.g. packet filtering). Instead of TCAM, we propose
an FPGA implementation of a well-known binary search algorithm adapted for
the LPM lookup (described in [3]) as an effective approach to implement the
larger stash. The key idea behind the adaptation of the binary search for LPM

is to recognize each prefix p as a range of keys (values) from k! . to kP . .
where kP . is the lowest key with prefix p and k2, is the highest key with

prefix p. Now for each prefix p in the lookup set both kP . ~and k2, . values
are stored in a sorted array, k , is associated with data of prefix p and kP,

is associated with data of the longest prefix from the set which is a sub-prefix
of p. Furthermore, if for two prefixes p1, p2, where p; is shorter than ps, keys

kb = kP2 resp. kP, = kP2 . the relation between keys is considered to be
kPl < kP2 vesp. kP > kP2 during sorting. Also, searched key k such as
k=kb .. resp. k=kE . is considered k > k¥ . resp. k < kP,,.. A lookup of k

is then implemented as a standard binary search and the data of the last visited
smaller key than k£ are used as a result. From the adaptation description it is
clear, that each prefix occupies two records in the memory.

The binary search offers basically the opposite features in comparison with
the cuckoo hashing— the key lookup requires relatively large number of sub-

Key—> Lookup [~>Data

—>»Found
Configuration_ A.- A-A--A---|---}..
Interface ?T TT ______ i _t,_.'-"
TE58 2L
*agg &%
-0

Obrazek 1. General lookup engine interface (some signals are omitted for clarity).

sequent memory accesses, but the achievable memory utilization is always 100 %.
Because of the large number of memory accesses, binary search based lookup
should be implemented only in the internal FPGA memory. In order to achieve
high lookup throughput, the implementation of the binary search must not be
sequential but rather divided into pipelined stages. This can be achieved by es-
tablishing a tree structure in the searched array (binary search tree - BST) and
slicing it by the tree levels (each tree level forms a pipeline stage). Finally, the
functionality of update operations in the described BST can be easily implemen-
ted in the hardware with support of on-the-fly updates.

4 FPGA architecture

4.1 Lookup engine interface and functionality

We start the description by the general design of an interface and functionality
of a lookup engine (either cuckoo or BST). Both engines implement the same in-
terface independently on the details of their lookup procedure. Fig. 1 illustrates
particular signals forming the interface. The signals can be divided into 3 basic
groups: input (left), output (right) and configuration (bottom). The only input
of a lookup engine is the value of a key to search. The lookup implementation
should be able to process new input key every clock cycle. For each input key,
the engine produces one result on the output based on performed lookup. The
lookup result consists of arbitrary data (e.g. routing decision, matched key iden-
tification) associated with the searched key and one bit information about the
key lookup success (Found). When the input key is not found, the value of data
on the output is unspecified (invalid).

The configuration signals can be further divided into two subgroups: update
requests and status flags. The update requests are used to manage an active key
set and the associated data in the engine. The keys can be inserted or deleted
one by one. When insertion of a new key is requested, the value of the key and
the associated data must be both specified. If the key is already in the set, the
insertion fails and the set remains unchained (same keys would quickly build
up a list of chained records). When deletion of a key is requested, only the
value of the key itself needs to be specified (the associated data are ignored).
Furthermore, when the lookup engine supports LPM, the key value in the update
request must be accompanied by the length of a valid prefix. The status flags

Key Hash 1} Table 1]} »Data
[Hash 2}~ Table 2["] >Found

. H 0
. H .
. H .

Table o[}]
..

Reconfig.
Controller «lRegisterl_

;Configuration Interface

uonebaibby ynsey

SRR

Obrazek 2. Conceptual schema of cuckoo hash based lookup engine.

inform about the special states of lookup engine configuration logic. An active
busy flag means that an update of a key set is running and new updates cannot
be requested until the update finishes. The flag is activated by the engine right
after each valid request and remains active for finite time. A full flag is activated
when the supported lookup capacity is reached and new key insertions cannot
be requested. Delete requests are still possible even when the full flag is active
and they can lead to its deactivation. When no deletes are issued, the full flag
can remain active for infinite time or is deactivated if the conflicts are resolved
eventually.

Finally, the lookup engine (and its interface) is configurable by these three
basic generic parameters: key width (maximum width of key representation in
bits), data width (width of data representation in bits), maximum capacity
(theoretical size limit for the set of keys, representation may differ).

4.2 Cuckoo hash lookup engine

Fig. 2 depicts a basic schema of cuckoo hash engine implementation. The lookup
process starts by parallel computing of key hash values (outputs of hash blocks).
As the basis for the hash blocks we utilize CRC implementation generated for
commonly used polynomials. The lookup continues with hash values being used
as addresses for reading records from hash tables in memory. Each record forms
a pair composed of a key and data associated with the key. A record can also be
stored in a register outside the tables (the purpose of the register is explained
in the next paragraph). Subsequently, the input key is compared with the keys
from the memory (and the register) records for equality. At most one comparison
may be successful, because each unique key appears only in a single place at a
time. Therefore, aggregation of result is very simple—if none of the compared
keys is equal to the searched key, the found flag is not set, otherwise it is set and
data associated with the matching key are provided.

Update of an active key set is entirely managed by the reconfiguration con-
troller based on requests received from the configuration interface. When inser-

ting a new key, the controller can take advantage of the reconfiguration register
included in the lookup path. Using this register the controller can evict records
from hash tables on-the-fly preserving the set of active keys. More precisely, the
insertion of a new key x starts with storing x in the register. Then all possible lo-
cations for z in the hash tables (T;[h;(x)]) are checked sequentially. If one of them
is empty, x is inserted into the table and the reconfiguration ends. Otherwise
a victim y is selected and evicted from the table, leaving free space for z. The
evicted record y is actually swapped with = and the insertion continues with y
except x cannot be selected as the next victim. The reconfiguration cycle can
repeat itself multiple times, until the register is freed or can even repeat itself
infinite times when a chain of collisions occur. Until the register is freed the
cuckoo hash engine is considered full, but not busy. Therefore, deletion of a key
is possible even during active insertion reconfiguration. Deletion of x starts by
pausing the reconfiguration process and continues with sequential checking of
all possible locations for x (i.e. the register and all T;[h;(z)] since our imple-
mentation supports arbitrary number of hash tables). If a key identical to z is
found in one of those positions, it is invalidated. After the deletion ends, the
reconfiguration process is resumed. During the deletion process, the cuckoo hash
engine is considered busy.

The maximum capacity of the cuckoo hash engine can be configured by two
values: d—the number of used hash tables (hash functions) and ¢—the size of
individual table. Theoretical capacity limit is defined by formula Ciycroo = d X
t + 1. The plus one accounts for the additional reconfiguration register.

4.3 Binary search tree lookup engine

Fig. 3 depicts a basic schema of our BST lookup engine. The engine starts the
lookup by a pipelined and sequential search of an input key (red arrows) through
the levels of the tree. Each tree level forms a pipeline stage with its dedicated
piece of memory and a key comparator. The output of a stage is an address of a
node where to continue binary search in the next tree level and the searched key.
The address from the last tree level is used to address the data array containing
associated data to the key. The lookup result must be corrected according to a
record in the reconfiguration register due to atomicity of operations.

Update of an active key set is entirely managed by the reconfiguration cont-
roller based on requests received from the configuration interface. The controller
can take advantage of the single reconfiguration register included in the lookup
path during the update. More precisely, the update (deletion of = or insertion
of x) starts with storing the record z in the register. Subsequently, the update
process consists of three sequential steps. (1) The key z is searched in the tree
sequentially. The search must fail when inserting x. The search must succeed
when deleting x. (2) The record x is activated in the register to correct the
lookup process in the last stage. (3) Sequential reconfiguration is performed to
merge x into the nodes and the data array. Finally, the update process ends and
the reconfiguration register is freed. During the update process, the BST engine
is considered busy. Therefore, deletion and insertion cannot be active together as

Binary Search Tree

»Data

»Found

| Reconfig. Controller |-+|Register|

:;Configuration Interface

Obrazek 3. Conceptual schema of binary search tree based lookup engine.

Cuckoo
Hash

»Data

Key

»Found

uonebaibby

BST 1>
(Stash) LI,

[Reconfiguration Controller |

Configuration Interface:k

[Config. & Status Registersl(—»ll\rfteerr?g‘%

Obrazek 4. Conceptual schema of our top-level lookup engine.

in cuckoo hash engine. The full status may be issued after the successful insertion
and can only end after successful deletion.

The capacity of the BST based engine can be configured by the number of
BST levels [. The capacity is then defined by formula Cpsy = 2! — 1 when adap-
tation for LPM is not used or Cpg = 2/~ — 1 when LPM lookup is supported.
Our implementation supports the adaptation for LPM, but if LPM is not ne-
eded, it can be easily modified (simplified) to support only precise key lookup
gaining two times higher capacity.

4.4 Top-level lookup engine

Fig. 4 depicts a top-level schema of our cuckoo hash with BST stash lookup
engine implementation. The lookup of an input key (red arrows) is implemented
in both cuckoo hash and BST engines in parallel. The results are then stored
in FIFOs, because the two engines do not have same processing delays. Result
aggregation then selects data from engine with successful lookup. When both
engines successfully find a key, the result from cuckoo hash is preferred, because
in that case the result from BST is only for a matching prefix, but the result
from cuckoo hash is for the whole matching key.

Reconfiguration of the key sets in both engines is managed by the top level
reconfiguration controller. All updates for prefixes are directly forwarded into
the BST stash. Deletions of the whole keys are implemented in both engines

in parallel. Insertions of the whole keys are forwarded into the cuckoo hash.
If cuckoo hash reaches full state (its reconfiguration register is occupied) and
new key insertion is requested, then the key that is currently in cuckoo hash
reconfiguration register is moved into the stash and the new key is inserted into
cuckoo hash. The top-level engine is in the full state when both the cuckoo hash
and the BST stash are full. The top engine is in busy state when at least one of
them is busy. Furthermore, in our implementation the configuration interface of
the top-level lookup engine is connected to the block with address decoder and
registers for key, data, requests and status flags. This block is then accessible
from the software using standard memory interface. This way the management
of the active key set can be easily controlled from the software.

The maximum capacity of the cuckoo hash with stash lookup engine can be
defined by three parameters: parameters d and ¢ of the cuckoo hash and the stash
size s. Theoretical capacity limit is then defined by formula Ciotqp = d X t+1+s.

5 Evaluation and results

The proposed architecture was implemented in VHDL and synthesized into
FPGA. We conducted experiments to evaluate achievable memory utilization
and FPGA resources consumption in different configurations of the architecture.
The results of these evaluations are summed up in this section.

We start the evaluation by experiments on achievable memory utilization
of our concept. The achieved utilization can be computed in two basic ways:
Ucuckoo = (0 — m)/Coeuckoo, Utotai = n/Clotar, where n is the total number of
successfully inserted keys before the memory became full and m is the number
of keys that resides in the stash. Because, our implementation uses stash which
can be always filled up to 100 % of its capacity, we can always put m = s. The
values of n must be acquired from the test runs.

In the first series of tests we have evaluated the relation between achievable
memory utilization of cuckoo hash and the used sizes of stash for different pa-
rameters. The results of these evaluations are shown in the graphs in Fig. 5, 6
and 7. We have tested three different values of d parameter (2, 3 and 4), three
different values of ¢ parameter (128, 1024 and 8 192) and multiple values of s
(from 0 to t). We have also tested different key sizes (32b, 64b and 128 b), but
the achieved results have been very similar, therefore we do not show different
graphs for each key size. The memory utilization plotted in the graphs is Ucyckoo
and the size of the stash (s) is plotted as a portion of t. The graphs show mean
(thick darker lines) and minimal resp. maximal (thin lighter lines) achieved uti-
lizations from 10000 tests with random generated keys for each combination of
values of d, t and s. From data plotted in the graphs it is clear that the mean
achieved memory utilization of cuckoo hash is independent on the values of ¢. Pa-
rameter ¢ only influences the difference between minimal and maximal achieved
utilization, when the span is higher for smaller values of ¢.

Moreover, Fig. 5 shows that the influence of stash size to the achievable
memory utilization is significant for two cuckoo hash tables —the mean utilization

raises from 50 % in the case without the stash to 75 % with s = ¢/10 or even
around 90 % for s > ¢/2. Also the differences between minimal and maximal
achieved utilizations are reduced with the raising size of stash. Fig. 6 and 7 show
that the importance of stash in case of more than two cuckoo hash tables is not
that high as for two tables. But as you can see, it can help to achieve nearly
100 % mean memory utilization of cuckoo hash tables.

The second series of memory utilization tests is oriented to more precise
examination of achievable memory utilizations for a few selected sizes of stash.
The results of these evaluations are shown in the graphs in Fig. 8, 9 and 10. Here
we have also tested three different values of d parameter (2, 3 and 4), but only a
single value of ¢t = 1024 and only a few values of s (0, t/64, /16, t/4, t/2 and t).
The graphs show histograms of probability (percentage of all conducted tests)
that achieved precisely the specified utilization (Ucyckoo used) with highlighted
mean (dashed line) and minimal resp. maximal utilizations (points). The area
under each histogram line is exactly 100 % even though the individual values are
rather small. The results are from 1000000 tests with random generated keys
for each combination of values of d and s. From data plotted in the graphs it
is clear that the dispersion of achieved utilizations is lower for the rising stash
size. Also the effect of stashes with size s < ¢/16 for the cuckoo hash with d > 2
is negligible.

The dispersion reduction is noticeable especially for the cuckoo hash with
two tables (Fig. 8). For two tables without a stash there is a very real chance of
achieving memory utilization that is significantly lower than the mean utilization
(marked by red arrows). The solution to this problem is even a relatively small
stash (s = t/64 or s = t/16). This particular situation is very important when
cuckoo hash is implemented using large external memory to store cuckoo hash
tables. The bottleneck in such an implementation lays in the throughput of
external memory interface, which limits the number of usable cuckoo hash tables
usually to only 2. These results suggests that stash of size s = t/64 or s = ¢/16
can significantly improve the achievable memory utilizations in exactly this case.
So for example, the implementation of cuckoo hash with d = 2 and ¢t = 220 in
external memory require stash with size only s = 22°/16 = 65536 to achieve
mean external memory utilization of 70 % (mean capacity over 1.5 million keys)
with very low chance to achieve utilization under 65 %.

Finally, we present the FPGA resources requirements of our lookup engines
in selected configurations. The requirements in terms of LUTs, registers and
BlockRAMs are shown in Tables: 1 for cuckoo hash based lookup engine alone,
2 for binary search tree based stash alone and 3 for the top-level lookup engine
architecture. Also the maximal clock frequencies are shown. Values in tables are
acquired from the synthesis by XST tool for the XilinxVirtex-7 870HT FPGA
and data width of 32 bits. Variable key widths (32 and 128 bits as lengths of IPv4
and IPv6 addresses were selected) and capacity parameters are shown directly
in the tables. Furthermore, Table 3 have columns with mean achievable memory
utilization (Upprar is used) and capacity based on test results presented earlier
in this section. Also, achieved frequencies over 200 MHz and the fact that each

10

Key FPGA Resources |Frequency

Width|d| t [|[LUTs|FFs|BRAMs| [MHz|
32(2(1024|| 592|186 3 284.715
32|2(8192|| 630|195 25| 277.313
32(3|1024|| 827|223 5| 265.600
32|3(8192| 863|235 38| 287.115
32(4(1024|| 1053|260 6| 277.795
32(4(8192|| 1138|275 50| 235.238
128211024 2075|322 9 264.886
128(2(8192|| 2190|331 73| 265.799
1283|1024 2798|367 14| 261.985
128|3|8192(| 2927|379 110| 262.953
128(4(1024|| 3500|412 18 263.576
128(4|8192|| 3655|427 146| 263.902

Tabulka 1. FPGA resources requirements of our cuckoo hash implementation in se-
lected configurations.

lookup implementation is capable of one lookup on each clock cycle suggest,
that our architecture is capable of over 200 million lookups per second, which is
sufficient for packet filtering on 100+ Gbps networks.

6 Conclusion

The paper proposed a new lookup concept based on the well-known cuckoo hash
augmented by the adapted binary search tree for offloading the colliding keys and
supporting LPM lookup. The proposed architecture elaborated the combination
of the cuckoo hash engine with BST engine with a focus on parallel implemen-
tation in FPGA. The concept was evaluated in terms of achievable memory
utilization as well as utilization of memory and logic resources of the FPGA.
The results show that the concept is feasible allowing not only fast lookups for
every arriving packet on the 100+ Gbps links but also effective utilization of
FPGA resources.

Our future work will test the concept in use cases of packet filtering in legal
interception probe and as a flow cache lookup procedure in a software defined
monitoring probe [1]. In both these use cases the LPM support is vital as the
prefixes would have to be represented by multiple exact match rules.

Reference

1. Kekely, L.; Pus, V.; Korenek, J.: Software Defined Monitoring of Application
Protocols. In INFOCOM, To be published, 2014.

2. Kirsch, A.; Mitzenmacher, M.; Wieder, U.: More Robust Hashing: Cuckoo
Hashing with a Stash. In ESA, LNCS, Springer, 2008, ISBN 978-3-540-87743-1.

11

Key FPGA Resources |Frequency
Width |Capacity ||[LUTs| FFs |BRAMs| [MHz|

32 2565|| 1618(1024 3| 323.236

32 511 1744|1117 5 319.472

32 1023 1833|1098 7| 283.624

32 2047) 1916|1151 12 282.016
32 4095|| 1987|1205 21| 280.580

32 8191 2115|1260 41 275.558
128 2565|| 5173|2974 6| 309.900
128 511|| 5593|3205 10| 266.280
128 1023 5865|3144 15| 290.370
128 2047|| 6153|3293 25| 278.861
128 4095| 6318|3443 46| 277.439
128 8191|| 6731|3594 90| 275.461

Tabulka 2. FPGA resources requirements of our binary search tree implementation
in selected configurations.

Key FPGA Resources |Frequency Mean Mean

Width‘d| t | s HLUTS| FFs |BRAMs| [MHz] ‘Utilization Capacity
32(2[8192[2047]| 3721|2111 45| 264.116|] 83.5%| 15388
32(3|8192(4095| 4138|2221 71| 265.437|| 96.7%| 27711
128(2]|1024| 255|| 8336|4059 15| 257.631|| 83.5%| 1923
128(3]1024| 511 9564|4304 23| 263.704 96.7%| 3463

Tabulka 3. FPGA resources requirements and memory utilizations of our lookup
engine implementation.

3. Lampson, B.; Srinivasan, V.; Varghese, G.: IP Lookups Using Multiway and
Multicolumn Search. In INFOCOM, 1998, s. 1248-1256.

4. Naous, J.; et al.: Implementing an OpenFlow Switch on the NetFPGA Platform.
In Proceedings of ANCS, NY, USA, 2008, ISBN 978-1-60558-346-4, s. 1-9.

5. ONF Market Education Committee: Software-Defined Networking: The New
Norm for Networks. Onf white paper, Palo Alto, CA, USA, 2012.

6. Pagh, R.; Rodler, F. F.: Cuckoo Hashing. J. Algorithms, ro¢nik 51, ¢. 2, Kvéten
2004: s. 122-144, ISSN 0196-6774.

7. Putze, F.; Sanders, P.; Singler, J.: Cache-, Hash-, and Space-efficient Bloom
Filters. J. Ezp. Algorithmics, ro¢nik 14, Leden 2010: s. 4:4.4-4:4.18, ISSN
1084-6654, doi:10.1145/1498698.1594230.

8. Song, H.; et al.: Fast Hash Table Lookup Using Extended Bloom Filter: An Aid
to Network Processing. SIGCOMM Comput. Commun., 2005, ISSN 0146-4833,
doi:10.1145/1090191.1080114.

9. Tran, T.; Kittitornkun, S.: FPGA-Based Cuckoo Hashing for Pattern Matching
in NIDS/NIPS. In MNGNS, LNCS, 2007, ISBN 978-3-540-75475-6.

10. Yang, X.; et al.: High-Performance random data lookup for network processing.
In SOC Conference, 2010, ISSN Pending, s. 272-277.

12

U [%]

20 —1=128
---t=1024
0 I I I I I " t=8192
0 10 20 30 40 50 60 70 80 90 100
s [% of t]
Obrazek 5. Achievable memory utilization for cuckoo hash with two tables (d = 2)
for different sizes of stash.
100
g
=)
85 1 1 1
0 10 20 30 40 50 60 70 80 90 100
s [% of t]
Obrazek 6. Achievable memory utilization for cuckoo hash with three tables (d = 3)
for different sizes of stash.
100
=
-]
o4t 8
92 —t=128
--+1=1024
0 t=8192
90 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
s [% of {]

Obrazek 7. Achievable memory utilizati01n3 for cuckoo hash with four tables (d

for different sizes of stash.

—s=0
—s=t/64
35 _ s=t/16
—s=t/4 i
s=t/2
s=t

Probability [%]
= N
[N U"I

=

0.5

Obrazek 8. Probability distribution of achievable memory utilization for cuckoo hash
with two tables (d =2, ¢t = 1024).

5
—s=0
—s=t/64
—s=t/16
4 —s=t/4 N
—_ s=t/2
5 s=t
2\3
=
©
52
a
1

U [%]

Obrazek 9. Probability distribution of achievable memory utilization for cuckoo hash
with three tables (d = 3, t = 1024).

8
—s=0
7 —s=t/64 B
—s=t/16
—s=t/4
6 s=t/2
s=t

(&)
L

Probability [%]
w N

N

[y

Obrazek 10. Probability distribution of aei}zlievable memory utilization for cuckoo hash
with four tables (d =4, t = 1024).

