FACULTY

OF INFORMATION
TECHNOLOGY

Manual k Software pro adaptabilni
rozpoznavani textu starych tisku

Michal Hradis, Martin Kiss, Oldrich Kodym, Jan
Kohut, Karel Benes, Petr Buchal

Vysoké uceni technické v Brné Brno 2020

¥\ MINISTERSTVO
KULTURY

Tento dokument byl vytvoren s finan¢ni podporou MK CR v ramci programu NAKI Il v projektu
DG18P020VV055 (PokrocCila extrakce a rozpoznavani obsahu tiSténych a rukou psanych
digitalizatd pro zvyseni jejich pfistupnosti a vyuZitelnosti).

Cislo a nazev projektu:

DG18P020VV055

Pokrocila extrakce a rozpoznavani obsahu tisténych a rukou psanych
digitalizatd pro zvyseni jejich pfistupnosti a vyuZitelnosti

Nazev a popis diléiho vystupu:

Manual k Software pro adaptabilni rozpoznavani textu starych tiska

Tento dokument popisuje funk&nost a pouZiti software pro automaticky prepis textu tisténych
dokumentd.

Jazyk dokumentu

AngliCtina

Organizace a reSitel

Vysoké uceni technické v Brné

Doc. RNDr. PAVEL SMRZ Ph.D.

Availability

The software module is available from https://github.com/DCGM/pero-ocr.

Python module https://pypi.org/project/pero-oct/, install as “pip install pero-ocr”
This OCR module is used py publicly available pero-ocr web application http://pero-
ocr.fit.vutbr.cz/ .

License
BSD 3-Clause License

Usage

The package provides a full OCR pipeline including text paragraph detection, text line
detection, text transcription, and text refinement using a language model.

The package can be used as a command line application or as a python package which
provides a document processing class and a class which represents document page content.

Requirements

Linux/Windows

Python 3.6/3.7, numpy, numba, scikit-learn, scikit-image, OpenCV, tensorflow 1.15, PyTorch,
shapely, pyamg, imgaug,

For faster processing: Cuda capable GPU with at least 4 GB RAM and CUDA toolkit.

Publicly available pretrained OCR models

Pretrained models can be downloaded from
https://www.fit.vut.cz/~ihradis/pero/pero_eu_cz_print_newspapers_2020-10-09.tar.gz.
This package contains a layout analysis module which is suitable for most printed and
handwritten documents together with OCR suitable for most european printed
documents. The OCR module is specialized for low-quality czech newspapers digitized
from microfilms, but it provides very good results for other poor-quality black/white
documents and perfect text recognition for good quality documents in major european
languages typeset in Antiqua fonts.

Command line application

Command line application is ./user_scripts/parse_folder.py. It is able to process images in a

https://www.fit.vut.cz/~ihradis/pero/pero_eu_cz_print_newspapers_2020-10-09.tar.gz
https://github.com/DCGM/pero-ocr
https://pypi.org/project/pero-ocr/

directory using an OCR engine. It can render detected lines in an image and provide document
content in Page XML and ALTO XML formats. Additionally, it is able to crop all text lines as
rectangular regions of normalized size and save them into separate image files.

Command line parameters of parse_folder.py:

-c CONFIG, --config CONFIG Path to config file which specifies OCR
engine and other parameters of processing.
The exact format will be described below.

-s, --skip-processed Do not overwrite existing outputs.
--input-image-path INPUT_IMAGE_PATH Path to a directory of images which should be
processed.
-X INPUT_XML_PATH, --input-xml-path The tool allows users to process documents
INPUT_XML_PATH in separate steps, use the result of a previous

processing step and only update some
information. In such cases the previous
results are stored as Page XML files and this
option specifies a path to those files.

--output-xml-path Directory where output Page XML should be
stored.
--output-render-path Directory where images with rendered text

lines and paragraphs should be stored. This
option is useful for fast and easy visual
verification that the processing is configured
correctly.

--output-line-path Directory where images of cropped text lines
should be stored.

--output-logit-path Directory where logits (probabilities of
characters) should be stored. This output is
used only in advanced usage of the tool.

--output-alto-path

--set-gpu Sets the ID of a GPU which should be used
by the tool. This is optional.

Configuration file

Configuration file has multiple sections, where each section generally defines a single step of
a processing pipeline and section [PAGE_PARSER] defines which of the steps of the pipeline
should be computed. In case that a processing stage is missing some needed inputs the
processing exits with an error. Processing stages can be skipped only when the same
information was computed previously and is loaded from an existing Page XML file. An example

of a configuration file with explanation follows:

[PAGE_PARSER]

Which processing steps should be computed. The order of the steps is
fixed. Options are yes/no.

RUN_LAYOUT_PARSER = yes # Detection of paragraphs and text lines
RUN_LINE_CROPPER = yes # Crop text lines. This is needed for OCR
engine processing.

RUN_OCR = yes # Run OCR.

RUN_DECODER = no # Run optional decoding with a language model
which improves

[PARSE_FOLDER]

This section is used by parse_folder.py and can be used to specify
paths to input and output directories. However, it 1is advisable to
specify the directories using command line parameters. If the engine
is used directly without parse_folder.py, this section can be omitted.

Layout detection can be specified in multiple stages

[LAYOUT_PARSER_X] where X specifies the order of processing.
[LAYOUT_PARSER_1]

METHOD = LAYOUT_CNN # This method uses neural network to detect
lines and paragraph.

DETECT_LINES = yes # Should the method detect lines

DETECT_REGIONS = yes # Should the method detect text regions. This
option can be set to “no” when text regions are defined in input Page
XML files.

MERGE_LINES = no # Optionally merges lines with similar horizontal
positions inside a text region. This is usually not needed.
ADJUST_HEIGHTS = no # Adjust height of existing lines. This can be
used only when text lines are specified in input Page XML files.

MODEL_PATH = ./ParseNet.pb # Path to a Pytorch network which processes
images and detects lines and paragraph.
MAX_MEGAPIXELS = 5 # Maximum resolution of image which can be

processed. The resolution is dynamic and adapts to text size in an
image. This option effectively limits processing scale. 5 MPx fits
into 5GB of GPU memory.

GPU_FRACTION = 0.5 # Fraction of GPU memory which should be allocated
to this processing step.

USE_CPU = no # Set this option to yes if you want to avoid using GPU.
CPU processing can be 2-5x slower depending on the CPU type, GPU type
and page size.

DOWNSAMPLE = 4 # Initial image downsampling factor for processing. 4
is generally a good option for most documents and if it 1is not
optimal, the engine changes this downsampling factor based on text

size. If your text size if very big, you can increase the this number.
If your text is tiny, you can try to decrease it

PAD = 52 # Do not change this value

DETECTION_THRESHOLD = 0.2 # Higher values result in more detected
text lines. Lower values result in less detected text line or possibly
in broken text lines. Generally, there should be no need to adjust
this parameter

[LAYOUT_PARSER_2]
METHOD = REGION_SORTER_SMART # This method orders paragraphs base on
simple rules.

[LINE_CROPPER]

This stage crops text lines for OCR. The parameters have to match
the expectation of the OCR engine and generally should not be changed
if you are using an OCR engine. You may want to change the values if
you want to crop text lines and use them outside per-ocr.

INTERP = 2 # Base lines are interpolated by polynom of this order.
LINE_SCALE = 1.25 # This scale changes the height of the cropped
regions in the source image.

LINE_HEIGHT = 40 # Resulting “normalized” height in pixels of the
cropped text line images.

[OCR]

This stage reads text from each cropped text line.

METHOD = pytorch_ocr # This 1is the only supported method at the
moment.

OCR_JSON = ./ocr_engine.json # This is a path to an OCR configuration
file. The content of the OCR configuration file should not be changed.

Integration of the pero-ocr python module

This example shows how to directly use the OCR pipeline provided by pero-ocr package which
can be used to integrate pero-ocr into other applications. Class PageLayout represents
content of a single document page and can be loaded from Page XM1 and
exported to Page XML and ALTO XML formats. The OCR pipeline 1is
represented by the PageParser class.

import os

import configparser

import cv2

from pero_ocr.document_ocr.layout import PagelLayout

from pero_ocr.document_ocr.page_parser import PageParser

Read config file.

config_path = "./config_file.ini"
config = configparser.ConfigParser()
config.read(config_path)

Init the OCR pipeline.

You have to specify config_path to be able to use relative paths

inside the config file.

Page_parser = PageParser(config,
config_path=o0s.path.dirname(config_path))

Read the document page image.
input_image_path = "page_image. jpg"
image = cv2.imread(input_image_path, 1)

Init empty page content.

This object will be updated by the ocr pipeline. id can be any

string and it is used to identify the page.

page_layout = PagelLayout(id=input_image_path,
page_size=(image.shape[0], image.shape[1]))

Process the image by the OCR pipeline
page_layout = page_parser.process_page(input_image_path, page_layout)

page_layout.to_pagexml('output_page.xml') # Save results as Page XML.
page_layout.to_altoxml('output_ALTO.xml') # Save results as ALTO XML.

Render detected text regions and text lines into the image and
save it into a file.

page_layout.render_to_image(image)

cv2.imwrite('page_image_render.jpg')

Save each cropped text line in a separate .jpg file.
for region in page_layout.regions:
for line in region.lines:
cv2.imwrite(f'file_id-{line.id}.jpg', line.crop.astype(np.uint8))

