

Point Cloud

Rendering

System

Technical report

Lukáš Maršík

Brno University of Technology

Faculty of Information Technology

Brno, 2010

2

Contents

1. INTRODUCTION... 3

2. POINT CLOUD RENDERING FUNDAMENTALS... 3

2.1 Point Element Shape .. 3

2.2 Representation of Shapes ... 4

2.3 Representation of Colors.. 5

2.4 Rendering Engine... 6

3. SOFTWARE DEMO... 7

4. CONCLUSION ... 9

5. PUBLICATIONS .. 9

6. REFERENCES .. 9

3

1. INTRODUCTION

The approach described in this report is based on the idea that direct point cloud rendering,

which is in the principle not too complicated, can be efficiently implemented in modern graphics

cards, programmable or custom hardware. Such implementation can be useful not only for its

performance but especially for the possibility to include it into solutions that require 3D graphics

output also in non PC environments and in embedded solutions with low power consumption,

etc. The point cloud model rendering is very interesting alternative to the most common polygon

rendering (for example OpenGL), especially when scanned point cloud model is directly

available.

The principles of point cloud rendering are step-by-step described in second section. The third

section contains description of demo software programmed for PC and also photographs of

system output and experimental system as whole are included. Last a few sections contain

published papers and conclusion of stated work.

2. POINT CLOUD RENDERING FUNDAMENTALS

The point cloud rendering algorithms described in this report relies on rendering of the single

oriented points forming the point cloud.

2.1 Point Element Shape

One of the feasible geometrical representations of the scene element – oriented point – is an

oriented circle whose projection is a general ellipsis. See Figure 1.

Figure 1: Point element projection

Centre (x0, y0, z0)

Radius
Normal (nx, ny, nz)

4

The rendering algorithm can be subdivided into several principal parts [Zemc04][Hero05]

[Tisn02][Mars08]:

1. Projection of the elements’ positions into 2D screen and Z space and computation of the

corresponding elements’ projected normal and radius.

2. Evaluation of the elements’ color (lightness) based on the projected normal vector, element

local lighting model (material), and the light sources’ and observer’s parameters.

3. Rendering of the elements (ellipses) into the image frame buffer (visibility solved using Z-

buffer).

In the proposed approach, all of the parts are performed on regular PC. However hardware

acceleration is possible using DPS and FPGA chips (see [Mars08]). Then all the part 1 can also

be performed through the host processor (DSP), part 2 can also be performed partially in the

DSP through access to the pre-calculated reflection and diffusion tables and the final color

evaluation is done in the FPGA, and the part 3 is performed in the FPGA.

2.2 Representation of Shapes

The point shapes are pre-calculated. The idea of pre-calculation is based on the fact that the

normal vector can be converted into two dimensions according to the below equation and

quantized and thanks to the fact that radius can be quantized as well.

(1) () () nknnknnnn yxzyx ′=′′== rr
1,,,,

The shapes of ellipses (circle projections) can then be stored in tables, indexed by quantized

point size and normal vector, the size of the table is 17x612 (yx nn ′′ , are quantized as 61 values,

the particle size as 17).

An efficient method is used to compress the point bitmap, which uses namely the fact that the

point shape is convex and symmetrical. Based on experiments on practical data and hardware

implementation issues, the bitmap size is defined to be 8×8 pixels. For small points (whose shape

can fit into the 8×8 raster), symmetry is exploited to minimize the representation size.

Experiments show that majority of points rendered by the system meets the extent of small

points and their processing is thus efficient. However, even larger point shapes appear in the

rendered set, whose encoding takes larger number (inherently not limited, but practically 2×2) of

fractional bitmaps. See Figure 2 and Figure 3 for examples of small and large point shapes.

5

Figure 2: Small point shape evaluation

Figure 3: Large point shape evaluation

2.3 Representation of Colors

As for the color model, the proposed solution allows for Phong model with diffuse and specular

parts but limited to a single level of specular reflection and single color of light sources

presumably white.

(2) SpecularMaterialsDiffuseMateriald IkIkII ,,0
ˆˆˆˆ ++=

where Diffuse, Specular, and Material are parameters sent to the rendering engine for every

element while color 0Î and both dk̂ and sk̂ color tables are stored in the rendering engine.

The elements’ properties, as evaluated by steps 1. and 2. described above through the pre-

calculated table, form a code-word of 64 bits which enters the rendering Engine. See Figure 4 for

the code-word’s structure. Note, please, that the y co-ordinate is missing from the code word as

6

the engine generates it implicitly. Detailed description of the rendering machine is in the

following section of the report.

Figure 4: Point code word

2.4 Rendering Engine

Each of the point elements could be rendered very quickly, just through interpreting the key

word that is simple and the interpretation can easily be done in parallel (using graphics card with

CUDA/OpenCL or FPGA) except for the natural bottleneck lying in the number of pixels

affected by each point element that can be up to 64 (8x8 blocks).

In our approach, however, this bottleneck is overcome through subdividing of the raster image

memory and Z-buffer memory, used for rendering output, into 8 parts so that all the lines of the

element image (8x8 pixels) can be rendered in parallel. As the shape of the element is encoded in

very simple way (see above), the rendering lies merely in updating the Z-buffer and conditional

writing of a color value into the output raster. As the Z-buffer and raster memory have 4 pixels

per word (oriented horizontally), 8 pixels can be updated within 3 accesses in the memory as the

data is not always word aligned.

Because the size of the raster and Z-buffer memory especially in the FPGA is limited, our

implementation can slides a narrow window (e.g. 16 pixels high and as wide as the image) across

the output image line by line so that only that narrow window of raster and Z-buffer are present

in the on-chip memory in the FPGA. The already processed part of the image is flushed out of

the rendering engine. This approach allows for evaluating only those elements whose y co-

ordinate is in the centre of the sliding window. This fact enforces sorting of the elements

according to the y co-ordinate and sending them into the rendering engine in the y order. While

the sorting operation seems to cause high computational complexity, the fact is that the y range is

limited and as the co-ordinates are anyway integer, the sorting can be seen as merely subdividing

the point cloud (set) into several subsets with linear complexity.

7

See Figure 5 for the illustration of sliding window. Note, please, that 8 pixels high window

would be sufficient for rendering but the extra lines are suitable for buffered flushing of the

output and buffered loading of the input (initialized raster and Z-buffer).

Figure 5: Sliding window over the raster

3. SOFTWARE DEMO

The software demo is programmed in C++ using the OpenCV library for simple and

multiplatform window creation, image showing and handling its real-time animation. Software

simply reads point cloud from model file, store them and for each of frame of animation perform

particle projection, encoding and rendering as described above. Moreover particle size and color

can be also defined, so is possible to shade (with Phong model as described above) appropriately

large particles using various materials (with red, green and blue components). There can also be

optionally set initial background of each frame of scene (see Figure 6).

Software running on the regular laptop is able to perform rendering with rate 30 and more FPS

(the actual frame rate is printed out to the console). Using the CUDA or OpenCL for

programming the rendering part of software and running rendering algorithm on graphics card

can rapidly increase frame rate. Another very powerful option is usage of a specialized hardware

as a combination of DSP (projecting particles and encoding into the codeword) and FPGA chip

(rendering). Representative of such system can be PC with CAMEA Uni1p PCI board

complemented with DX64 acceleration modules (see Figure 7), as stated in [Mars08].

8

Figure 6: Software demo output (point cloud model of bone with 25816 elements)

Figure 7: PC system with Uni1p board and DX64 modules

9

4. CONCLUSION

The presented demo software shows alternative approach to scene rendering. Instead of using

triangles as a primitive we decided to use oriented ellipses as representatives of particular points.

This is advantage especially if we directly have list of scanned points, then no conversion into

the polygonal mesh is necessary. The rendered scene can be realistic enough thanks to the

shading model (including materials) and point cloud resolution. It has been shown that rendering

of point cloud can be well paralleled and hardware accelerated using modern chips.

5. PUBLICATIONS

Published:

• Zemčík, P., Maršík, L., Herout, A.: Point Cloud Rendering in FPGA, Proceedings of

WSCG 2009, Plzeň, Czech Republic, 2009

6. REFERENCES

 [Gros02] Gross, M.: Point Based Computer Graphics, Proceedings of SCCG 2002, Budmerice, Slovakia,

2002

[Hero05] Herout, A., Zemčík, P.: Hardware Pipeline for Rendering Clouds of Circular Points, In:

Proceedings of WSCG 2005, Plzeň, Czech Republic, 2005

[Mars08] Maršík, L.: Image processing in FPGA, Bc. Thesis, Brno University of Technology, Brno,

Czech Republic, 2008 (in Czech)

[Rusi01] Rusinkiewicz, S.: Surface splatting, Proceedings of SIGGRAPH 2001, USA, 2001

[Tisn02] Herout, A., Tišnovský, P.: Vector Field Calculations on a Special Hardware Architecture, In:

East-West-Vision 2002 Proceedings, Graz, TUV, Austria, 2002

[Zemc03] Zemčík, P., Tišnovský, P., Herout, A.: Particle Rendering Pipeline, Proceedings of SCCG

2003, Budmerice, Slovakia, 2003

[Zemc04] Zemčík, P., Herout, A., Crha, L. Tupec, P. Fučík, O.: Particle rendering pipeline in DSP and

FPGA, In: Proceedings of Engineering of Computer-Based Systems, Los Alamitos, USA, IEEE CS,

2004

