Point Cloud
Rendering
System

Technical report

Lukas Marsik

Brno University of Technology
Faculty of Information Technology

Brno, 2010

s oo

T

FACULTY
OF INFORMATION
TECHNOLOGY

Contents
1. INTRODUCTION

2. POINT CLOUD RENDERING FUNDAMENTALS

2.1 POINt EIEMENT SNAPE ...oeiiiiiiieiiii ettt ee e e e e e e e e e e e e e aae e 3
2.2 Representation Of SNAPES ... cemmmmmmi i e 4
2.3 Representation Of COIOIS..........ooiiiiiiiimm e 5
P =Y oo [T oo TN = oV 1T = P 6
3. SOFTWARE DEMOciiiiiiiiiiiii et eeeeee et e et ee e e e sstte e e e s et bae e e s snneesannneaeeennnees 7
4. CONCLUSION ...ttt e e e et e e e s bbb e e e e sneee e s et b e e e s anaaeeens 9
5. PUBLICATIONS ..ottt ettt emmmms e e e et e e e e e sst e e e e ante e e e e e e s st e e nnseeeeeannseeeeeennnes 9
6. REFERENGCESottt ettt e e erane e e bba e e e e e annaeeeas 9

1. INTRODUCTION

The approach described in this report is basedhenidea that direct point cloud rendering,
which is in the principle not too complicated, danefficiently implemented in modern graphics
cards, programmable or custom hardware. Such ings&ation can be useful not only for its
performance but especially for the possibilityriolude it into solutions that require 3D graphics
output also in non PC environments and in embedadddtions with low power consumption,
etc. The point cloud model rendering is very irgérgy alternative to the most common polygon
rendering (for example OpenGL), especially whennsed point cloud model is directly
available.

The principles of point cloud rendering are stepstgp described in second section. The third
section contains description of demo software @wgned for PC and also photographs of
system output and experimental system as wholeingtaded. Last a few sections contain
published papers and conclusion of stated work.

2. POINT CLOUD RENDERING FUNDAMENTALS

The point cloud rendering algorithms describedhiis teport relies on rendering of the single
oriented points forming the point cloud.

2.1 Point Element Shape

One of the feasible geometrical representationth@fscene element — oriented point — is an

oriented circle whose projection is a general sifipSee Figure 1.

Radius
Normal i, ny, ny)

Centre Xo, Yo, Zo)

Figure 1: Point element projection
3

The rendering algorithm can be subdivided into sdverincipal parts [Zemc04][Hero05]
[Tisn02][Mars08]:

1. Projection of the elements’ positions into 2Desen and Z space and computation of the
corresponding elements’ projected normal and radius

2. Evaluation of the elements’ color (lightness¥dzhon the projected normal vector, element
local lighting model (material), and the light soes’ and observer’s parameters.

3. Rendering of the elements (ellipses) into thagenframe buffer (visibility solved using Z-
buffer).

In the proposed approach, all of the parts areopmdd on regular PC. However hardware
acceleration is possible using DPS and FPGA clips [Mars08]). Then all the part 1 can also
be performed through the host processor (DSP), 2adn also be performed partially in the
DSP through access to the pre-calculated reflectioth diffusion tables and the final color
evaluation is done in the FPGA, and the part &ifgomed in the FPGA.

2.2 Representation of Shapes

The point shapes are pre-calculated. The idea ef@iculation is based on the fact that the
normal vector can be converted into two dimensiansording to the below equation and

guantized and thanks to the fact that radius cagjuleatized as well.
1) A=(n, n,,n)= k(n’x,n'y 1) = ki

The shapes of ellipses (circle projections) cam the stored in tables, indexed by quantized

point size and normal vector, the size of the tabl&7x6T (n,,n, are quantized as 61 values,

the particle size as 17).
An efficient method is used to compress the poitmhdp, which uses namely the fact that the
point shape is convex and symmetrical. Based omr@rpnts on practical data and hardware
implementation issues, the bitmap size is defidokt8x8 pixels. For small poinfiwhose shape
can fit into the 8x8 raster), symmetry is exploiteml minimize the representation size.
Experiments show that majority of points rendergdtlire system meets the extent of small
points and their processing is thus efficient. Hosve even larger point shapes appear in the
rendered set, whose encoding takes larger numidezréntly not limited, but practically 2x2) of
fractional bitmaps. See Figure 2 and Figure 3 faneples of small and large point shapes.

4

o

,?F4'

o

[N T =
B . H H H
-
(=]
[T
Lr

o

re=1===r==Tr-=
'EI"I Wioouwnooun
LE I T T I P

1
1
—
1
1
1
——m——p——
1
1
—

JRSPRRSEN U A Y SV S P

Figure 2: Small point shape evaluation

-.Lo%: -

5:1. Lo%:

3
LLo%:5

LLo%:5

SLo%:E
Lo%:E

Lo%:5

[T - Y - - N - TR - T - - B

Lo%:5

Figure 3: Large point shape evaluation

2.3 Representation of Colors

As for the color model, the proposed solution aidar Phong model with diffuse and specular
parts but limited to a single level of specularlaetion and single color of light sources

presumably white.

A

(2) I = Io + kd,MateriaI I Diffuse + ks,MateriaI I Specular

where Diffuse, Specular, and Material are parameters sent to the rendering engine feryev
element while coIorIAO and bothlzc| andlzS color tables are stored in the rendering engine.

The elements’ properties, as evaluated by stepsnd.2. described above through the pre-
calculated table, form a code-word of 64 bits wheatters the rendering Engine. See Figure 4 for

the code-word’s structure. Note, please, thatythe-ordinate is missing from the code word as

5

the engine generates it implicitly. Detailed dgstton of the rendering machine is in the

following section of the report.

8 1 24 25 31 32 38 319 45 46 54 55 63
‘HD[IE| SCANS ‘DIFFUSE ‘SPECULAI! ‘HATERIAL‘ X | Z ‘

Figure 4: Point codeword

2.4 Rendering Engine

Each of the point elements could be rendered vergkly, just through interpreting the key
word that is simple and the interpretation canlgd& done in parallel (using graphics card with
CUDA/OpenCL or FPGA) except for the natural botHek lying in the number of pixels
affected by each point element that can be up (@%8 blocks).

In our approach, however, this bottleneck is overedhrough subdividing of the raster image
memory and Z-buffer memory, used for rendering oytmto 8 parts so that all the lines of the
element image (8x8 pixels) can be rendered in lghréls the shape of the element is encoded in
very simple way (see above), the rendering liesetyien updating the Z-buffer and conditional
writing of a color value into the output raster. the Z-buffer and raster memory have 4 pixels
per word (oriented horizontally), 8 pixels can Ipglated within 3 accesses in the memory as the
data is not always word aligned.

Because the size of the raster and Z-buffer menagpecially in the FPGA is limited, our
implementation can slides a narrow window (e.gpikéls high and as wide as the image) across
the output image line by line so that only thatroarwindow of raster and Z-buffer are present
in the on-chip memory in the FPGA. The already pssed part of the image is flushed out of
the rendering engine. This approach allows for watalg only those elements whogeco-
ordinate is in the centre of the sliding window.isTiact enforces sorting of the elements
according to theg co-ordinate and sending them into the renderirggnenin they order. While

the sorting operation seems to cause high compuotdtcomplexity, the fact is that tgeange is
limited and as the co-ordinates are anyway inteégersorting can be seen as merely subdividing

the point cloud (set) into several subsets witedincomplexity.

See Figure 5 for the illustration of sliding windoWote, please, that 8 pixels high window
would be sufficient for rendering but the extraebnare suitable for buffered flushing of the

output and buffered loading of the input (initigtzraster and Z-buffer).

EXPORTED EUFFERS
RASTER IMAGE LINE ©, N,
BUFFER BANK 8 2N

R LINE 1, 1+N,
BUFFER BANK 1 1+2N

. FRAME & Z LINE 2, 2+N,
BUFFER BANK 2 2+2N

z LINE N-2, 2ZN-2,
BAnK N-2| | 3N-2

FRAME & Z LINE N-1, 2N-1,
BUFFER BANK N-1| | 3N-1

Figure5: Sliding window over theraster

3. SOFTWARE DEMO

The software demo is programmed in C++ using theen@QYy library for simple and
multiplatform window creation, image showing andhdliing its real-time animation. Software
simply reads point cloud from model file, storerthand for each of frame of animation perform
particle projection, encoding and rendering as ril@sd above. Moreover patrticle size and color
can be also defined, so is possible to shade @htng model as described above) appropriately
large particles using various materials (with rg@eken and blue components). There can also be
optionally set initial background of each framesoéne (see Figure 6).

Software running on the regular laptop is ableadgym rendering with rate 30 and more FPS
(the actual frame rate is printed out to the cagsoUsing the CUDA or OpenCL for
programming the rendering part of software and inopnmendering algorithm on graphics card
can rapidly increase frame rate. Another very péweption is usage of a specialized hardware
as a combination of DSP (projecting particles ancbding into the codeword) and FPGA chip
(rendering). Representative of such system can Gewh CAMEA Unilp PCI board

complemented with DX64 acceleration modules (sgar€i7), as stated [Mars08].

Figure 6: Software demo output (point cloud model of bone with 25816 elements)

- S i o
Figure 7: PC system with Unilp board and DX64 modules

8

4. CONCLUSION

The presented demo software shows alternative apprto scene rendering. Instead of using
triangles as a primitive we decided to use orierlédses as representatives of particular points.
This is advantage especially if we directly hawt 6f scanned points, then no conversion into
the polygonal mesh is necessary. The rendered szamébe realistic enough thanks to the
shading model (including materials) and point cloesblution. It has been shown that rendering

of point cloud can be well paralleled and hardvwareelerated using modern chips.

5. PUBLICATIONS

Published:
o Zemxik, P., MarSik, L., Herout, A.: Point Cloud Renaeyiin FPGA, Proceedings of
WSCG 2009, Plze Czech Republic, 2009

6. REFERENCES

[Gros02] Gross, M.: Point Based Computer Graphiesceedings of SCCG 2002, Budmerice, Slovakia,
2002

[HeroO5] Herout, A., Zewik, P.: Hardware Pipeline for Rendering Clouds dfc@ar Points, In:
Proceedings of WSCG 2005, Riz€zech Republic, 2005

[Mars08] Marsik, L.: Image processing in FPGA, Btesis, Brno University of Technology, Brno,
Czech Republic, 2008 (in Czech)

[RusiO1] Rusinkiewicz, S.: Surface splatting, Pextiags of SIGGRAPH 2001, USA, 2001

[Tisn02] Herout, A., TiSnovsky, P.: Vector Field I@adations on a Special Hardware Architecture, In:
East-West-Vision 2002 Proceedings, Graz, TUV, Aas#002

[Zemc03] Zentik, P., TiSnovsky, P., Herout, A.: Particle RendgriPipeline, Proceedings of SCCG
2003, Budmerice, Slovakia, 2003

[Zemc04] Zentik, P., Herout, A., Crha, L. Tupec, P.dk) O.: Particle rendering pipeline in DSP and
FPGA, In: Proceedings of Engineering of Computese€BhSystems, Los Alamitos, USA, IEEE CS,
2004

