Project Details
NTT - Speech enhancement front-end for robust automatic speech recognition with large amount of training data
Project Period: 1. 1. 2019 - 31. 12. 2019
Project Type: contract
Partner: NTT Corporation
Czech title
NTT - Parametrizace s obohacováním řeči pro robustní automatické rozpoznávání řeči s velkým objemem trénovacích dat
Type
contract
Keywords
speech recognition, robustness, large data, DNN embeddings
Abstract
The purpose of the Joint Research is to develop Speech enhancement front-end for robust automatic speech recognition with large amount of training data through the cooperation of NTT and BUT. The work is relying on embeddings produced by neural networks in various places of the processing chain.
Team members
Žmolíková Kateřina, Ing., Ph.D.
(DCGM FIT BUT)
, research leader
Černocký Jan, prof. Dr. Ing. (DCGM FIT BUT) , team leader
Černocký Jan, prof. Dr. Ing. (DCGM FIT BUT) , team leader
Publications
2020
- ROHDIN Johan A., SILNOVA Anna, DIEZ Sánchez Mireia, PLCHOT Oldřich, MATĚJKA Pavel, BURGET Lukáš and GLEMBEK Ondřej. End-to-end DNN based text-independent speaker recognition for long and short utterances. Computer Speech and Language, vol. 2020, no. 59, pp. 22-35. ISSN 0885-2308. Detail
2019
- DELCROIX Marc, ŽMOLÍKOVÁ Kateřina, OCHIAI Tsubasa, KINOSHITA Keisuke, ARAKI Shoko and NAKATANI Tomohiro. Compact Network for Speakerbeam Target Speaker Extraction. In: Proceedings of ICASSP. Brighton: IEEE Signal Processing Society, 2019, pp. 6965-6969. ISBN 978-1-5386-4658-8. Detail
- DELCROIX Marc, ŽMOLÍKOVÁ Kateřina, OCHIAI Tsubasa, KINOSHITA Keisuke, ARAKI Shoko and NAKATANI Tomohiro. Evaluation of SpeakerBeam target speech extraction in real noisy and reverberant conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 2019, no. 2, pp. 1-2. ISSN 0369-4232. Detail