Výzkum užitečný pro společnost.
Project Details
Deep learning v psychoterapii: Strojová analýza nahrávek terapeutických sezení
Project Period: 1. 5. 2020 - 31. 8. 2023
Project Type: grant
Code: TL03000049
Agency: Technology Agency of the Czech Republic
Program: 3. veřejná soutěž Program na podporu aplikovaného společenskovědního a humanitního výzkumu, experimentálního vývoje a inovací ÉTA
Psychotherapy process; Feedback-Informed Treatment; Routine Outcome Monitoring; Routine Process Monitoring; Automatic Speech Recognition; Unsupervised Adaptation of Speech Recognition system; Diarization; Natural Language Processing; Machine Learning
Psychotherapy is an expert activity requiring continuous decision-making and continuous evaluation of the course of the psychotherapeutic process by the psychotherapist. In practice, however, psychotherapists suffer from a lack of immediate feedback to support this decision. The project aims to create a tool that enables automated analysis of audio recordings of psychotherapeutic sessions to provide psychotherapists feedback on the course in a short time. The project is designed in cooperation with Brno University of Technology and Masaryk University and is based on technologies of automatic speech recognition, natural language computer processing, machine learning, expert coding of psychotherapeutic process and self-assessment questionnaire methods. Its expected outcome will be software providing psychotherapists with user-friendly and practically beneficial feedback with the potential to improve psychotherapeutic care.
Karafiát Martin, Ing., Ph.D. (UPGM FIT VUT) , team leader
Beneš Karel, Ing. (UPGM FIT VUT)
Burget Lukáš, doc. Ing., Ph.D. (UPGM FIT VUT)
Kašpárek Tomáš, Ing., Ph.D. (CVT FIT VUT)
Kesiraju Santosh (UPGM FIT VUT)
Nehyba Jan, Mgr., Ph.D. (MUNI)
Novotný Ondřej, Ing., Ph.D. (UPGM FIT VUT)
Novotný Tomáš
Sarvaš Marek, Bc. (UPGM FIT VUT)
Žižka Josef, Ing. (UPGM FIT VUT)
2023
- ŘIHÁČEK Tomáš, NEHYBA Jan, ČEVELÍČEK Michal, POLOK Alexander, MATĚJKA Pavel and DOLEŽAL Petr. DeePsy: Představení online nástroje pro zpětnou vazbu v psychoterapii. Psychoterapie. Masarykova univerzita AN FL, vol. 17, no. 1, 2023, pp. 1-11. ISSN 1802-3983. Detail
2021
- ŘIHÁČEK Tomáš and MATĚJKA Pavel. Deep learning v psychoterapii: Strojová analýza nahrávek terapeutických sezení. E-psychologie, vol. 15, no. 3, 2021, pp. 35-37. ISSN 1802-8853. Detail