Project Details
Speech enhancement front-end for robust automatic speech recognition with large amount of training data
Project Period: 2. 1. 2023 - 31. 1. 2024
Project Type: contract
Partner: NTT Corporation
Czech title
Parametrizace s obohacováním řeči pro robustní automatické rozpoznávání řeči s velkým objemem trénovacích dat
Type
contract
Keywords
speech recognition, speaker diarization, large data, robustness
Abstract
The joint research will aim at investigating and developing speech enhancement and speaker diarization techniques for automatic speech recognition systems that are trained using a large amount of training data.
Team members
Diez Sánchez Mireia, M.Sc., Ph.D.
(DCGM FIT BUT)
, research leader
Černocký Jan, prof. Dr. Ing. (DCGM FIT BUT) , team leader
Pavlus Ján, Ing. (DCGM FIT BUT)
Peng Junyi, Msc. Eng. (DCGM FIT BUT)
Švec Ján, Ing. (DCGM FIT BUT)
Černocký Jan, prof. Dr. Ing. (DCGM FIT BUT) , team leader
Pavlus Ján, Ing. (DCGM FIT BUT)
Peng Junyi, Msc. Eng. (DCGM FIT BUT)
Švec Ján, Ing. (DCGM FIT BUT)
Publications
2023
- DELCROIX Marc, TAWARA Naohiro, DIEZ Sánchez Mireia, LANDINI Federico Nicolás, SILNOVA Anna, OGAWA Atsunori, NAKATANI Tomohiro, BURGET Lukáš and ARAKI Shoko. Multi-Stream Extension of Variational Bayesian HMM Clustering (MS-VBx) for Combined End-to-End and Vector Clustering-based Diarization. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. Dublin: International Speech Communication Association, 2023, pp. 3477-3481. ISSN 1990-9772. Detail