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Abstract

In the paper, we describe our experiments in the interac-
tive surveillance event detection pilot (SED) of the 2009
TRECVid  evaluation.  Our  approach  inherits  function-
ality  of  the  Surveillance  Network  Augmented  by
Retrieval  (SUNAR)  system,  which  is  an  information
retrieval  based  wide  area  (video)  surveillance  system
being  developed  at  Faculty  of  IT,  Brno  University  of
Technology. It contains both standard and experimental
techniques evaluated at the AVSS 2009/10 Multi-Camera
Tracking Challenge. We have deployed active learning
functionality  (Bayesian,  SVM  and  HMM)  based  on
moving objects' trajectory statistics and shape classifica-
tion using  Video Terror Application Programming Inter-
face (VTApi), which was created to unify and accelerate
the intelligent vision applications development.

The paper is organized as follows. Section 1 provides a
motivation and a brief introduction. Section 2 is  dedi-
cated to the active learning approach and other theoret-
ical  aspects  of  the work.  Details  on the technology is
presented in  Section 3.  Section 4 shows some experi-
mental  results  achieved  during  the  training.  Finally,
Section 5 discusses achieved results and concludes the
paper. Evaluation results are attached at the end of the
paper.

1. We have submitted the following SED runs:
• BrnoUT_2013_retroED_EVAL13_ENG_s-camera_p

-SUNAR-SVM_1  –  contains  2000  “best”  shots
classified by SVM for each event based on the object
shape and trajectory using active-learning.

• BrnoUT_2013_retroED_EVAL13_ENG_s-camera_c
-SUNAR-HMM_1 – contains 2000 best trajectories
classified by HMM (including object shapes).

• SED13_BrnoUT_2013_interactiveED_EVAL13_EN
G_s-camera_p-SUNAR-121_1 – includes only shots
annotated during the interactive period.

2. The major difference between the runs is the training
method  (SVM and  HMM) and  the  active  learning
step based  on 25 min.  annotating of  results  of  the
retrospective task. The retrospective task maximized
recall,  while  the  interactive  task  maximized
precision.

3. The  mayor  contribution  was  the  semi-automatic
annotation  using  active-learning,  classification  of
object description using trajectory and shape features
and the tracker able to handle multiple occlusions.

4. The challenge  of  the TRECVid SED pilot  and  the
video surveillance event detection in general  is  the
ability  to  learn  from  annotations  provided  and  to
improve the  classifiers  by providing more  accurate
samples and higher-quality features extracted.
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1. Introduction

In  2006,  we  have  started  to  develop  an  IR-based
multi-camera tracking system intended to be at the top
of the state of the art. The idea was to create an auto-
mated system for visual features detection, indexing and
analysis,  which  can  reduce  the  burden  of  continuous
concentration on monitoring and increase the effective-
ness of information reuse by security, police, emergency,
firemen or armed services. 

Brno University of Technology, Faculty of Information
Technology has taken part at TRECVid since 2007. In
the past, we have taken part in various tasks, but SED in
2008  and  2012  only.  Our  first  attempt  was  based  on
advanced  masking,  background  subtractions  and
extracted  trajectories.  Later,  we  have  avoided  the
masking approach focused more on other moving object
based features and active learning.

The challenge of the TRECVid pilot and a better video
surveillance event detection in general are high-quality
annotations.  There  is  only  temporal  localization
ground-truthed  by  the  University  of  Pennsylvania
Linguistic Data Consortium. And this fact does not help
for  surveillance  task  of  this  kind  much.  The  manual
labeling of objects taking part in the event annotated is
really  expensive in  such amounts  of  video (a hour of
video takes about 5 hours of burden work), therefore we
needed a more  optimal  strategy.  For that  purpose,  we
have developed two modes of annotation interfaces – the
first one uses the output of our vision module (so that
annotating  1  hour  of  video  takes  about  1  hour).  The
second  approach  sorts  the  classified  outputs  and  only
two keys (of a keybord) are necessary to mark the event
shown – positive (1+) or negative (0, Enter) and thus the
annotation  process  may  be  further  optimized.  This  is
accomplished by active learning, as described further.

2. The idea of active learning

Active Learning (AL) systems attempt to overcome the
labeling  bottleneck  by  asking  queries  in  the  form  of
unlabeled  instances  to  be  labeled  by  an  oracle  (e.g.
a human  annotator). In this way, the active learner aims
to achieve high accuracy using as few labeled instances

Fig.  1.  SED Annotator  in  the initial  Round #1 mode.
A human  annotator  is  supposed  to  click  the  running
object or type the proper number when occluded.

as  possible,  thereby  minimizing  the  cost  of  obtaining
labeled data. Active learning is an optimal experimental
design  strategy.  The  hypothesis  is  that  if  the  learning
algorithm is allowed to choose the data from which it
learns, it will perform better with less training [1].

An example of active learning is the pool-based active
learning cycle. A learner may begin with a small number
of  instances  in  the  labeled  training  set  L and  request
labels for one or more carefully selected instances, learn
from the query results, and then leverage its new knowl-
edge to choose which instances to query next. An illus-
tration of such process is in figure 2. 

Several approaches to the active learning exists. One of
the first  active learning scenarios to be investigated is
learning  with membership  queries.  In  this  setting,  the
learner may request labels for any unlabeled instance in
the  input  space,  including  (and  typically  assuming)
queries  that  the  learner  generates  de novo rather  than
those sampled from some underlying natural distribution
[1].  The  idea  of  synthesizing  queries  has  also  been

(a)        (b)   (c)
Fig. 2: Illustration of a pool-based active learning. It shows the advantage to the learning performance when anno-
tated the same amount of samples in (b) and (c) out of (a) [Settles, 2009].

http://www.ldc.upenn.edu/


extended to regression learning tasks, which is similar to
the stream-based selective sampling. Other query strate-
gies  aim  to  the  metric  that  should  be  minimized  (or
maximized) by the learner.  For instance, it  is  entropy,
expected model change, density weight, error rate and
variance. For more detailed information see [1].

The  approaches  of  AL may  thus  iterate  to  achieve  a
higher learner performance. Moreover, it can be supple-
mented by an unsupervised (clustering) or semi-super-
vised learner  [2].  In  this way, the annotator can mark
only  well  discriminative  centers  of  clusters  (making
sense)  according  to  the  requirements  for  instance.  A
survey on other semi-supervised learning methods can
be found in [3].

Fig.  4.  Same scene as in figure 1 at  the Round #2 of
active learning process – a human annotator is supposed
press “1” if the object highlighted is really running.

3. The technology

The goal was simply to perform online tracking, object
and  event  detection  to  produce  the  metadata;  and  to
clean, integrate, index and store the metadata to be able
to query and analyze it. Upon our knowledge, SUNAR
has  been  the  first  implementation  of  a  surveillance
system whose functionality  is  based on querying. The
queries are of two types – online ones are used mainly
for identity preservation; and offline to query the meta-
data of  the  camera  records in  the wide area  when an
accident, crime, a natural or human disaster occurs.

3.1 SUNAR

In brief, SUNAR is composed of three basic modules –
video processing and retrieval, the monitoring interface
and  the  video  source  (server  or  camera  network).
Computer  Vision  Modules  are  based  on  the  OpenCV
Library for object tracking extended by feature extrac-
tion  and  network  communication  capability  similar  to
MPEG-7. Information about objects and the area under
surveillance is cleaned, integrated, indexed and stored in
Video Retrieval Modules. They are based on the Post-
greSQL database  extended to be capable of  similarity
and  spatio-temporal  information  retrieval,  which  is
necessary for both non-overlapping surveillance camera
system as  well  as  information analysis  and mining in
a global context.

The video source might be a camera or a video server. It
is not a generic part of the system but it must be capable
of a standard TCP/IP communication used to communi-
cate  between all  of  described  modules.  Each  module,
except the Human Monitoring Interface, is responsible
for capturing, analysis and retrieval in appropriate part
of the wide area under surveillance. Modules communi-
cate  basically  only  with  their  neighborhoods.  In  this
way, we can build a considerably large system because
no special central unit is necessary.

Fig. 3. Illustration of the SUNAR architecture.



Computer vision

The  input  of  the  Computer  Vision  Module  (CVM) is
a video stream. We use OpenCV [4] for tracking and 3D
calibration especially (if feasible). We have extended the
OpenCV  Blobtrack  demo  to  be  capable  of  feature
extraction, object (and event) recognition and IP based
video stream capture using all capabilities of customized
built-in FFMPEG (www.ffmpeg.org) server and client.

Object tracking [5] is a complex problem and it is hard
to make it working well,  upon to our experience with
real  (crowded)  scenes  as  illustrated  in  figure  2.
Discussed approach is based mainly on proved methods
of object tracking implemented in the Open Computer
Vision  Library  [4].  These  methods  are  illustrated  in
figures 1 and 5; and the schema in figure 3.

Foreground  is  derived  from  background,  which  is
modeled using Gaussian Mixture Models (GMM, [6]) as
an average value of color in each pixel of video and the
foreground is  a value  different  to  the background.  We
have also been inspired by the approach developed by
Carmona et al.  [7], which is based on segmentation of
the  color  in  RGB color  space  into  background,  fore-
ground and noise (reflection, shadow, ghost and fluctua-
tion) using a color difference cone with vertex located in
the  beginning  of  the  RGB coordinate  system.  In  this
way,  the illumination can be separated from the color
more  easily.  However  the  selection  of  appropriate
parameters is a burden task, which is usual in unsuper-
vised learning [8].

The other two modules – blob entrance and tracking are
standard OpenCV Blobtrack  [4] functions with appro-
priate  parameters.  Blob  entrance  detection  is  done by
tracking connected components of the foreground mask.
The  Blob  tracking  algorithm  is  based  again  on
connected  components  tracking  and  Particle  filtering
based on Means-shift resolver for collisions. We plan to
extend the entrance algorithm, because it  doesn't track
the  object  from its  early  appearance.  There  was  used
also  the trajectory  refinement  using  the  (inverted)
Kalman filter as described in [9].

The trajectory generation module has been completely
rewritten  to  add  the  feature  extraction  and  TCP/IP
network  communication  capability.  The  protocol  is
based on SQL, rather than XML (in previous versions)
similarly to MPEG-7 [10]. 

The output of the CVM module is metadata of objects
and the environment. It includes local identification of
objects,  its  spatio-temporal  location  and  its  changes
(speed) in the monitored area and a description of such
objects – its dimensions, shape, color, texture or other
special features (e.g. state plate or face descriptor) simi-
larly to MPEG-7 [10]. The description is complemented
with recognition of basic object classes (e.g. cars, trol-
leys,  people or  groups)  and events (opposite way, left
luggage) as described in the theoretical chapter.

Video retrieval

The  main  idea  of  the  proposed  wide  area  system  is
however  implemented  in  the  Video  Retrieval  Module
(VRM). The input of the module is metadata produced
by CVMs. This metadata is cleaned and normalized in
time and space (lighting, color  bias and estimated 3D
parameters) and stored in the PostgreSQL database. The
primary function of the VRM was the object identifica-
tion – to integrate identifiers (IDs) of objects in the wide
area, based on the previous occurrence of the object and
its  appearance.  This  has  been  evaluated  at  the  AVSS
2009/10  Multi-Camera  Tracking  Challenge.  Although,
this functionality was omitted for the purpose of SED
2013 evaluation, we have used the feature extraction and
classification  capabilities  of  SUNAR  to  perform  the
event classification.

Analysis and classification

As  stated  above,  the  Analysis  submodule  is  rather
complex  –  it  uses  OLAP–based  functionality  for
providing statistics on different granularities and views
and  it  supports  many  machine-learning  methods  as
Bayes classifiers, SVM [11], EM/GMM [6], HMM some
other and time-series variants, frequent pattern analysis
and various clustering algorithms. More detailed infor-
mation can be found in [12].

For the purpose of SED, we have employed parameter
selection search using 5-fold cross-validation SVM [11]
based  on  transformed  features  extracted  from  the
moving objects and their trajectories. We refer this clas-
sification scheme as “Track”. It contains features:

1. Camera (1-5).
2. Position – trajectory start (x1, y1), end (x2, y2), mean

(μx,  μy),  standard  deviation (σx,  σy)  and  sum (Σdx,
Σdy).

3. Trajectory duration (t).
4. Speed at trajectory start (dx1, dy1, v1) end (dx2, dx2,

v2) mean (μdx, μdy, μv) and standard deviation (σdx, σdy,
σv).

5. Object size at first occurence (w1, h1), last one (w2,
h2), mean (μw, μh) and standard deviation (σw, σh).

6. Average color (layout) based on JPEG compression
technique of 8x8 pixel object resampled in Y'CbCr
color space, from which are zig-zag extracted DCT
coefficients.  We  use  15  (Y)  +  2*10  (Cb  and  Cr)
coefficients (c1..35).

7. Object shape using central normalized moments up 
to the third order (η20, η11, η02, η30, η21, η12, η03) 
computed [4] from segmented image (alpha 
channel).

Because the shape moments do not give good classifica-
tion results when aggregated (average), we have created
a  separate  training case.  The trajectory  is  split  into  4
segments  and  their  border  shapes  are  extracted  and
concatenated into a feature vector. We refer this classifi-
cation scheme as “Shape”.



Because the VRM Analysis module uses various classi-
fiers, we have adopted the fully-probabilistic combina-
tion  of  their  results.  For  SED 2013,  we  used  simple
naïve Bayes combination of SVM and HMM.

Hidden Markov Models

The need of knowledge discovery in the trajectory data
leads  to  the  linear  dynamic  an  Example  d  Markov
models  for  the  data  classification.  The  presented
approach is based on supervised learning and classifica-
tion  using  HMMs  of  classes  of  behavior  are  created
upon  some  annotated  trajectories.  A  hidden  Markov
model  (HMM,  [6])  is  a  statistical  Markov  model  in
which  the  system being  modeled  is  assumed  to  be  a
Markov process with unobserved (hidden) states, simi-
larly  to   dynamic  Bayesian  network.  Example  of  an
HMM  is  shown  in  figure  8.  The  sample  model  is
described as a graph with four internal and two marginal
states  connected  by  (oriented)  transitions.  Moreover,
there are six output vectors associated in the figure.

Fig.  8.  Example  configuration  of  a  Hidden  Markov
Model [Mlich and Chmelar, 2008].

The trajectory classification problem can be formulated
as to identify the class ci (i = 1..N) to which belongs the
trajectory state sequence. The basic formulation of the
problem is given by maximization of a conditional prob-
ability:

i*= argmax
i

P (ci∣O )= argmax
i

P(O∣ci)P(ci)

P(O )

We  use  Bayes  theorem,  because  we  cannot  evaluate
P(ci | O) directly. Assuming we know prior probabilities
P(ci) and P(O), we are about to compute the likelihood
P(O | ci); the probability of the sequence O knowing the
class ci. To compute this, we should have a model M for
class  ci.  The model is  a finite state automaton with  K
states generating sequence O. There are transition proba-
bilities  ak,j between the states.  Except the first and the
last state, states are emitting or generating output proba-
bility density function bj(o(t)), as illustrated in figure 8.

In the figure, there is a sample configuration of A = [ak,j]
(k,  j = 1..K),  the  transition  matrix,  which  defines  the
probability   of  transition  to  the  next  state  for  each

combination of HMM states. The corresponding sample
HMM sequence or path through the model is X = {1, 2,
2, 3, 4, 4, 5, 6}. However, this information is from the
view of the trajectory state sequence hidden. The proba-
bility of passing an object  O through a model  M by a
way X is defined by:

P(O , X∣M ) = ax (o)x (1)∏
t=1

T

bx (t )(ot )ax (t )x (t+1)

Viterbi algorithm finds the most probable way through
the model:

P*(O∣M ) = max
{X }

P (O , X∣M )

The algorithm is used to evaluate the model by maxi-
mizing probability of correspondence with a trajectory
class.  For training the model  Mi,  corresponding to the
trajectory class ci, the Baum-Welch algorithm is used. It
is  a  generalized  expectation-maximization  algorithm
defined by equation that modifies weights of transitions
and statistics of the models [6]:

P(O∣M ) =∑
{X}

P (O , X∣M )

Before the training process, the initial probabilities and
number  of  states  are  chosen.  The  training  itself  is
affected mainly by training step size. For the improve-
ment  of  the  classification  performance,  several  initial
setups were evaluated.

The interactive interface

Human Monitoring Interface (HMI) is capable not only
of simple monitoring the area, but also querying moni-
tored object(s) based on its previous occurrences, visual
properties  and  behavior.  The  behavior  is  either
a detected event  or (statistical) analysis of  the objects'
spatio-temporal properties in the global context, such as
who  met  who,  where  was  who  when  something
happened  or  some  other  nontrivial  analysis  based  on
statistics and data mining – using VRM.

For SED 2012 we have simplified the user interface to
make the annotations as simple as possible. We have two
modes of the SED12 Annotator as illustrated in figures 1
and 4.

The first mode (annotator) was used for Round #1 anno-
tations. The GUI shows the output of blob-track algo-
rithm  and  cuts  the  shots  where  an  event  is  expected
accordingly to the LDC's annotations. The goal of the #1
is to match the event and the exact object for the learner.
It can be done in two ways – either a human annotator
can click the objects (subjects) that are concerned in the
event or type their trajectory numbers when occluded.
Most  events,  however  need  just  a  single  number,  but
Embrace,  ObjectPut,  PeopleMeet  and  PeopleSplitUp
have eventually two or more objects involved. In 2012,
we  haven't  investigated  their  mutual  relationships,
because the lack of annotations.



After  around  1000  events  were  annotated  during
Round #1 – see table 1 for details. This took about 20
hours. We have performed the learning and classification
of  other  objects  within  intervals  specified  in   LDC's
annotations then. Accordingly to their probability (and
grouped by videos for performance reasons), they were
presented to the human annotator  in the second mode
(validator). In this mode (figure 4), a human annotator is
supposed press “1” (or more) if the event belongs to the
object highlighted or “0” (or Enter) else. We have anno-
tated about 1400 events in less than 6 hours.

Because of the simplicity, Round #2 annotations/valida-
tions were considered “extremely boring” in contrast to
“just  boring”  Round #1  annotation.  Thus,  for  the
purpose of evaluations - the 25 min. “interactive” anno-
tations (Round #3)  the evaluation videos were  played
faster  (150%)  and  because  there  was  just  one  object
marked including the whole trajectory, it was still well
decidable (she considered it “high-dynamically boring”).
See the “interactiveED” attachment for details.

3.2 VTApi

VTApi is an open source application programming inter-
face designed to fulfill the needs of specific distributed
computer  vision  data  and  metadata  management  and
analytic systems and to unify and accelerate their devel-
opment. It is oriented towards processing and efficient
management of image and video data and related meta-
data  for  their  retrieval,  analysis  and  mining  with  the
special  emphasis  on  their  spatio-temporal  nature  in
real-world conditions.

In  addition  to  the  technology,  we  also  target  usual
aspects of the vision research –  to unify and accelerate
it by choosing an appropriate design methodology and
architectural framework to enable the development of a
complex computer vision applications at a reduced cost
in terms of time and money. 

Fig. 5. The illustration of a position of the VTApi and a
concept of methods’ chaining.

 

Fig. 6. The illustration of a position of the VTApi and a
concept  of  methods’  chaining  (a).  Sample  code  of
reading trajectories,  preparing training samples,  GMM
training and storing cluster labels into the database (b).

The main objective of the VideoTerror (the Ministry of
the Interior) project is to create a prototype of a system
warehousing  image  and  video  accomplished  with
computer vision and video analytics for preventing and
protecting against illegal activities and natural or indus-
trial disasters affecting citizens,  organizations or infra-
structure. 

The basic requirements include image and video feature
extraction,  storage  and  indexing  to  enable
(content-based)  retrieval,  summarization  and  data
mining in the meaning of object detection and activity
recognition in an interactive and iterative process. 

The  VT methodology is  based  on  the  fact,  that  most
methods  of  the  same  purpose  have  similar  types  of
inputs  and  outputs,  so  there  may  be  chains  of  them.
Moreover, the input of a process (a running instance of a
method)  can be seen as another process's output (e.g.,
annotation, feature extraction,  classification) including
media data creation. 

We  have  selected,  integrated  and  extended  a  set  of
progressive and robust open source tools to be efficient
for  multimedia  data  and  related  metadata  storage,
indexing,  retrieval  and  analysis.  The  system  uses  the
best from (post)relational databases, it offers alternative
storages  and  data  structures  we need  to  manage (e.g.
vectors or matrices) to make the data access more effi-
cient,  especially  for  rapidly  changing
geography/spatio-temporal  data  of  a  very  complex
nature in the binary form that can be now processed both
on VTApi clients and in the database. 

VTApi is a free open source extensible framework based
on  progressive  and  scalable  open  source  software  as



OpenCV for high-performance computer vision and data
mining,  PostgreSQL  for  efficient  data  management,
indexing and retrieval extended by similarity search and
integrated with geography/spatio-temporal data manipu-
lation. 

We  support  trajectory  clustering,  classification,  object
recognition, outliers detection and so on.  The following
example shows a clustering of trajectories using VTApi
and an  OpenCV implementation  of  Expectation-maxi-
mization (EM) algorithm, which estimates parameters of
a  Gaussian  mixture  model  (GMM)  [6].  First,  feature
vectors representing trajectories are read from the data-
base  and  training  samples  for  the  EM  algorithm  are
prepared (see figure above). Suppose that trajectories are
stored  in  “tracks”  in  this  example.  Second,  GMM  is
trained  by  the  EM  algorithm  and  appropriate  cluster
labels are stored in the database see figure above. 

Fig. 7. Examples of trajectory clustering results obtained
by EM algorithm on trajectories from the first camera. 

We performed the trajectory clustering on a set of trajec-
tories  extracted  from  the  the  i-LIDS  dataset  of  five
cameras at the LGW airport.  An example of visualiza-
tion of  some obtained results  is  shown in Fig.  below.
Different colors of trajectories refer to different  clusters.
On the  left,  there  is  a  result  of  clustering  trajectories
from  the  first  camera   using  the  EM  algorithm
mentioned above. On the right, there is a result of clus-
tering  trajectories from the third camera by the K-means
clustering algorithm to show the easy changeability of
methods of the same purpose. We have  prepared also an
outliers analysis within the Video Terror project.

4. Experiments

We have performed two rounds of the active learning
process during the development and training. They are
described in section 3.1 – The interactive interface. The
table  1  presents  the  numbers  of  theoretical  (LDC),
Round #1 and Round #2 annotations after 20 and 6 hour

of continuous burden,  which is  the reason we haven't
used  all  the  annotations  suggested  (coping  with  the
unsatisfactory tracker results of heavily occluded objects
and the overall quality of data, because some events take
just a few pixels).

Table 1. Numbers of annotated objects (active learning).

Event #LDC #1 #2 #3
CellToEar 828 80 120 270
ElevatorNoEntry 12 4 5 13
Embrace 940 75 138 530
ObjectPut 3172 181 422 1312
OpposingFlow 34 1 4 9
PeopleMeet 2718 282 717 2007
PeopleSplitUp 1571 122 441 1007
PersonRuns 673 59 153 398
Pointing 4095 235 478 1334
TakePicture 30 0 0 3
Sum (distinct) < 14073 944 2280 6194

Table 2 presents the SVM – based classification accu-
racy  of  optimized  classification  schemes  “Track”  and
“Shape”, as described in section 3.1 - Analysis and clas-
sification. Note, that Round #3 classification data is of
about  1GB  and  the  whole  database  is  about  20GB
(compared  to   300GB  video  data).  A single  learning
process of an average classification model is about 20
seconds. We performed 5 (fold) * 100 (parameter selec-
tion) learning processes, which takes about 30 minutes,
performed  9  times  in  parallel.  We have  considered  9
distinct events – omitting the TakePicture,  because we
were unable to asses  who is taking the picture in  the
devel recordings.

Table 2.  Prediction accuracy of 5-fold cross-validation
on training data.

SVM HMM
Event Tracks Shapes Both
CellToEar 91.52 91.53 46.27
ElevatorNoEntry 99.79 99.68 98.15
Embrace 92.05 92.06 59.88
ObjectPut 81.25 81.03 45.86
OpposingFlow 99.86
PeopleMeet 71.93 70.55 49.65
PeopleSplitUp 87.29 87.08 35.49
PersonRuns 94.28 93.75 58.02
Pointing 76.27 75.21 60.99
TakePicture 93.20
Average 86.80 86.36 64.74

Evaluation results

To be updated. The retrospective task maximized recall,
while the interactive task maximized precision.



5. Conclusions

In the paper, we presented an open source single-camera
computer  vision  based  surveillance  event  detection
system  SUNAR-ED  (see  sourceforge.net/p/sunar-ed).
We have selected,  integrated  and  extended  a  set  of  a
state of the art progressive and robust open source tools
efficient  for  multimedia  data  and  related  metadata
storage, indexing, retrieval and analysis. It contains both
standard  and experimental  techniques  evaluated  at  the
AVSS 2009/10 Multi-Camera Tracking Challenge. 

SUNAR is  composed  of  three  basic  modules  -  video
processing,  retrieval  and  the  monitoring  interface.
Computer  Vision  Modules  are  based  on  the  OpenCV
library for object tracking providing cleaned and trans-
formed  trajectory  and  shape-based  features  based  on
tracking  data  (objects  subtracted  from  background)  –
color and shape descriptors similarly to MPEG-7. 

The  information  about  objects  and  the  area  under
surveillance is cleaned, integrated, indexed and stored in
Video Retrieval Modules. They are based on the Post-
greSQL database  extended to be capable of  similarity
and spatio-temporal information retrieval. We have inte-
grated many machine-learning methods as Bayes classi-
fiers, SVM, EM/GMM, HMM, frequent pattern analysis
and various clustering algorithms. 

We  have  focused  mainly  on  active  learning  and
semi-automatic annotation generation for future evalua-
tions using SVM and HMM as learnets. We have devel-
oped  a  simple  (yet  boring)  user  interface,  which  can
reduce the burden of continuous concentration on moni-
toring and increase the effectivity.

Together with SUNAR-ED, we offer to the public the
data  and  metadata  management  framework  –  VTApi
(application  programming  interface,  see
gitorious.org/vtapi). The main advantages of the API is
the reduction of effort and time to produce quality intel-
ligent  vision applications by unified and reusable both
methods and data sets of video,  image, metadata and
features on all levels. We offer data and methods inter-
faces and a methodology to be used by researchers and
developers of both academic  and commercial sectors to
collaborate  and  chain  their  efforts.  Using  VTApi,  we
have developed tools to be (re)used in the future to unify
and accelerate vision research.

We have to  thank all  the  people  in  NIST and groups
providing data,  annotations,  evaluation metrics,  all  the
human and computer  power.  We think that  this  is  the
real  force  of  TRECVid,  together  with  the  inspiration
from and of all the participants and groups.

References

[1] B. Settles, Active Learning. Morgan & Claypool 
Publishers, 2012.

[2] J. Han, M. Kamber, and J. Pei, Data Mining: 
Concepts and Techniques: Concepts and 
Techniques. Elsevier, 2011.

[3] X. Zhu and A. B. Goldberg, “Introduction to 
Semi-Supervised Learning,” Synthesis Lectures on 
Artificial Intelligence and Machine Learning, vol. 
3, no. 1, pp. 1–130, Jan. 2009.

[4] G. Bradski and A. Kaehler, Learning OpenCV: 
Computer Vision with the OpenCV Library, 1st ed. 
O’Reilly Media, 2008.

[5] W. Hu, T. Tan, L. Wang, and S. Maybank, “A 
survey on visual surveillance of object motion and 
behaviors,” IEEE Transactions on Systems, Man, 
and Cybernetics, Part C: Applications and Reviews,
vol. 34, no. 3, pp. 334 –352, Aug. 2004.

[6] C. M. Bishop, Pattern Recognition and Machine 
Learning, 1st ed. Springer, 2007.

[7] E. J. Carmona, J. Martínez-Cantos, and J. Mira, “A 
new video segmentation method of moving objects 

based on blob-level knowledge,” Pattern Recogn. 
Lett., vol. 29, no. 3, pp. 272–285, Feb. 2008.

[8] P. Chmelar, I. Rudolfova, and J. Zendulka, 
“Clustering for Video Retrieval,” in Data 
Warehousing and Knowledge Discovery, 2009, pp. 
390–401.

[9] P. Chmelar and J. Zendulka, “Visual Surveillance 
Metadata Management,” in Eighteenth 
International Workshop on Database and Expert 
Systems Applications, 2007, pp. 79–83.

[10] B. S. Manjunath, P. Salembier, and T. Sikora, 
Introduction to MPEG-7: Multimedia Content 
Description Interface. John Wiley & Sons, 2002.

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on 
Intelligent Systems and Technology, vol. 2, no. 3, 
pp. 27:1–27:27, 2011.

[12] P. Chmelar, A. Lanik, and J. Mlich, “SUNAR: 
Surveillance Network Augmented by Retrieval,” in 
ACIVS 2010, 2010, pp. 155–166.

http://gitorious.org/vtapi
https://sourceforge.net/p/sunar-ed/wiki/Home/



	DRAFT Notebook Paper
	Brno University of Technology at TRECVid 2013 Interactive Surveillance Event Detection
	Abstract
	Acknowledgements
	1. Introduction
	2. The idea of active learning
	3. The technology
	3.1 SUNAR
	Computer vision
	Video retrieval
	Analysis and classification

	Hidden Markov Models
	The interactive interface

	3.2 VTApi

	4. Experiments
	Evaluation results

	5. Conclusions
	References
	



