
DRAFT Notebook Paper

Brno University of Technology at TRECVid 2013
Interactive Surveillance Event Detection

Petr Chmelar, Jozef Mlich, Martin Pesek, Tomas Volf, Pavel Zemcik, Jaroslav Zendulka

IT4Innovations Centre of Excellence
Brno University of Technology
Faculty of Information Technology
Bozetechova 2
Brno, 612 66
Czech Republic

Abstract

In the paper, we describe our experiments in the interac-
tive surveillance event detection pilot (SED) of the 2009
TRECVid evaluation. Our approach inherits function-
ality of the Surveillance Network Augmented by
Retrieval (SUNAR) system, which is an information
retrieval based wide area (video) surveillance system
being developed at Faculty of IT, Brno University of
Technology. It contains both standard and experimental
techniques evaluated at the AVSS 2009/10 Multi-Camera
Tracking Challenge. We have deployed active learning
functionality (Bayesian, SVM and HMM) based on
moving objects' trajectory statistics and shape classifica-
tion using Video Terror Application Programming Inter-
face (VTApi), which was created to unify and accelerate
the intelligent vision applications development.

The paper is organized as follows. Section 1 provides a
motivation and a brief introduction. Section 2 is dedi-
cated to the active learning approach and other theoret-
ical aspects of the work. Details on the technology is
presented in Section 3. Section 4 shows some experi-
mental results achieved during the training. Finally,
Section 5 discusses achieved results and concludes the
paper. Evaluation results are attached at the end of the
paper.

1. We have submitted the following SED runs:
• BrnoUT_2013_retroED_EVAL13_ENG_s-camera_p

-SUNAR-SVM_1 – contains 2000 “best” shots
classified by SVM for each event based on the object
shape and trajectory using active-learning.

• BrnoUT_2013_retroED_EVAL13_ENG_s-camera_c
-SUNAR-HMM_1 – contains 2000 best trajectories
classified by HMM (including object shapes).

• SED13_BrnoUT_2013_interactiveED_EVAL13_EN
G_s-camera_p-SUNAR-121_1 – includes only shots
annotated during the interactive period.

2. The major difference between the runs is the training
method (SVM and HMM) and the active learning
step based on 25 min. annotating of results of the
retrospective task. The retrospective task maximized
recall, while the interactive task maximized
precision.

3. The mayor contribution was the semi-automatic
annotation using active-learning, classification of
object description using trajectory and shape features
and the tracker able to handle multiple occlusions.

4. The challenge of the TRECVid SED pilot and the
video surveillance event detection in general is the
ability to learn from annotations provided and to
improve the classifiers by providing more accurate
samples and higher-quality features extracted.

Acknowledgements

This work has been supported by the research project Security-Oriented Research in Information Technology CEZ
MSM0021630528, grant VG20102015006 of the Ministry of the Interior of the Czech Republic, the European Regional Develop -
ment Fund in the IT4Innovations Centre of Excellence (CZ.1.05/1.1.00/02.0070). Special thanks go to Janicka Chmelarova.

1. Introduction

In 2006, we have started to develop an IR-based
multi-camera tracking system intended to be at the top
of the state of the art. The idea was to create an auto-
mated system for visual features detection, indexing and
analysis, which can reduce the burden of continuous
concentration on monitoring and increase the effective-
ness of information reuse by security, police, emergency,
firemen or armed services.

Brno University of Technology, Faculty of Information
Technology has taken part at TRECVid since 2007. In
the past, we have taken part in various tasks, but SED in
2008 and 2012 only. Our first attempt was based on
advanced masking, background subtractions and
extracted trajectories. Later, we have avoided the
masking approach focused more on other moving object
based features and active learning.

The challenge of the TRECVid pilot and a better video
surveillance event detection in general are high-quality
annotations. There is only temporal localization
ground-truthed by the University of Pennsylvania
Linguistic Data Consortium. And this fact does not help
for surveillance task of this kind much. The manual
labeling of objects taking part in the event annotated is
really expensive in such amounts of video (a hour of
video takes about 5 hours of burden work), therefore we
needed a more optimal strategy. For that purpose, we
have developed two modes of annotation interfaces – the
first one uses the output of our vision module (so that
annotating 1 hour of video takes about 1 hour). The
second approach sorts the classified outputs and only
two keys (of a keybord) are necessary to mark the event
shown – positive (1+) or negative (0, Enter) and thus the
annotation process may be further optimized. This is
accomplished by active learning, as described further.

2. The idea of active learning

Active Learning (AL) systems attempt to overcome the
labeling bottleneck by asking queries in the form of
unlabeled instances to be labeled by an oracle (e.g.
a human annotator). In this way, the active learner aims
to achieve high accuracy using as few labeled instances

Fig. 1. SED Annotator in the initial Round #1 mode.
A human annotator is supposed to click the running
object or type the proper number when occluded.

as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is an optimal experimental
design strategy. The hypothesis is that if the learning
algorithm is allowed to choose the data from which it
learns, it will perform better with less training [1].

An example of active learning is the pool-based active
learning cycle. A learner may begin with a small number
of instances in the labeled training set L and request
labels for one or more carefully selected instances, learn
from the query results, and then leverage its new knowl-
edge to choose which instances to query next. An illus-
tration of such process is in figure 2.

Several approaches to the active learning exists. One of
the first active learning scenarios to be investigated is
learning with membership queries. In this setting, the
learner may request labels for any unlabeled instance in
the input space, including (and typically assuming)
queries that the learner generates de novo rather than
those sampled from some underlying natural distribution
[1]. The idea of synthesizing queries has also been

(a) (b) (c)
Fig. 2: Illustration of a pool-based active learning. It shows the advantage to the learning performance when anno-
tated the same amount of samples in (b) and (c) out of (a) [Settles, 2009].

http://www.ldc.upenn.edu/

extended to regression learning tasks, which is similar to
the stream-based selective sampling. Other query strate-
gies aim to the metric that should be minimized (or
maximized) by the learner. For instance, it is entropy,
expected model change, density weight, error rate and
variance. For more detailed information see [1].

The approaches of AL may thus iterate to achieve a
higher learner performance. Moreover, it can be supple-
mented by an unsupervised (clustering) or semi-super-
vised learner [2]. In this way, the annotator can mark
only well discriminative centers of clusters (making
sense) according to the requirements for instance. A
survey on other semi-supervised learning methods can
be found in [3].

Fig. 4. Same scene as in figure 1 at the Round #2 of
active learning process – a human annotator is supposed
press “1” if the object highlighted is really running.

3. The technology

The goal was simply to perform online tracking, object
and event detection to produce the metadata; and to
clean, integrate, index and store the metadata to be able
to query and analyze it. Upon our knowledge, SUNAR
has been the first implementation of a surveillance
system whose functionality is based on querying. The
queries are of two types – online ones are used mainly
for identity preservation; and offline to query the meta-
data of the camera records in the wide area when an
accident, crime, a natural or human disaster occurs.

3.1 SUNAR

In brief, SUNAR is composed of three basic modules –
video processing and retrieval, the monitoring interface
and the video source (server or camera network).
Computer Vision Modules are based on the OpenCV
Library for object tracking extended by feature extrac-
tion and network communication capability similar to
MPEG-7. Information about objects and the area under
surveillance is cleaned, integrated, indexed and stored in
Video Retrieval Modules. They are based on the Post-
greSQL database extended to be capable of similarity
and spatio-temporal information retrieval, which is
necessary for both non-overlapping surveillance camera
system as well as information analysis and mining in
a global context.

The video source might be a camera or a video server. It
is not a generic part of the system but it must be capable
of a standard TCP/IP communication used to communi-
cate between all of described modules. Each module,
except the Human Monitoring Interface, is responsible
for capturing, analysis and retrieval in appropriate part
of the wide area under surveillance. Modules communi-
cate basically only with their neighborhoods. In this
way, we can build a considerably large system because
no special central unit is necessary.

Fig. 3. Illustration of the SUNAR architecture.

Computer vision

The input of the Computer Vision Module (CVM) is
a video stream. We use OpenCV [4] for tracking and 3D
calibration especially (if feasible). We have extended the
OpenCV Blobtrack demo to be capable of feature
extraction, object (and event) recognition and IP based
video stream capture using all capabilities of customized
built-in FFMPEG (www.ffmpeg.org) server and client.

Object tracking [5] is a complex problem and it is hard
to make it working well, upon to our experience with
real (crowded) scenes as illustrated in figure 2.
Discussed approach is based mainly on proved methods
of object tracking implemented in the Open Computer
Vision Library [4]. These methods are illustrated in
figures 1 and 5; and the schema in figure 3.

Foreground is derived from background, which is
modeled using Gaussian Mixture Models (GMM, [6]) as
an average value of color in each pixel of video and the
foreground is a value different to the background. We
have also been inspired by the approach developed by
Carmona et al. [7], which is based on segmentation of
the color in RGB color space into background, fore-
ground and noise (reflection, shadow, ghost and fluctua-
tion) using a color difference cone with vertex located in
the beginning of the RGB coordinate system. In this
way, the illumination can be separated from the color
more easily. However the selection of appropriate
parameters is a burden task, which is usual in unsuper-
vised learning [8].

The other two modules – blob entrance and tracking are
standard OpenCV Blobtrack [4] functions with appro-
priate parameters. Blob entrance detection is done by
tracking connected components of the foreground mask.
The Blob tracking algorithm is based again on
connected components tracking and Particle filtering
based on Means-shift resolver for collisions. We plan to
extend the entrance algorithm, because it doesn't track
the object from its early appearance. There was used
also the trajectory refinement using the (inverted)
Kalman filter as described in [9].

The trajectory generation module has been completely
rewritten to add the feature extraction and TCP/IP
network communication capability. The protocol is
based on SQL, rather than XML (in previous versions)
similarly to MPEG-7 [10].

The output of the CVM module is metadata of objects
and the environment. It includes local identification of
objects, its spatio-temporal location and its changes
(speed) in the monitored area and a description of such
objects – its dimensions, shape, color, texture or other
special features (e.g. state plate or face descriptor) simi-
larly to MPEG-7 [10]. The description is complemented
with recognition of basic object classes (e.g. cars, trol-
leys, people or groups) and events (opposite way, left
luggage) as described in the theoretical chapter.

Video retrieval

The main idea of the proposed wide area system is
however implemented in the Video Retrieval Module
(VRM). The input of the module is metadata produced
by CVMs. This metadata is cleaned and normalized in
time and space (lighting, color bias and estimated 3D
parameters) and stored in the PostgreSQL database. The
primary function of the VRM was the object identifica-
tion – to integrate identifiers (IDs) of objects in the wide
area, based on the previous occurrence of the object and
its appearance. This has been evaluated at the AVSS
2009/10 Multi-Camera Tracking Challenge. Although,
this functionality was omitted for the purpose of SED
2013 evaluation, we have used the feature extraction and
classification capabilities of SUNAR to perform the
event classification.

Analysis and classification

As stated above, the Analysis submodule is rather
complex – it uses OLAP–based functionality for
providing statistics on different granularities and views
and it supports many machine-learning methods as
Bayes classifiers, SVM [11], EM/GMM [6], HMM some
other and time-series variants, frequent pattern analysis
and various clustering algorithms. More detailed infor-
mation can be found in [12].

For the purpose of SED, we have employed parameter
selection search using 5-fold cross-validation SVM [11]
based on transformed features extracted from the
moving objects and their trajectories. We refer this clas-
sification scheme as “Track”. It contains features:

1. Camera (1-5).
2. Position – trajectory start (x1, y1), end (x2, y2), mean

(μx, μy), standard deviation (σx, σy) and sum (Σdx,
Σdy).

3. Trajectory duration (t).
4. Speed at trajectory start (dx1, dy1, v1) end (dx2, dx2,

v2) mean (μdx, μdy, μv) and standard deviation (σdx, σdy,
σv).

5. Object size at first occurence (w1, h1), last one (w2,
h2), mean (μw, μh) and standard deviation (σw, σh).

6. Average color (layout) based on JPEG compression
technique of 8x8 pixel object resampled in Y'CbCr
color space, from which are zig-zag extracted DCT
coefficients. We use 15 (Y) + 2*10 (Cb and Cr)
coefficients (c1..35).

7. Object shape using central normalized moments up
to the third order (η20, η11, η02, η30, η21, η12, η03)
computed [4] from segmented image (alpha
channel).

Because the shape moments do not give good classifica-
tion results when aggregated (average), we have created
a separate training case. The trajectory is split into 4
segments and their border shapes are extracted and
concatenated into a feature vector. We refer this classifi-
cation scheme as “Shape”.

Because the VRM Analysis module uses various classi-
fiers, we have adopted the fully-probabilistic combina-
tion of their results. For SED 2013, we used simple
naïve Bayes combination of SVM and HMM.

Hidden Markov Models

The need of knowledge discovery in the trajectory data
leads to the linear dynamic an Example d Markov
models for the data classification. The presented
approach is based on supervised learning and classifica-
tion using HMMs of classes of behavior are created
upon some annotated trajectories. A hidden Markov
model (HMM, [6]) is a statistical Markov model in
which the system being modeled is assumed to be a
Markov process with unobserved (hidden) states, simi-
larly to dynamic Bayesian network. Example of an
HMM is shown in figure 8. The sample model is
described as a graph with four internal and two marginal
states connected by (oriented) transitions. Moreover,
there are six output vectors associated in the figure.

Fig. 8. Example configuration of a Hidden Markov
Model [Mlich and Chmelar, 2008].

The trajectory classification problem can be formulated
as to identify the class ci (i = 1..N) to which belongs the
trajectory state sequence. The basic formulation of the
problem is given by maximization of a conditional prob-
ability:

i*= argmax
i

P (ci∣O)= argmax
i

P(O∣ci)P(ci)

P(O)

We use Bayes theorem, because we cannot evaluate
P(ci | O) directly. Assuming we know prior probabilities
P(ci) and P(O), we are about to compute the likelihood
P(O | ci); the probability of the sequence O knowing the
class ci. To compute this, we should have a model M for
class ci. The model is a finite state automaton with K
states generating sequence O. There are transition proba-
bilities ak,j between the states. Except the first and the
last state, states are emitting or generating output proba-
bility density function bj(o(t)), as illustrated in figure 8.

In the figure, there is a sample configuration of A = [ak,j]
(k, j = 1..K), the transition matrix, which defines the
probability of transition to the next state for each

combination of HMM states. The corresponding sample
HMM sequence or path through the model is X = {1, 2,
2, 3, 4, 4, 5, 6}. However, this information is from the
view of the trajectory state sequence hidden. The proba-
bility of passing an object O through a model M by a
way X is defined by:

P(O , X∣M) = ax (o)x (1)∏
t=1

T

bx (t)(ot)ax (t)x (t+1)

Viterbi algorithm finds the most probable way through
the model:

P*(O∣M) = max
{X }

P (O , X∣M)

The algorithm is used to evaluate the model by maxi-
mizing probability of correspondence with a trajectory
class. For training the model Mi, corresponding to the
trajectory class ci, the Baum-Welch algorithm is used. It
is a generalized expectation-maximization algorithm
defined by equation that modifies weights of transitions
and statistics of the models [6]:

P(O∣M) =∑
{X}

P (O , X∣M)

Before the training process, the initial probabilities and
number of states are chosen. The training itself is
affected mainly by training step size. For the improve-
ment of the classification performance, several initial
setups were evaluated.

The interactive interface

Human Monitoring Interface (HMI) is capable not only
of simple monitoring the area, but also querying moni-
tored object(s) based on its previous occurrences, visual
properties and behavior. The behavior is either
a detected event or (statistical) analysis of the objects'
spatio-temporal properties in the global context, such as
who met who, where was who when something
happened or some other nontrivial analysis based on
statistics and data mining – using VRM.

For SED 2012 we have simplified the user interface to
make the annotations as simple as possible. We have two
modes of the SED12 Annotator as illustrated in figures 1
and 4.

The first mode (annotator) was used for Round #1 anno-
tations. The GUI shows the output of blob-track algo-
rithm and cuts the shots where an event is expected
accordingly to the LDC's annotations. The goal of the #1
is to match the event and the exact object for the learner.
It can be done in two ways – either a human annotator
can click the objects (subjects) that are concerned in the
event or type their trajectory numbers when occluded.
Most events, however need just a single number, but
Embrace, ObjectPut, PeopleMeet and PeopleSplitUp
have eventually two or more objects involved. In 2012,
we haven't investigated their mutual relationships,
because the lack of annotations.

After around 1000 events were annotated during
Round #1 – see table 1 for details. This took about 20
hours. We have performed the learning and classification
of other objects within intervals specified in LDC's
annotations then. Accordingly to their probability (and
grouped by videos for performance reasons), they were
presented to the human annotator in the second mode
(validator). In this mode (figure 4), a human annotator is
supposed press “1” (or more) if the event belongs to the
object highlighted or “0” (or Enter) else. We have anno-
tated about 1400 events in less than 6 hours.

Because of the simplicity, Round #2 annotations/valida-
tions were considered “extremely boring” in contrast to
“just boring” Round #1 annotation. Thus, for the
purpose of evaluations - the 25 min. “interactive” anno-
tations (Round #3) the evaluation videos were played
faster (150%) and because there was just one object
marked including the whole trajectory, it was still well
decidable (she considered it “high-dynamically boring”).
See the “interactiveED” attachment for details.

3.2 VTApi

VTApi is an open source application programming inter-
face designed to fulfill the needs of specific distributed
computer vision data and metadata management and
analytic systems and to unify and accelerate their devel-
opment. It is oriented towards processing and efficient
management of image and video data and related meta-
data for their retrieval, analysis and mining with the
special emphasis on their spatio-temporal nature in
real-world conditions.

In addition to the technology, we also target usual
aspects of the vision research – to unify and accelerate
it by choosing an appropriate design methodology and
architectural framework to enable the development of a
complex computer vision applications at a reduced cost
in terms of time and money.

Fig. 5. The illustration of a position of the VTApi and a
concept of methods’ chaining.

Fig. 6. The illustration of a position of the VTApi and a
concept of methods’ chaining (a). Sample code of
reading trajectories, preparing training samples, GMM
training and storing cluster labels into the database (b).

The main objective of the VideoTerror (the Ministry of
the Interior) project is to create a prototype of a system
warehousing image and video accomplished with
computer vision and video analytics for preventing and
protecting against illegal activities and natural or indus-
trial disasters affecting citizens, organizations or infra-
structure.

The basic requirements include image and video feature
extraction, storage and indexing to enable
(content-based) retrieval, summarization and data
mining in the meaning of object detection and activity
recognition in an interactive and iterative process.

The VT methodology is based on the fact, that most
methods of the same purpose have similar types of
inputs and outputs, so there may be chains of them.
Moreover, the input of a process (a running instance of a
method) can be seen as another process's output (e.g.,
annotation, feature extraction, classification) including
media data creation.

We have selected, integrated and extended a set of
progressive and robust open source tools to be efficient
for multimedia data and related metadata storage,
indexing, retrieval and analysis. The system uses the
best from (post)relational databases, it offers alternative
storages and data structures we need to manage (e.g.
vectors or matrices) to make the data access more effi-
cient, especially for rapidly changing
geography/spatio-temporal data of a very complex
nature in the binary form that can be now processed both
on VTApi clients and in the database.

VTApi is a free open source extensible framework based
on progressive and scalable open source software as

OpenCV for high-performance computer vision and data
mining, PostgreSQL for efficient data management,
indexing and retrieval extended by similarity search and
integrated with geography/spatio-temporal data manipu-
lation.

We support trajectory clustering, classification, object
recognition, outliers detection and so on. The following
example shows a clustering of trajectories using VTApi
and an OpenCV implementation of Expectation-maxi-
mization (EM) algorithm, which estimates parameters of
a Gaussian mixture model (GMM) [6]. First, feature
vectors representing trajectories are read from the data-
base and training samples for the EM algorithm are
prepared (see figure above). Suppose that trajectories are
stored in “tracks” in this example. Second, GMM is
trained by the EM algorithm and appropriate cluster
labels are stored in the database see figure above.

Fig. 7. Examples of trajectory clustering results obtained
by EM algorithm on trajectories from the first camera.

We performed the trajectory clustering on a set of trajec-
tories extracted from the the i-LIDS dataset of five
cameras at the LGW airport. An example of visualiza-
tion of some obtained results is shown in Fig. below.
Different colors of trajectories refer to different clusters.
On the left, there is a result of clustering trajectories
from the first camera using the EM algorithm
mentioned above. On the right, there is a result of clus-
tering trajectories from the third camera by the K-means
clustering algorithm to show the easy changeability of
methods of the same purpose. We have prepared also an
outliers analysis within the Video Terror project.

4. Experiments

We have performed two rounds of the active learning
process during the development and training. They are
described in section 3.1 – The interactive interface. The
table 1 presents the numbers of theoretical (LDC),
Round #1 and Round #2 annotations after 20 and 6 hour

of continuous burden, which is the reason we haven't
used all the annotations suggested (coping with the
unsatisfactory tracker results of heavily occluded objects
and the overall quality of data, because some events take
just a few pixels).

Table 1. Numbers of annotated objects (active learning).

Event #LDC #1 #2 #3
CellToEar 828 80 120 270
ElevatorNoEntry 12 4 5 13
Embrace 940 75 138 530
ObjectPut 3172 181 422 1312
OpposingFlow 34 1 4 9
PeopleMeet 2718 282 717 2007
PeopleSplitUp 1571 122 441 1007
PersonRuns 673 59 153 398
Pointing 4095 235 478 1334
TakePicture 30 0 0 3
Sum (distinct) < 14073 944 2280 6194

Table 2 presents the SVM – based classification accu-
racy of optimized classification schemes “Track” and
“Shape”, as described in section 3.1 - Analysis and clas-
sification. Note, that Round #3 classification data is of
about 1GB and the whole database is about 20GB
(compared to 300GB video data). A single learning
process of an average classification model is about 20
seconds. We performed 5 (fold) * 100 (parameter selec-
tion) learning processes, which takes about 30 minutes,
performed 9 times in parallel. We have considered 9
distinct events – omitting the TakePicture, because we
were unable to asses who is taking the picture in the
devel recordings.

Table 2. Prediction accuracy of 5-fold cross-validation
on training data.

SVM HMM
Event Tracks Shapes Both
CellToEar 91.52 91.53 46.27
ElevatorNoEntry 99.79 99.68 98.15
Embrace 92.05 92.06 59.88
ObjectPut 81.25 81.03 45.86
OpposingFlow 99.86
PeopleMeet 71.93 70.55 49.65
PeopleSplitUp 87.29 87.08 35.49
PersonRuns 94.28 93.75 58.02
Pointing 76.27 75.21 60.99
TakePicture 93.20
Average 86.80 86.36 64.74

Evaluation results

To be updated. The retrospective task maximized recall,
while the interactive task maximized precision.

5. Conclusions

In the paper, we presented an open source single-camera
computer vision based surveillance event detection
system SUNAR-ED (see sourceforge.net/p/sunar-ed).
We have selected, integrated and extended a set of a
state of the art progressive and robust open source tools
efficient for multimedia data and related metadata
storage, indexing, retrieval and analysis. It contains both
standard and experimental techniques evaluated at the
AVSS 2009/10 Multi-Camera Tracking Challenge.

SUNAR is composed of three basic modules - video
processing, retrieval and the monitoring interface.
Computer Vision Modules are based on the OpenCV
library for object tracking providing cleaned and trans-
formed trajectory and shape-based features based on
tracking data (objects subtracted from background) –
color and shape descriptors similarly to MPEG-7.

The information about objects and the area under
surveillance is cleaned, integrated, indexed and stored in
Video Retrieval Modules. They are based on the Post-
greSQL database extended to be capable of similarity
and spatio-temporal information retrieval. We have inte-
grated many machine-learning methods as Bayes classi-
fiers, SVM, EM/GMM, HMM, frequent pattern analysis
and various clustering algorithms.

We have focused mainly on active learning and
semi-automatic annotation generation for future evalua-
tions using SVM and HMM as learnets. We have devel-
oped a simple (yet boring) user interface, which can
reduce the burden of continuous concentration on moni-
toring and increase the effectivity.

Together with SUNAR-ED, we offer to the public the
data and metadata management framework – VTApi
(application programming interface, see
gitorious.org/vtapi). The main advantages of the API is
the reduction of effort and time to produce quality intel-
ligent vision applications by unified and reusable both
methods and data sets of video, image, metadata and
features on all levels. We offer data and methods inter-
faces and a methodology to be used by researchers and
developers of both academic and commercial sectors to
collaborate and chain their efforts. Using VTApi, we
have developed tools to be (re)used in the future to unify
and accelerate vision research.

We have to thank all the people in NIST and groups
providing data, annotations, evaluation metrics, all the
human and computer power. We think that this is the
real force of TRECVid, together with the inspiration
from and of all the participants and groups.

References

[1] B. Settles, Active Learning. Morgan & Claypool
Publishers, 2012.

[2] J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques: Concepts and
Techniques. Elsevier, 2011.

[3] X. Zhu and A. B. Goldberg, “Introduction to
Semi-Supervised Learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol.
3, no. 1, pp. 1–130, Jan. 2009.

[4] G. Bradski and A. Kaehler, Learning OpenCV:
Computer Vision with the OpenCV Library, 1st ed.
O’Reilly Media, 2008.

[5] W. Hu, T. Tan, L. Wang, and S. Maybank, “A
survey on visual surveillance of object motion and
behaviors,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews,
vol. 34, no. 3, pp. 334 –352, Aug. 2004.

[6] C. M. Bishop, Pattern Recognition and Machine
Learning, 1st ed. Springer, 2007.

[7] E. J. Carmona, J. Martínez-Cantos, and J. Mira, “A
new video segmentation method of moving objects

based on blob-level knowledge,” Pattern Recogn.
Lett., vol. 29, no. 3, pp. 272–285, Feb. 2008.

[8] P. Chmelar, I. Rudolfova, and J. Zendulka,
“Clustering for Video Retrieval,” in Data
Warehousing and Knowledge Discovery, 2009, pp.
390–401.

[9] P. Chmelar and J. Zendulka, “Visual Surveillance
Metadata Management,” in Eighteenth
International Workshop on Database and Expert
Systems Applications, 2007, pp. 79–83.

[10] B. S. Manjunath, P. Salembier, and T. Sikora,
Introduction to MPEG-7: Multimedia Content
Description Interface. John Wiley & Sons, 2002.

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on
Intelligent Systems and Technology, vol. 2, no. 3,
pp. 27:1–27:27, 2011.

[12] P. Chmelar, A. Lanik, and J. Mlich, “SUNAR:
Surveillance Network Augmented by Retrieval,” in
ACIVS 2010, 2010, pp. 155–166.

http://gitorious.org/vtapi
https://sourceforge.net/p/sunar-ed/wiki/Home/

	DRAFT Notebook Paper
	Brno University of Technology at TRECVid 2013 Interactive Surveillance Event Detection
	Abstract
	Acknowledgements
	1. Introduction
	2. The idea of active learning
	3. The technology
	3.1 SUNAR
	Computer vision
	Video retrieval
	Analysis and classification

	Hidden Markov Models
	The interactive interface

	3.2 VTApi

	4. Experiments
	Evaluation results

	5. Conclusions
	References
	

