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Abstract. Linear genetic programming (LGP) represents candidate pro-
grams as sequences of instructions for a register machine. In order to
accelerate the evaluation time of candidate programs and reduce the
overall time of evolution, we propose various parallel implementations
of LGP suitable for the current multi-core processors. The implementa-
tions are based on a parallel evaluation of candidate programs and the
island model of the parallel evolutionary algorithm in which the sub-
populations are evolved independently, but some genetic material can
be exchanged by means of the migration. Proposed implementations are
evaluated using three symbolic regression problems and a hash function
design problem.

1 Introduction

Linear genetic programming (LGP) is a form of genetic programming in which
candidate programs are encoded as sequences of instructions and executed on
a register machine. LGP is especially useful for designing relatively short but
well-tuned programs simultaneously showing an excellent quality of processing
and implementation effectiveness. Examples of evolved programs include hash
functions, game strategies, communication protocols, and low-level machine code
routines. If the LGP implementation is fast it can autonomously provide the
optimized programs to such systems in which the specification is modified in the
runtime.

The performance of LGP primarily depends on the problem encoding, search
operators, fitness evaluation and efficiency of the implementation. In order to
accelerate the evaluation time of candidate programs and reduce the overall
time of evolution, we propose parallel implementations of LGP suitable for the
current multi-core processors. Contrasted to the research dealing with efficient
genetic operators and search methods [13, 4], our work if focused on an efficient
distribution of workload (represented mainly by the fitness evaluation as the most
time consuming component of LGP) among the available computing resources.

The goal of this paper is to develop parallel implementations of LGP and
compare their performance in terms of throughput measured as the number of
candidate solutions evaluated per second (primary objective) and the quality of



evolved programs (secondary objective). The implementations are based on the
parallel evaluation of candidate programs and the island model of the parallel
evolutionary algorithm in which subpopulations are evolved independently, but
some genetic material can be exchanged by means of the migration. Proposed
implementations are evaluated using three symbolic regression problems and a
hash function design problem.

The rest of the paper is organized as follows. Section 2 surveys the relevant
work. The proposed parallel LGP methods are presented in Section 3. Experi-
mental setup and benchmark problems are introduced in Section 4. Results are
reported in Section 5. Conclusions are given in Section 6.

2 Related work

Genetic programming (GP) is an artificial intelligence method capable of au-
tomated design of programs in a given programming language [9]. There are
several branches of GP such as tree-based GP, linear GP and Cartesian GP.
They primarily differ in the representation of candidate programs. This section
introduces the field of genetic programing and provides relevant details about
LGP and its parallelization.

2.1 Linear genetic programming

Linear genetic programming [1, 13, 18] uses a linear representation of computer
programs. Every program is composed of operations, which are called instruc-
tions, and operands, which are stored in registers.

Program representation An instruction is typically represented by an in-
struction code, destination register and two source registers, for example [+,
r0, r1, r2] denotes r0 = r1 + r2. The input data are stored in pre-defined reg-
isters or an external memory. The result is returned in a given register. The
number of instructions in a candidate program is variable, but the minimal and
maximal values are defined. The number of registers available in a register ma-
chine is constant. The function set known from GP corresponds with the set of
available instructions. The instructions are general-purpose (e.g. addition and
multiplication) or domain-specific (e.g. read sensor 1). Conditional and branch
instructions are important for solving general problems. Protected versions of
instructions (e.g. a division returns a value even if the divisor is zero) are em-
ployed in order to execute all programs without exceptions such as the division
by zero.

Genetic operations LGP is usually used with a tournament selection, one-
point or two-point crossover and a mutation operator modifying either the in-
struction type or register index. Advanced genetic operators have been proposed,
see for example, [4].



Fitness function The most computationally expensive part of LGP is the
fitness function evaluation, in which a candidate program is executed for a set
of training inputs, the program’s outputs are collected and the fitness value is
determined.

There are essentially two types of linear GP: a machine code GP, where each
instruction is directly executable by the CPU, and an interpreted linear GP,
where each instruction is executable by a virtual machine (simulator) imple-
mented for a given processor.

2.2 Parallel GP

This section provides a brief overview of approaches developed to parallelize ge-
netic programming [2, 5, 15]. The approaches differ in the algorithms and hard-
ware employed.

The farmer-model, or the master-slave model, operates with a global pop-
ulation of programs. The master processor performs all genetic operations and
assigns the candidate solutions to remaining processors (slaves) to be evalu-
ated [14]. One processor typically evaluates a subpopulation of candidate solu-
tions.

In the island model [16], independent populations are evolved concurrently
and separately. In every kth generation, each population sends its best individ-
uals, according to a pre-designed communication pattern and network topology,
to other populations. Synchronous and asynchronous versions of this model have
been developed.

Modern CPUs support special vector instructions. If a code vectorization is
enabled, CPU provides a restricted type of parallel processing, often referred to
as the single instruction multiple data (SIMD) or the single program multiple
data (SPMD). Then, a program response can be obtained for several test vectors
in parallel.

Parallel GP implementations were also developed for specialized hardware
such as graphic processing units (GPU) [2, 5] and general-purpose accelerators
(Xeon Phi) [6].

3 Parallel LGP

The most computationally expensive part of LGP is the fitness function eval-
uation. In this section, two approaches to the fitness evaluation are presented.
A method enabling the parallelization of these evaluation approaches is then
discussed in Section 3.2. Finally, an island-based parallel LGP is introduced.

3.1 Fitness Evaluation

The first method (Method A, see Algorithm 1) determines the fitness value
in a straightforward manner according to a common sequential code for genetic
programming. Each candidate program is executed for each vector of the training



Algorithm 1: Fitness: Method A

INPUT: Population, Training set
1: FOR EACH individual of the population DO
2: FOR EACH vector of the training set DO
3: Initialize registers by the vector
4: Sequentially execute instructions of the individual
5: Update the fitness value

set. In general, conditional branches make difficult to effectively employ the code
vectorization because it has to be determined for each instruction whether it will
be executed or not. Method A might be suitable for instruction sets containing
conditional branches, because it can skip a number of instructions if a conditional
branch is present. This leads to the reduction of the execution time of a candidate
solution.

The second method (Method B, see Algorithm 2) divides the training set
into chunks of training vectors. The chunk size is one of LGP parameters. All in-
dividuals are executed for all vectors from a given chunk which can be exploited
in the subsequent parallel processing. If candidate programs contain the condi-
tional branches the code vectorization is difficult. This method requires creating
an array of registers for each vector form the chunk. The chunk size is deter-
mined experimentally. While large chunks can invoke many L2 cache misses,
small chunks introduce a significant overhead and make the method inefficient.

Algorithm 2: Fitness: Method B

INPUT: Population, Training set, Chunk size s
1: Divide the training set into chunks according to s
2: FOR EACH chunk DO
3: FOR EACH individual from the population DO
4: Initialize registers by the vector from the chunk
5: Sequentially execute instructions of the individual

for all vectors from the chunk
6: Compute a partial fitness function for the chunk
7: At the end compute the final fitness value

3.2 Parallel Fitness Evaluation

The parallel evaluation proposed for method A consists in assigning the individ-
uals of the population to processes. As there is no communication among the
individuals during the evaluation, the speedup is given by the number of avail-
able cores. The same approach is also adopted in method B, but each process
evaluates the candidate programs with the subsets of training vectors (chunks).



The parallel fitness evaluation is realized with OpenMP [3] which is a multi-
platform shared-memory parallel programming paradigm developed for C/C++
and Fortran. Programs utilizing OpenMP are limited in the number of processes
which should be less or equal to the number of logic cores of a given CPU. If the
number of processes is higher the processes start to compete for resources and
the overall overhead is growing.

3.3 Island Model for Parallel LGP

The proposed implementation utilizes the island-based model with a ring topol-
ogy. The individuals occupying a given island are evaluated using method B.
The communication between the islands is asynchronous. As the evaluation of
population(s) on the islands may consume a different time, faster islands do not
have to wait for slower islands. After a predefined number of generations, every
island sends the best individuals to its neighbors. All islands try to receive some
individuals from other islands in every generation. Newly incoming individuals
replace randomly chosen individuals of the population, but the best scored indi-
viduals are always preserved. The individuals are sent as integer array messages.
The implementation is based on MPI [10].

4 Setup and Benchmark Problems

This section defines the experimental setup and benchmark problems utilized
for comparison of the proposed LGP implementations.

The LGP code was written in C and compiled with gcc version 4.9.3, with
full optimization (O3) and vectorization enabled. All experiments were carried
out on a Linux machine equipped with the Intel Xeon E5-2630 processor. There
is a limitation of 12 processes in the parallel model.

4.1 Setup

Two scenarios were developed to evaluate LGP implementations. The purpose
of the first one is to measure the performance in terms of the number of instruc-
tions/generations that can be executed within a given time. LGP parameters
are summarized in Table 1. The second scenario is used to evaluate the quality
of evolution (i.e. the obtained fitness). This scenario is employed for testing the
island model. LGP parameters are given in Table 1. The fitness function for
symbolic regression problems is defined as the mean absolute error between the
program outputs and desired output.

In both scenarios, the program size is constant which allows for a straight-
forward comparison of the execution time. In order to investigate the impact of
branch instructions, two function sets are defined. Both function sets contain
arithmetic operations. However, the second function set (T2) contains a branch
instruction which introduces, in principle, numerous difficulties during the code
vectorization. Evaluation of these candidate solutions is thus slower.



Table 1. LGP parameters for symbolic regression

Parameter Performance tests Island model

Population size 1000 1000
Crossover probability 90% 90%
Mutation probability 15% 15%
Program length 40 40
Registers count/type 16/double 16/double
Instruction set T1 {+, -, *, /} {+, -, *, /}
Instruction set T2 {+, -, *, /, IF} -
Terminal set {1, indepen. variables} {1, indepen. variables}
Tournament size 4 4
Maximum number of generations 1000 1000
Crossover type One-point One-point
Migration - 40 generations

4.2 Benchmarks problems

Symbolic regression Three standard symbolic regression problems were taken
from [17, 7]. Table 2 gives intervals used for construction of the training sets.

F1:

f(x, y) =
x2 + y2

2y

F2:
f(x) = x4 + x3 + x2 + x

F3:

f(x, y) =
x3

5
+

y3

2
− y − x

Table 2. Parameters of training sets generated using benchmark functions

Performance tests Island model

Function
Training Training

set size
Range Step

set size
Range Step

F1 10000 x, y ∈< 0, 100) 1 10000 x, y ∈< 0, 100) 1
F2 10000 x ∈< 0, 10000) 1 100 x ∈< 0, 100) 1
F3 10000 x, y ∈< 0, 100) 1 900 x, y ∈< 0, 30) 1

Hash function design In order to evaluate LGP on a real-world problem, we
will employ the hash function design problem. The objective is to find a hash
function which maps the data of an arbitrary size to the data of a fixed size.
A good hash function should have some important properties, for example, a
small input change should invoke a large output change to minimize potential
collisions, it has to be deterministic and easy to compute. Detailed description



of the principles of hash functions is available in [8]. A hash function is often
used in hash tables. A hash function produces an index to the table from input
data. In the case of a collision, several possibilities exist to solve it [12]. One of
the approaches is a perfect hashing in which a special hash function is created
for a given data set such that it does not produce any collisions for this set [11].

In the area of computer networks, it is often needed to track specific users
or devices. They can be identified by IP addresses. However, the number of
IP address may vary over time. It makes sense to develop a specialized hash
function in order to eliminate disadvantages of universal hash functions that can
produce a large amount of collisions for a specific set of IP addresses. It is time
expensive and very difficult to create good hash functions manually. Automated
methods are sought that can quickly provide a good hash function for monitored
traffic. Providing a good hash function in a short time enables to start network
monitoring sooner and catch more important data. LGP can be employed to
search for the perfect hash function for a given set of IP addresses.

For this study, a set of IP addresses was randomly selected from the firewall
in our computer network. Experiments will be performed with two data sets con-
taining 1000 and 5000 IP addresses and a 16 bit hash table. The fitness function
computes the number of collisions produced by a candidate hash function on a
given training set. The goal of LGP is to minimize the number of collisions.

The instruction set contains operations that can be found in common hash
functions (RightRotation, NOT, AND, OR, XOR, +, *). A set of 10 prime
numbers used in the initialization phase of the SHA-2 function represent the
constants available to LGP. The program length is restricted to 20 instructions
as common hash functions are of this size. LGP uses 8 integer registers. Other
settings are given in Table 1.

5 Results

Results of experiments are structured into two parts in this section: symbolic
regression benchmarks and hash function design.

5.1 Symbolic Regression Benchmarks

In total, LGP was employed to solve 60 specifications which differ in the method
(A or method B with 5 different chunk sizes - 500, 1000, 2500, 5000 and 10,000
vectors), function set (T1, T2) and the number of cores (1, 2, 4, 6 and 12) used.
In order to obtain basic statistics, 20 independent LGP runs were performed for
each specification. Each run produced 1000 generations.

In the first experiment, we compared the sequential implementations of both
methods. The boxplots shown in Fig. 1 give LGP performance per one generation
in MFLOPs (measured by PAPI). The boxplots used in these figures represent
the minimum, first quartile, median, third quartile and maximum. The exper-
iments confirmed our assumption that method B provides higher performance
than method A. An optimal chunk size seems to be 1000 vectors. The chosen



Fig. 1. Sequential performance of methods A and B on test problems F1, F2 and F3.
Method B is used with chunk sizes 500, 1000, 2500, 5000 and 10000 vectors. The x-axis
is in the format m t c, where m is the method (A or B), t is the instruction set (T1 or
T2) and c is the chunk size (for method B).

instruction set significantly influences the performance. Instruction set T1 (with-
out IF) leads to higher performance than T2, because the code vectorization is
more efficient.

In the second experiment, the scalability of the parallel implementations was
evaluated using 2, 4, 6, and 12 cores. The time needed to evaluate one generation
is reported in the form of boxplots in Fig. 2. The implementation scales almost
linearly, but a small communication overhead is present for 6 and 12 cores.
The impact of the function set selection on performance is identical to previous
experiments. In order to maximize the performance, it is important to correctly
choose the chunk size (1000 vectors). Results are only presented for F1 because
the results for F2 and F3 are almost identical with F1.

The last experiment was devoted to the island-based LGP. In this case, the
boxplots show the best fitness values obtained at the end of 20 independent runs
for 1, 2, 4, 6 and 12 islands (Fig. 3). The execution time is identical for all runs.
Let a perfect solution be such a solution which obtains a zero fitness. It can be
seen that a perfect solution was discovered when more than one island is used
for F1, independent of the islands count for F2 and never for F3. Especially for



Fig. 2. The time needed to evaluate one generation using 1, 2, 4, 6 and 12 cores
(F1 test problem) for instruction sets T1 and T2.



Fig. 3. The best obtained fitness values for F1, F2 and F3 from 20 independent runs
on the island model.

F1 and F3, increasing the number of islands has a positive impact on the quality
of discovered solutions.

5.2 Hash function design

Figure 4 summarizes the execution time (performance) and fitness values
obtained for the hash function design problem using different LGP implementa-
tions.

A comparison of sequential versions of methods A and B (with the chunk
size of 1000 vectors) revealed that method B can save about 40% of the design
time. The results are given for 1000 and 5000 IP addresses in the data set. Note
that 20 independent runs with identical seeds for method A and B in each run
were performed to obtain these boxplots.

The third and fourth graph in Figure 4 compares the quality of solutions
evolved using the island model. Results were obtained using 10 independent
randomly seeded runs. It can be seen that if the training IP data set is small
(1000 IP addresses), a solution is discovered on one of the islands before any
migration is carried out. Hence other islands are not needed. LGP utilizing the
island model becomes useful for larger data sets - see the rightmost graph in
Figure 4 showing a significant improvement in the fitness on 6 islands for a data
set containing 5000 IP addresses. Example of evolved hash function is given in
Fig. 5.

6 Conclusions

In this paper, we presented several parallel implementations of LGP devoted
to the common multi-core processors. In particular, we proposed an efficient
method for evaluation of candidate programs based on dividing the training
data into chunks. The main criterion for our evaluation was the throughput,



Fig. 4. Sequential execution time for methods A and B (graph 1 and 2) and fitness
values for the island model (graph 3 and 4) in the evolutionary design of the hash
function using 1k and 5k IP addresses in the dataset.

i.e. how many candidate programs can be evaluated in a given time. The best
performing implementation utilizes the island model and the training data par-
tition into chunks. These implementations were compared using three symbolic
regression problems and hash function design problem. Unfortunately, the avail-
able literature does not provide results from other parallel LGP implementations
suitable for a fair comparison. Our future work will be focused on the evolution-
ary design of efficient hash functions for network applications using the proposed
parallel LGP.

int Hash (int x ){
r[0] = x
r[4] = 0x5be0cd19
r[6] = r[4]
r[1] = r[0]
r[7] = r[4] and 0x3c6ef372
r[0] = RightRotation(r[0], r[7])
r[0] = r[6] xor r[0]
r[4] = not r[1]
r[0] = r[4] xor r[0]
return r[0]

}

Fig. 5. Example of LGP individual.
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