
Adaptive Fitness Predictors in
Coevolutionary Cartesian Genetic Programming

Michaela Drahosova idrahosova@fit.vutbr.cz
Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno, Czech Republic

Lukas Sekanina sekanina@fit.vutbr.cz
Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno, Czech Republic

Michal Wiglasz iwiglasz@fit.vutbr.cz
Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Bozetechova 2, 612 66 Brno, Czech Republic

Abstract
In genetic programming (GP), computer programs are often coevolved with training
data subsets that are known as fitness predictors. In order to maximize performance
of GP, it is important to find the most suitable parameters of coevolution, particularly
the fitness predictor size. This is a very time consuming process as the predictor size
depends on a given application and many experiments have to be performed to find its
suitable size. A new method is proposed which enables us to automatically adapt the
predictor and its size for a given problem and thus to reduce not only the time of evo-
lution, but also the time needed to tune the evolutionary algorithm. The method was
implemented in the context of Cartesian genetic programming and evaluated using
five symbolic regression problems and three image filter design problems. In compar-
ison with three different CGP implementations, the time required by CGP search was
reduced while the quality of results remained unaffected.

Keywords
Cartesian genetic programming, coevolutionary algorithms, fitness prediction, sym-
bolic regression, evolutionary design, image processing.

1 Introduction

The computation time an evolutionary design that is based on genetic programming
(GP) requires for obtaining innovative results is enormous for complex real-world ap-
plications. One of the reasons is that the program’s fitness is usually calculated over
a large set of fitness cases (Koza, 1992). A fitness case corresponds to a representative
situation in which the ability of a program to correctly produce the output value for a
particular input can be evaluated. A fitness case consists of program inputs and target
values expected from a perfect solution. The set of fitness cases (training data) is, how-
ever, only a small sample of the entire domain space. The choice of how many fitness
cases (and which ones) to use is often a crucial decision since whether or not an evolved
solution will generalize over the entire domain depends on this choice.

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

M. Drahosova, L. Sekanina, M. Wiglasz

The time needed for evaluating a single fitness case depends on a particular appli-
cation. Reducing the number of evaluated fitness cases (or fitness function calls) is thus
crucial for the overall efficiency of the method.

Candidate programs can be coevolved with the so-called fitness predictors (pre-
dictors, for short) in order to reduce the evaluation time (Schmidt and Lipson, 2008).
Predictors are small subsets of the training data and contain only selected fitness cases.
During program evolution, predictors are coevolved to estimate the fitness of candidate
programs (instead of applying the expensive objective fitness evaluation by means of
complete training data). The benefits of this approach are numerous with respect to the
standard GP: candidate programs are evaluated using fewer fitness cases, the number
of candidate programs that have to be evaluated is reduced and the time required by
GP search is shortened.

However, it is important to determine the most suitable parameters of coevolution,
particularly the number of fitness cases that the fitness predictor contains (the predictor
size, for short). This is a very time consuming process as the predictor size depends on
a given application and many experiments have to be performed to find its suitable
size (Sikulova and Sekanina, 2012a,b).

Our goal is to propose and evaluate a method capable of automated adaptation of
the predictors (including their size) for a given problem and thus to reduce not only
the time of evolution, but also the time needed to tune the evolutionary algorithm.
We propose to adapt the predictor in the course of evolution on the basis of selected
performance indicators, in particular, the evolution speed (see Section 3).

Although the proposed method is generally applicable in the context of GP, we will
focus on its utilization in Cartesian genetic programming (CGP) becuase CGP is im-
portant for our target applications (see Section 4). CGP is a well-known form of GP
developed by Miller and Thomson (2000). It uses a simple integer address-based ge-
netic representation of programs in the form of a directed acyclic graph. CGP has been
successfully applied to a number of challenging real-world problem domains (e.g. the
design of electronic circuits, neural networks and image operators). In a number of
studies, CGP has been shown to be comparatively efficient in relation to other GP tech-
niques (Miller and Turner, 2015).

We applied the proposed method in two types of problems: (i) symbolic regression
and (ii) image filter design. Symbolic regression was included as it represents the stan-
dard approach for the performance comparison of GP systems. The case study (ii) was
motivated by requirements on adaptive image filtering in embedded systems (see de-
tails in Section 4). The proposed method was compared with the standard CGP, coevo-
lutionary CGP employing the constant-size predictor(Sikulova and Sekanina, 2012a,b),
and CGP with a randomly generated predictor. Our primary finding is that the co-
evolution of programs and adaptive fitness predictors leads to a reduction of the time
required by the CGP search across all our test problems, while the quality of results
remains unaffected.

In Section 2, previous relevant research is surveyed. The proposed method based
on adaptive fitness predictors is presented in Section 3. Section 4 deals with the stan-
dard CGP and our motivation for evaluating the proposed approach in the context of
CGP. Results of two case studies are presented in Section 5 (symbolic regression) and
Section 6 (image filter design). Section 7 presents concluding remarks and the direction
of our future research.

2 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

2 Related Work

This section briefly surveys concepts of fitness approximation, coevolution in evolu-
tionary computing and coevolution of fitness predictors.

2.1 Fitness Approximation

The goal of the GP software design and GP parameters tuning is to automatically obtain
a program (solving the target problem with a predefined accuracy and robustness) in as
short a time as possible. In practice, this time is measured as the number of evaluated
fitness cases or fitness function calls. In order to reduce the computational complexity
of expensive fitness evaluation, fitness approximation techniques have been developed.

One of them is fitness modeling which employs fitness models with different de-
grees of sophistication to reduce the evaluation time (Jin, 2005). A predefined model or
coarse-grained simulation has been used to approximate the fitness value in the cases
in which obtaining the objective fitness requires an expensive simulation or a physical
experiment. Neural networks, support vector machines, decision trees and other ma-
chine learning methods can be used in order to efficiently approximate the objective
fitness (Jin and Sendhoff, 2004). Sub-sampling of training data such as random subset
selection (Gathercole and Ross, 1994), stochastic sampling (Nordin and Banzhaf, 1997)
or dynamic topology-based selection (Lasarczyk et al., 2004) have also been studied in
order to evaluate an individual on a smaller subset of fitness cases. However, it is not
always clear when the benefits of fitness modeling can outweigh the cost (in particu-
lar, the overhead of model construction and solving a potential overfitting problem).
The motivation for fitness modeling can be seen, not only in reducing the complexity
of the fitness evaluation, but also in avoiding the explicit fitness definitions, coping
with noisy data, smoothing the fitness landscape and promoting diversity (Schmidt
and Lipson, 2008).

A closely related concept to fitness modeling is fitness prediction, which is a tech-
nique used to replace fitness evaluations by a lightweight approximation that adapts
with the solution evolution. Fitness predictors cannot approximate the entire fitness
landscape, but they are instead shifting their focus throughout the evolution. An al-
gorithm that coevolves fitness predictors, optimized for the solution population, has
been introduced for standard (tree-based) genetic programming in order to reduce the
fitness evaluation cost and frequency by Schmidt and Lipson (2008).

2.2 Coevolutionary Algorithms

Coevolutionary algorithms (CoEAs) are characterized by comparing individuals on the
basis of the outcomes of their interactions with other individuals (subjective fitness eval-
uation) instead of applying the objective fitness evaluation. Individuals can be evalu-
ated by interacting with other individuals from the same population (single population
CoEA) or individuals in one population interact with individuals in one or several other
populations (multi-population CoEA). CoEAs are traditionally used to evolve interactive
behavior which is difficult to evolve with an absolute fitness measurement. The state
of the art of coevolutionary algorithms is summarized in Popovici et al. (2012).

Historically, the terms cooperative and competitive have been used to classify the do-
mains in which coevolution is often applied. These terms appear from game theory, but
they have not been appropriate for classifying problems over which CoEA operates nor
for algorithms themselves. According to Popovici et al. (2012), problems are primarily
divided into classes based on what constitutes a solution. Two types of problems are
distinguished – compositional problems and test-based problems.

Evolutionary Computation Volume x, Number x 3

M. Drahosova, L. Sekanina, M. Wiglasz

Coevolution applied to compositional problems sprang from the cooperative co-
evolutionary algorithms, wherein the originally stated aim was to attack the problem of
evolving complicated objects by explicitly breaking them into parts, evolving parts sep-
arately and then assembling the parts into a working whole (Potter and De Jong, 2000).
There are a number of successful applications of CoEAs to compositional problems.
For example, in neuro-evolutionary algorithms, weights and structure of artificial neu-
ral networks are often coevolved (Stanley and Miikkulainen, 2004; Monroy et al., 2006;
Shi and Wu, 2009; Shi, 2011).

Coevolution applied to compositional problems has also been proposed as a
promising framework for solving high-dimensional optimization problems. However,
it is not always clear on how to decompose a problem into single variables. Yang et al.
(2008) proposed a new problem decomposition strategy (the grouping based strategy),
in order to better capture the variable interdependencies for complex nonseparable
problems.

In coevolution applied to test-based problems, the quality of a potential solution is
determined by its performance when interacting with a set of tests. Hillis (1990) intro-
duced an approach that can automatically evolve subsets of fitness cases concurrently
with a problem solution. Hillis employed a two-population coevolutionary algorithm
in the task of designing a minimal sorting network. Subsets of fitness cases composed
to evaluate candidate sorting networks were evolved simultaneously with the sorting
networks. Evolved sorting networks were applied to evaluate the subsets of fitness
cases. The fitness of each sorting network was measured by its ability to correctly solve
fitness cases, while the fitness of the fitness cases subsets was better for those that could
not be solved well by currently evolved sorting networks. It should be noted that the
number of tests is typically assumed to be high in order to ensure an evolved solution
will generalize over the entire domain.

The test-based problems are discussed in De Jong and Pollack (2004) and ana-
lyzed in connection with a multi-objective optimization in De Jong and Bucci (2008).
Coevolving the fitness cases as the method of fitness modeling in GP has been studied
in many application domains (Dolinsky et al., 2007; Gagné and Parizeau, 2007; Mendes
et al., 2001) as well as in symbolic regression problems (Dolin et al., 2002; Pagie and
Hogeweg, 1997; Schmidt and Lipson, 2006, 2008).

The minimal set of objectives that can provide satisfactory information about the
structure of a problem is mentioned in connection with test-based problems in De Jong
and Pollack (2004) and with compositional problems in Panait et al. (2006).

2.3 Coevolution of Fitness Predictors

The proposed method develops a specific form of coevolution introduced in Schmidt
and Lipson (2006, 2008). Their method combines fitness prediction with coevolution to
eliminate disadvantages of the classic fitness modeling, in particular the effort needed
to train a fitness model and adapt the level of accuracy. In this coevolutionary algo-
rithm, the objective fitness evaluation is replaced with a subjective fitness calculated
by using a fitness predictor. Fitness predictors are coevolved in a second population in
order to provide accurate fitness predictions. The population of solutions is evaluated
with the current best fitness predictor while the population of fitness predictors evolves
to minimize the difference between objective and subjective fitness when measured us-
ing the current population of solutions. This approach has been applied in the Eureqa
software, which is successful in determining mathematical equations that describe sets
of data in their simplest form (Schmidt and Lipson, 2009).

4 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

In Sikulova and Sekanina (2012b), coevolution of fitness predictors has been ap-
plied in order to accelerate the fitness evaluation in CGP. The fitness predictor encod-
ing has been adopted in the form of a subset of the fitness cases set. Fitness predictors
have been represented as a constant-size array of pointers to elements in the training
data and operated using a simple genetic algorithm (GA). The coevolutionary algo-
rithm has been adapted for CGP. Speedup of 2.0 – 5.4 has been reported in comparison
with the standard CGP for five symbolic regression benchmarks and the results have
been quite competitive with the tree-based GP (Schmidt and Lipson, 2008) in terms of
the number of fitness evaluations needed to obtain a satisfactory solution.

The same coevolutionary CGP together with the competitive coevolution approach
(Hillis, 1990) adapted for CGP have been used in the evolutionary design of salt-and-
pepper noise suppressing filters (Sikulova and Sekanina, 2012a). Although the time of
evolution was also reduced, a large number of experiments had to be accomplished in
order to find the most advantageous size of the fitness predictor (the number of fitness
cases in the predictor) for a particular task. An open problem is on how to reduce this
overhead.

In order to solve this problem, Sikulova et al. (2015) have introduced a new type of
indirectly encoded fitness predictors which can automatically adapt the number of fit-
ness cases necessary to evaluate the candidate programs. These fitness predictors have
been represented in the form of functional expressions. The functional expression gen-
erates a certain number of indexes into the training data. Indexes then address specific
fitness cases from the original training data which are selected for the prediction of the
solution fitness. In order to evaluate the fitness of a candidate predictor, two features
have to be observed – the prediction precision and the size of the predictor. The method
has been evaluated using five symbolic regression benchmarks and compared with the
original approach (Sikulova and Sekanina, 2012b). It was shown that the size of the pre-
dictor can automatically adapt to a particular benchmark. However, during evolution
of fitness predictors, large fitness predictors can emerge and must be evaluated (and
then refused for a larger size), and thus plenty of fitness case evaluations are wasted.
Finally, Wiglasz and Drahosova (2016) have integrated the phenotypic plasticity princi-
ples into coevolution. The phenotypic plasticity is the ability of an individual to learn
how to use its genotype in order to adapt to the environment (Baldwin, 1896). Inspired
by this principle, a fitness predictor operated using a simple genetic algorithm em-
ploying the phenotypic plasticity, has been introduced in order to adapt the number of
fitness cases for candidate program evaluations.

3 Adaptive Fitness Predictors

This section introduces the concept of constant-size and adaptive-size fitness predictors
in coevolutionary GP. It presents a new algorithm capable of dynamic adaptation of
the predictor size, besides useful fitness cases selection, with respect to a particular
problem.

The proposed algorithm employs four collections of individuals. There are two
populations: 1) population of candidate programs and 2) population of fitness predic-
tors. Furthermore, two archives are used: 1) archive of fitness trainers and 2) archive
containing the current best evolved fitness predictor.

The archive of fitness trainers is used by the predictor population for the evalu-
ation of evolved fitness predictors. It contains copies of selected candidate programs
obtained during the evolution. The fitness predictor from the other archive is used to
evaluate the candidate programs.

Evolutionary Computation Volume x, Number x 5

M. Drahosova, L. Sekanina, M. Wiglasz

3.1 Fitness Predictor

Let T be a training data set containing k fitness cases (k = |T |). Formally, fitness pre-
dictor P, P ⊆ T is a small subset of the training data (|P | � |T |). It is encoded as an
array of pointers to elements in the training data. Figure 1 illustrates how every pointer
addresses one selected fitness case.

A good fitness predictor provides a fitness prediction which is fast and robust
enough to differentiate any pair of candidate programs with high fidelity. The fitness
value of the fitness predictor is (in our case) calculated using the mean absolute error of
the objective fitness and subjective fitness of fitness trainers. Fitness trainers are selected
copies of candidate programs that occurred during the program evolution.

Let us consider a symbolic regression problem where the candidate program fit-
ness is represented as the number of hits. In common (non-coevolutionary) GP, the
program fitness function (here the objective fitness is equal to the subjective fitness) is
then defined as

fcommon (s, T) =

k∑
j=1

g (yj (s, T)) , and (1)

g (yj (s, T)) = 1 if |yj (s, T)− tj | ≤ ε; otherwise 0, (2)

where yj(s, T) is the response of candidate program s for the j-th fitness case from T ,
tj is the target response, and ε, ε ≥ 0 is a user-defined maximum error.

When the coevolutionary GP with fitness predictor P is employed, there are, in
fact, two fitness functions for candidate program s. While the objective fitness function
f(s, T) uses the complete training data, the subjective fitness function f̂(s, P) employs
only selected fitness cases. Formally,

f(s, T) =
1

k

k∑
j=1

g (yj (s, T)) (3)

f̂(s, P) =
1

m

m∑
j=1

g (yj (s, P)) (4)

where m is the number of fitness cases in the fitness predictor P (i.e. m is the size of the
predictor).

Figure 1: Example of fitness predictor addressing 5 fitness cases (FCs), where k = 99.

6 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

Let A be a set of programs in the trainer archive. The fitness value of predictor P
is then expressed as

fp (A,P) =
1

u

u∑
i=1

∣∣∣f (Ai, T)− f̂ (Ai, P)
∣∣∣ , (5)

where Ai is the i-th trainer and u is the number of programs (trainers) in the trainers
archive A.

3.1.1 Constant-size Fitness Predictor
The basic framework supporting the coevolution of fitness predictors developed by
Schmidt and Lipson (2008) introduces the fitness predictor encoding in the form of a
constant-size array of pointers to elements in the training data. However, our previous
work (Sikulova and Sekanina, 2012b,a) revealed that the recommended predictor size
differs from task to task. In order to find the most advantageous predictor size for a
particular task, a large number of experiments have to be accomplished.

3.1.2 Adaptive-size Fitness Predictor
In order to eliminate the problem of an expensive search for the most suitable predictor
size for a particular task, we propose an approach which enables GA to dynamically
modify the predictor size during coevolution in response to the program evolution
progress.

Our approach employs a specific predictor encoding and predictor fitness evalu-
ation. The predictor is encoded as a constant-size array of pointers to elements in the
training data. The size of this array is equal to the total number of fitness cases. In order
to obtain the fitness predictor with a particular size, pointers are read sequentially from
the beginning and the reading stops after processing a given number of pointers spec-
ified by the readLength variable which thus defines the predictor size. If the pointer
value is already included, it is skipped in order to prevent duplicating fitness cases
in the predictor. The readLength variable is not part of the predictor encoding and is
determined during the progress of the candidate program evolution.

The evolution of predictors is under the control of the simple genetic algorithm
(Sect. 5), where only the crossover operator is modified in such a way that the split point
is always selected between the beginning of the encoded predictor and the possition
given by the readLength value.

In our approach, the readLength value is updated in two cases: (i) each time the
best subjective fitness is improved in the program population; and (ii) after elaps-
ing Gupdate generations without any update of readLength in the program population.
The readLength value depends on the phase of evolution (see below) and its update con-
sists of the four following steps:

1. Estimate the phase of evolution: we propose to characterize phases of evolution in
terms of the evolution speed v which we define as follows:

v =
∆f

∆G
, (6)

where ∆f is the difference between objective fitness values of the current best pro-
gram and the best program at the previous readLength update, and ∆G is the num-
ber of generations since the last readLength value update. It should be noted that
as the evolution of programs is guided by the subjective fitness, its speed can be

Evolutionary Computation Volume x, Number x 7

M. Drahosova, L. Sekanina, M. Wiglasz

negative because it is calculated from the objective fitness. The phases of evolution
are defined as follows:

• improvement: v > 0: the best-of-population objective fitness is increasing,

• stagnation: v ≈ 0: the stagnation of the best-of-population objective fitness,

• deterioration: v < 0: the best-of-population objective fitness is decreasing.

2. Calculate the inaccuracy of fitness prediction: as the predictor can be based only on
a few fitness cases (in the extreme case, on a single fitness case), this may cause
the overfitting of predictors which renders the evolution unable to produce satis-
factory programs. In order to prevent this behaviour, we monitor the prediction
inaccuracy I which we define as the ratio between subjective and objective fitness:

I =
f̂

f
. (7)

3. Select the update rule: the rules are based on the following assumptions:

(a) If the inaccuracy exceeds the threshold Ithr (i.e. I > Ithr), the predictor size is
increased to prevent the over-fitting.

(b) If the improvement phase is detected, the predictor size is increased in order to
make the prediction more accurate.

(c) If the stagnation phase is detected, the predictor size is decreased. As stagnation
can be caused by reaching a local optima, this rule increases the probability of
leaving this point.

(d) If the deterioration phase is detected, the predictor size is decreased. Deteriora-
tion is usually detected after the application of the rule (c) and it signals that
the evolution is leaving the stagnation phase; the decreasing of the predictor
size can accelerate this process.

The purpose of the rules is to find a suitable predictor size, and at the same time,
to ensure the progress of evolution. The parameters of the rules are specified in
Sections 5 and 6.

4. Update the readLength value: the new readLength value is obtained by multiplying
the previous value by coefficient C:

readLength ← readLength · C, (8)

where C is dependent on the proposed rules as seen in Sections 5 and 6.

After the readLength value is updated, a new generation of predictors is constructed
using the updated readLength value. It should be noted that the program objective
fitness is evaluated only when calculating formulas 6 and 7. The objective fitness is
then computed for the program showing the best subjective fitness in the population.

8 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

0

1

2

255
3

4

5

6

7

8

9

100

XOR AND +

OR−255/

0

1

2

255
3

4

5

6

7

8

9

10

NOT 255 −

+/*/

0

1

2

255
3

4

5

6

7

8

9

10

NOT XOR /

+−*/
2

0

1

2

+
3

4

5

6

7

8

9

10

NOT AND −

255NOTXOR+

0

1

2

255
3

4

5

6

7

8

9

10

NOT XOR /

+−*/
2

6 17 4 28
1 70 8 42

7 4 1 14

10 5 88 42 74 32 7 15

2 42 15 73

2 1 8 42

0

1

2

255
3

4

5

6

7

8

9

10

NOT XOR /

+−*/
2

21 15 42 73

Candidate programs population

Predictor population

Archive of trainers:
candidate programs for

predictor evaluation

The top-ranked
predictor for candidate
programs evaluation

Add trainers

Program
inputs

Target
output

15 2 0 7 6 39 37 15

21 5 8 3 10 7 7 42

2 4 1 4 0 70 55 98

73 8 2 28 26 156148 64

42 4 1 14 13 78 74 32

Fitness cases set

Use trainers for
predictor evaluation

Figure 2: The overall coevolutionary scheme.

3.2 Predictor Evaluation

The fitness predictors are evaluated using fitness trainers that are selected copies of can-
didate programs which occurred during the program evolution. The number of trainers
in the archive is kept constant during the evolution. When initializing the coevolution,
programs from the first generation are copied to the archive of trainers. If the archive
of trainers is larger than the program population, the remaining trainers are generated
randomly.

Trainers in the archive are updated periodically – the top-ranked candidate pro-
gram is copied to the trainers archive if its subjective fitness value is better then the
subjective fitness of the top-ranked trainer. This new trainer replaces the oldest one
in the trainers archive and its objective fitness is evaluated. This approach leads to
maintaining a representative sample of the program population (due to the copies of
top-ranked candidate programs) as well as increasing the diversity of programs in the
archive of trainers (due to the randomly generated trainers).

3.3 Coevolutionary Algorithm

Figure 2 shows the overall interaction scheme and Algorithm 1 provides a pseudo-code
of key procedures of the proposed coevolutionary algorithm.

Candidate programs are stored in ProgPop population. The goal of the program
evolution is to find a program minimizing the difference between its responses and
desired responses. Candidate programs are evaluated using predictors that are coe-
volved in the second population (PredPop). The predictors are trained using a set of
fitness trainers A containing selected copies of candidate programs and randomly gen-
erated programs.

In the CoevolutionInitialization procedure, ProgPop, PredProg and A are randomly

Evolutionary Computation Volume x, Number x 9

M. Drahosova, L. Sekanina, M. Wiglasz

1 procedure CoevolutionInitialization
2 ProgPop← random initialization // Program population initialization
3 PredPop← random initialization // Predictor population initialization
4 A← ProgPop ∪ random initialization // Trainers archive initialization
5 for t ∈ A do // Evaluate trainers
6 f(t,T)
7 end
8 for P ∈ PredPop do // Evaluate predictor population
9 fp(A, P)

10 end
11 TRP← SelectTopRanked(PredPop) // TRP – Top Ranked Predictor
12 BRP0 ← SelectTopRanked(A) // BRP – Best Ranked Program
13 R← BRP0 // R – Best known solution
14 end

15 procedure UpdateReadLength
16 v =

f(BRPG,TRP)−f(BRP(Glast update),TRP)
G−Glast update

17 I =
f̂(BRPG,TRP)
f(BRPG,T)

18 C ← SelectCoefficient(v, I)
19 readLength← readLength · C
20 Reconstruct top-ranked-predictor using new readLength
21 Glast update ← G

22 end

23 procedure ProgramEvolution
24 for G = 1 to Gmax do
25 for s ∈ ProgPop do // Evaluate program population
26 f̂(s,TRP)
27 end
28 BRPG← SelectTopRanked(ProgPop)
29 if f̂(BRPG,TRP) > f̂(BRPG−1,TRP) then
30 Insert BRPG to A
31 if f(BRPG,T) > f(R,T) then
32 R← BRPG

33 end
34 call UpdateReadLength
35 else if no update in last Gupdate generations then
36 call UpdateReadLength
37 end
38 ProgPop← create new population
39 end
40 set TerminatingFlag
41 return R
42 end

43 procedure PredictorEvolution
44 repeat
45 for P ∈ PredPop do // Evaluate predictor population
46 fp(A, P)
47 end
48 TRP← SelectTopRanked(PredPop)
49 PredPop← create new population
50 until TerminatingFlag is set
51 end

52 program Coevolution
53 call CoevolutionInitialization
54 call ProgramEvolution and PredictorEvolution
55 end

Algorithm 1: Pseudo-code for coevolution of the population of programs and the
population of predictors.

10 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

initialized. Predictors from PredPop and trainers from A are evaluated and the top
ranked predictor (TRP) is determined. After these initialization steps, procedures Pro-
gramEvolution and PredictorEvaluation are started. Their synchronization will be de-
scribed in Sections 5 and 6.

The ProgramEvolution procedure starts by evaluating all candidate programs using
subjective fitness function f̂ which employs TRP. The subjective fitness values of the
current best ranked program (BRP) and previous BRP are then compared, and if an
improvement in subjective fitness is detected, the current BRP is inserted into trainers
archive A. This program is also compared against the best known solution (R) in terms
of the objective fitness. The best known solution (R) is then the result of the whole
coevolution. If conditions discussed in Section 3.1.2 are met, the UpdateReadLength pro-
cedure is called to modify the readLength variable. The pseudo-code of this procedure
formalizes the detailed description given in Section 3.1.2. Finally, a new population
of candidate programs is generated. For example, in our case studies, only mutation
is employed as it is the standard genetic operator in CGP. The user parameter Gmax

specifies the number of repetitions for all the aforementioned steps.
In the PredictorEvaluation procedure, the predictor population is evaluated using

trainers from A followed by updating and storing the top ranked predictor. Then, the
new generation of fitness predictors is created by means of a single-point crossover and
mutation, and the evolution loop continues with the next iteration until the terminating
flag is set on.

4 Cartesian Genetic Programming and Motivation for Case Studies

In order to evaluate the proposed method, we selected CGP because (i) CGP is rele-
vant for our application-oriented research in the area of evolvable hardware and (ii)
implementations of standard, as well as coevolutionary CGP, are available for a fair
comparison. This section introduces the principles of CGP and the case studies used
for experimental evaluation.

4.1 Cartesian Genetic Programming

Cartesian genetic programming has been introduced and developed by Miller and
Thomson (2000). Compared to standard tree-based GP, CGP uses a simple integer-
based representation of programs that are treated as directed acyclic graphs. This rep-
resentation is especially useful for evolving digital circuits as it naturally captures the
circuit physical structure and supports multiple outputs, subgraph sharing and various
types of elementary circuit components. Although CGP requires only a simple and an
easy to implement search algorithm, it is highly flexible for many applications and its
performance is comparable to other forms of GP (Miller and Turner, 2015).

In standard CGP, candidate programs are modeled in a matrix of nc × nr pro-
grammable elements (nodes). Each node is programmed to perform one of na-input
functions defined in the set Γ. The number of primary inputs, ni, and outputs, no, of
the program is defined for a particular task. Each node input can be connected either
to the output of a node placed in previous l columns or to one of the program inputs.
Feedback is not allowed in standard CGP. The search is usually performed using a sim-
ple (1 + λ) evolutionary algorithm, where λ is usually between 1 and 20 (Miller and
Thomson, 2000). Every new population consists of (i) the best individual of the pre-
vious population and (ii) its λ offspring created by using a mutation operator which
modifies up to h genes of the chromosome. An example of a Cartesian program and its
encoding in the task of image filter design is given in Figure 6.

Evolutionary Computation Volume x, Number x 11

M. Drahosova, L. Sekanina, M. Wiglasz

4.2 Test Problems

Symbolic regression is a common problem used to evaluate the performance of GP-
based systems. In addition to symbolic regression, the proposed method is evaluated
in the task of automated image filter design, emerging in the context of adaptive em-
bedded systems.

Hardware implementations of CGP are typically developed with the aim of either
(i) enabling autonomous system adaptation at the hardware level, or (ii) reducing the
execution time in comparison with a pure software implementation (Salvador et al.,
2013; Dobai, 2014; Sekanina et al., 2011). Dobai (2014) showed that when properly
accelerated in a field programmable gate array, CGP can evolve a unique image filter
for every frame of a video played with a resolution of 427×240 pixels. In this task, CGP
can generate and evaluate over 9,200 candidate filters per second, and each of them is
evaluated using a 128× 128 pixel image taken from the previous frame. As most of the
time is spent on evaluating candidate filters, the evaluation must be highly optimized at
the hardware level by means of multiple pipelined fitness units. The search algorithm
is implemented as a program for an embedded microprocessor. In order to enable the
adaptive video filtering for higher image resolutions and frame rates, it is important
to improve the search algorithm which is currently the standard mutation-based CGP.
There is no reason to accelerate the search operators in the hardware as the performance
bottleneck is in the candidate filter evaluation. However, if the number of pixels in the
training image or the number of candidate filters requiring the evaluation could be
reduced by a smart search strategy, the time of evolution would be shortened.

The standard CGP has been successful in evolutionary image filter design. How-
ever, it is crucial to reduce the computational overhead of the method. It is proposed
to coevolve the fitness predictors (representing small subsets of pixels of the training
image) with Cartesian programs (representing desired image filters). In order to avoid
a computationally expensive search for the most suitable setup of coevolutionary CGP,
the proposed method will adapt the predictor size in the course of coevolution.

5 Case Study 1: Symbolic Regression

Five symbolic regression benchmark functions (F1 – F5, taken from Sikulova and
Sekanina (2012b)) were selected as training data sources for the evaluation of the pro-
posed method:

F1 : f(x) = x2 − x3, x = [−10 : 0.1 : 10]

F2 : f(x) = e|x| sin(x), x = [−10 : 0.1 : 10]

F3 : f(x) = x2esin(x) + x+ sin
(π

x3

)
, x = [−10 : 0.1 : 10]

F4 : f(x) = e−xx3 sin (x) cos (x)
(
sin2 (x) cos (x)− 1

)
, x = [0 : 0.05 : 10]

F5 : f(x) =
10

(x− 3)2 + 5
, x = [−2 : 0.05 : 8] .

In order to form the training data, 200 equidistant distributed samples were taken
from each function. The user-defined acceptable errors ε are as follows: F1, F2: 0.5; F3:
1.5; F4, F5: 0.025. The requested number of hits is at least 96 %.

5.1 Experimental Setup

The proposed coevolution scheme employing adaptive-size predictors (ASP) is com-
pared with the original constant-size predictors (CSP), CGP with a random constant

12 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

Table 1: Rules used to adapt the readLength parameter in symbolic regression.

Priority Condition Coefficient C
1. I > Ithr ; Ithr = 2.7 1.20

2. |v| ≤ 0.001 0.90

3. v < 0 0.96

4. 0 < v ≤ 0.1 1.07

5. v > 0.1 1.00

predictor (RP) and standard CGP (CGPSTD) without coevolution.
The setup of the program evolution in all CGP versions is used according to the

literature (Sikulova and Sekanina, 2012b), i.e. λ = 12, ni = 1, no = 1, nc = 32, nr = 1,
l = 32, every node has two inputs (i1, i2), Γ = {i1 + i2, i1− i2, i1 · i2, i1

i2
, sin (i1), cos (i1),

ei1 , log (i1)} and h = 8.
The fitness function for program evolution with the standard CGP (i.e. no coevo-

lution) is represented as the number of hits (Formula 1). In coevolutionary CGP, the
objective fitness (f) and subjective fitness (f̂) are computed using Formula 3 and For-
mula 4.

In CGP with CSP, GA performing the predictor evolution employs 12 fitness cases
in chromosome and 32 individuals in the predictor population. It uses a 2-tournament
selection, a single-point crossover and a mutation probability 0.2. The same setup is
used for coevolution with ASP, except specifying the number of fitness cases, which is
variable. CGP with RP uses 12 fitness cases for prediction.

Our previous experiments have revealed that a frequent interaction (generation to
generation) between populations does not lead to programs with the desired quality in
a reasonable time because of very fast changes in involved populations. One generation
in the predictor evolution executed each 100 generations of the program evolution was
enough to produce satisfactory predictors (Sikulova and Sekanina, 2012b).

In ASP, the predictor size is adapted as follows. The readLength value is initialized
with 5 genes, its minimum size is limited to 5 and the maximum is the total number of
fitness cases. The readLength value is updated every time when the subjective fitness is
improved, or after Gupdate = 5000 generations since the last update.

Decision conditions and their priority for updating readLength are given in Table 1.
Coefficients used in the decision procedure (Table 1) were determined experimentally
using several short runs of the algorithm. They are identical in both case studies except
in the condition considering Ithr . This setup allows us to reflect different ranges of the
fitness scores in our case studies.

All experiments were performed on a cluster equipped with Intel Xeon E5-2680v3
(2.5 GHz) CPUs. Evolution of programs and evolution of predictors are executed in
independent threads. In both case studies, the CPU time (user time) reported in tables
and figures is the sum of runtimes of both threads which corresponds to the total time
required by a coevolutionary search.

5.2 Results

The algorithms are compared in terms of the success rate (the number of runs that
gives a solution with a predefined quality), the number of generations and the number
of fitness case evaluations to converge (in order to compare the computational cost)

Evolutionary Computation Volume x, Number x 13

M. Drahosova, L. Sekanina, M. Wiglasz

and CPU time. Table 2 gives the median values calculated from 100 independent runs
for each benchmark F1 – F5.

Table 2 shows that ASP has the highest success rate for all benchmarks. The com-
putational cost, represented as the CPU time necessary to find a solution, is the lowest
in the case of benchmarks F1 and F2 and is comparable to CSP in benchmarks F3–F5.
It should be noted that CGP with CSP requires performing many experiments to find
the most advantageous size of the predictor, while CGP with ASP can adjust the size of
the predictor during each single run in response to a particular task.

Although CGP with RP does not spend resources on the evolution of the predictor
population, it requires more generations to converge, and in the end consumes more
CPU time than the coevolutionary approaches. Moreover, its overall ability to find a
satisfactory solution is worse than standard CGP and thus it is only suitable for simple
tasks. In the case of benchmark F4, it was not able to converge at all, and only 3 out of
100 runs discovered a solution for benchmark F5.

Finally, all coevolutionary approaches outperform the standard CGP in terms of
CPU time required to converge and thus accelerate the design process.

5.3 Ability to Adapt the Number of Fitness Cases

In order to confirm that the proposed algorithm is able to adapt the predictor size for a
given task, we plot the progress of the average number (out of 100 independent runs)
of fitness cases in the top-ranked predictor during the evolution flow with respect to
the initial predictor sizes. Figure 3 shows that the size converges independently of the
initial predictor size and the final predictor size differs for each benchmark.

The success rate is almost identical for every initial predictor size setting. In the
case of benchmarks F1 – F3, a larger initial predictor size leads to more fitness case
evaluations required to find an acceptable solution (see Figure 3). This does not hold for
benchmarks F4 and F5, where all settings lead to a comparable number of evaluations.

Table 2: Median values out of 100 runs for standard CGP (CGPSTD), coevolutionary
CGP with CSP, CGP with ASP and CGP with RP. For each benchmark, the best result is
marked in bold font.

Algorithm F1 F2 F3 F4 F5

Success rate

CGPSTD 100 % 100 % 91 % 5 % 27 %

CSP 100 % 100 % 100 % 33 % 43 %

ASP 100 % 100 % 100 % 94 % 100 %

RP 100 % 100 % 69 % 0 % 3 %

Generations
to converge

(median)

CGPSTD 8.66 · 103 3.09 · 104 1.17 · 105 4.13 ·106 3.25 · 106

CSP 2.08 ·103 1.07 ·104 2.60 · 104 1.13 · 107 7.32 · 106

ASP 2.47 · 103 1.13 · 104 2.50 ·104 5.60 · 106 2.68 ·106

RP 2.74 · 103 2.00 · 104 2.13 · 105 — 4.46 · 106

CPU time
(seconds) to

converge (median)

CGPSTD 8.01 2.85 · 101 1.08 · 102 6.46 · 103 4.76 · 103

CSP 2.07 · 10−1 1.18 2.90 1.21 ·103 9.69 · 102

ASP 1.46 ·10−1 7.22 ·10−1 3.25 4.03 · 103 1.19 · 103

RP 1.55 · 10−1 2.00 2.26 · 101 — 4.44 ·102

14 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 0.5 1 1.5 2 2.5 3N
u
m

b
e
r

o
f

fi
tn

e
ss

 c
a
se

s

Generation (105)

10
20
30
40
50
60
70

80
90

100
110
120
130
140

150
160
170
180
190
200

(a) Benchmark F1.

 0

 2x107

 4x107

 6x107

 8x107

 1x108

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Fi
tn

e
ss

 c
a
se

 e
v
a
lu

a
ti

o
n
s

Initial number of fitness cases in predictor

(b) Benchmark F1.

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 0.5 1 1.5 2 2.5 3N
u
m

b
e
r

o
f

fi
tn

e
ss

 c
a
se

s

Generation (105)

10
20
30
40
50
60
70

80
90

100
110
120
130
140

150
160
170
180
190
200

(c) Benchmark F2.

 0

 2x107
 4x107

 6x107
 8x107

 1x108

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Fi
tn

e
ss

 c
a
se

 e
v
a
lu

a
ti

o
n
s

Initial number of fitness cases in predictor

(d) Benchmark F2.

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 0.5 1 1.5 2 2.5 3N
u
m

b
e
r

o
f

fi
tn

e
ss

 c
a
se

s

Generation (105)

10
20
30
40
50
60
70

80
90

100
110
120
130
140

150
160
170
180
190
200

(e) Benchmark F3.

 0
 2x107
 4x107
 6x107
 8x107
 1x108

 1.2x108
 1.4x108
 1.6x108

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Fi
tn

e
ss

 c
a
se

 e
v
a
lu

a
ti

o
n
s

Initial number of fitness cases in predictor

(f) Benchmark F3.

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 0.5 1 1.5 2 2.5 3N
u
m

b
e
r

o
f

fi
tn

e
ss

 c
a
se

s

Generation (105)

10
20
30
40
50
60
70

80
90

100
110
120
130
140

150
160
170
180
190
200

(g) Benchmark F4.

 0

 5x109

 1x1010

 1.5x1010

 2x1010

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Fi
tn

e
ss

 c
a
se

 e
v
a
lu

a
ti

o
n
s

Initial number of fitness cases in predictor

(h) Benchmark F4.

 0
 25
 50
 75

 100
 125
 150
 175
 200

 0 0.5 1 1.5 2 2.5 3N
u
m

b
e
r

o
f

fi
tn

e
ss

 c
a
se

s

Generation (105)

10
20
30
40
50
60
70

80
90

100
110
120
130
140

150
160
170
180
190
200

(i) Benchmark F5.

 0

 5x109

 1x1010

 1.5x1010

 2x1010

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Fi
tn

e
ss

 c
a
se

 e
v
a
lu

a
ti

o
n
s

Initial number of fitness cases in predictor

(j) Benchmark F5.

Figure 3: Different initial predictor sizes in the task of symbolic regression: the aver-
age number of fitness cases in predictors and the number of fitness case evaluations
necessary to find an acceptable solution.

Evolutionary Computation Volume x, Number x 15

M. Drahosova, L. Sekanina, M. Wiglasz

The reason is that the predictor size converges in approximately 105 generations, while
it takes more time (approx. 3.7 ·106 generations) to find a satisfactory solution (Table 2),
so the effect of a different predictor size at the beginning of the evolution is negligible.
It should be noted that a satisfactory solution for benchmark F1 was obtained in fewer
generations than was necessary for the predictor size to converge.

In general, it is advantageous to begin with a lower number of fitness cases in the
predictor, which, in some cases, leads to a lower number of evaluations and thus the
design process acceleration. On the other hand, if the initial predictor size is too small
to find an acceptable solution, it will be automatically increased without a significant
impact on the run time.

5.4 Predictor Behavior

Figure 4 shows the frequency of fitness cases addressed by the top-ranked predictors
during the coevolution flow out of 100 independent runs for each symbolic regression
task. For benchmarks F1 and F2, predictors focus more on peaks and valleys than on
flexes. On the other hand, in the cases of F3 – F5, the samples are well distributed over
the data set. One should now consider that all fitness cases addressed by the predictor
will be focused only on the interesting regions (peaks and valleys) of the training data.
Such a predictor would lead to a very high error. It should be noted that this character-
istic is desirable in the Hillis’ competitive coevolutionary approach (Hillis, 1990), but is
improper when one requires obtaining very close subjective and objective fitness val-
ues. Furthermore, the fitness cases addressed by the fitness predictors are variable in
response to the program evolution flow. The program evolution forces the predictors
to contain easy as well as difficult fitness cases for a particular program.

6 Case Study 2: Image Filter Design

Evolutionary design of low level image filters by means of CGP resulted in novel de-
signs showing very good quality of processing and low implementation cost in compar-
ison with conventional image filters (Sekanina et al., 2011). Various approaches have
been proposed to accelerate the image filter evolution (Salvador et al., 2013; Dobai,
2014). We will show that a further reduction of the CGP run time is possible by intro-
ducing fitness prediction into a coevolutionary design framework.

 0

 100

 200

 300

 400

 500

G
e
n
e
ra

ti
o
n
s

(a) Benchmark F1.
 0

 200
 400
 600
 800

 1000
 1200
 1400
 1600

G
e
n
e
ra

ti
o
n
s

(b) Benchmark F2.

 1000

 1500

 2000

 2500

 3000

 3500

G
e
n
e
ra

ti
o
n
s

(c) Benchmark F3.
 1000

 1050

 1100

G
e
n
e
ra

ti
o
n
s

(1
0
3
)

(d) Benchmark F4.
 800

 900

 1000

 1100

 1200

G
e
n
e
ra

ti
o
n
s

(1
0
3
)

(e) Benchmark F5.

Figure 4: Frequency (y-axis) of all fitness cases (x-axis) in predictors used for evaluation
of programs. The black curves are benchmark functions F1 – F5.

16 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

Table 3: List of node functions for image filter evolution.

Code Function Description Code Function Description
0 255 constant 8 i1 � 1 right shift by 1
1 i1 identity 9 i1 � 2 right shift by 2
2 255− i1 inversion A swap (i1, i2) swap nibbles
3 i1 ∨ i2 bitwise OR B i1 + i2 + (addition)
4 i1 ∨ i2 bitwise i1 OR i2 C i1 +S i2 + with saturation
5 i1 ∧ i2 bitwise AND D (i1 + i2)� 1 average
6 i1 ∧ i2 bitwise NAND E max (i1, i2) maximum
7 i1 ⊕ i2 bitwise XOR F min (i1, i2) minimum

The proposed approach is evaluated in the design of edge detectors and impulse
noise filters. We distinguish two basic types of impulse noise. Pixels corrupted by a salt-
and-pepper noise can only take the minimum or maximum values from a given range.
For images corrupted by random-valued shot noise, the noisy pixels have an arbitrary
value. These two types of noise are illustrated in Figures 5b and 5c. In addition to basic
noise suppressing filters, CGP is able to evolve advanced filters (Sekanina et al., 2011),
for example, dilate, erode, motion, unsharp filters or an edge detector (see Fig. 5d).

This section presents the coevolutionary approach to image filter design, experi-
mental setup and results that are compared with other CGP-based implementations.

6.1 Cartesian Genetic Programming for Image Filter Design

In the case of the image filter design using CGP, as summarized in Sekanina et al. (2011),
candidate filters operate over a filtering window consisting of 3× 3 pixels. Each candi-
date filter can use up to nine 8-bit inputs (i.e. ni = 9). It produces a single 8-bit pixel
(i.e. no = 1). Table 3 gives a set of functions working over two pixels i1 and i2 that
are used for image filter evolution in the literature. Figure 6 shows an example of a
candidate filter and its encoding in CGP.

In the fitness function, the goal is to maximize the peak signal-to-noise ratio
(PSNR) between the uncorrupted version of the training image (a golden image) and
the result of filtering by candidate filter s. The PSNR is defined as:

PSNR(s, T) = 10 · log10
2552

1
k

∑
(i,j)∈T (vi,j(s)− wi,j)2

, (9)

(a) Original image. (b) S&P (25 %). (c) RVS (25 %). (d) Detected edges.

Figure 5: Examples of salt-and-pepper noise (S&P), random-valued shot noise (RVS)
and edge detection (by Sobel operator).

Evolutionary Computation Volume x, Number x 17

M. Drahosova, L. Sekanina, M. Wiglasz

where k is the number of filtered pixels, v denotes the image produced by candidate
filter s and w denotes the golden image. The training set T thus consists of k fitness
cases (all pixels in the image), where one fitness case involves the filtering window of
3× 3 pixels from the training image and a corresponding center pixel from the golden
image, which represents the desired output of the image filter.

In the coevolutionary algorithm, we replace the objective fitness function (i.e.
PSNR) with a fitness prediction. The subjective fitness (PSNRsub) is then defined as:

PSNRsub(s, P) = 10 · log10
2552

1
m

∑
(i,j)∈P (vi,j(s)− wi,j)2

, (10)

where m,m ≤ k is the number of fitness cases (filtering windows with corresponding
center pixels from the golden image) in predictor P .

6.2 Experimental Setup: CGP

CGP is used according to the literature (Sekanina et al., 2011), i.e. nc = 8, nr = 4, l = 1,
ni = 9, no = 1, na = 2, λ = 7, h = 5 and Γ contains the functions from Table 3. The
main objective is to evaluate the impact of parameters of coevolution on the quality of
results. As the impact of CGP parameters has been analyzed in the literature, it is not
our aim to deal with it here.

In order to evaluate the proposed approach, three types of image filters are evolved
using CGP: 1) salt-and-pepper noise filters, 2) random-valued shot noise filters, and
3) edge detectors. In the case of the salt-and-pepper and random-valued noise filter
design, 16 noise intensities are considered, i.e. the Lena training image with resolution
256 × 256 pixels was corrupted by 5 % up to 80 % (step value 5 %) noise to obtain the
desired training images. Once the evolution is completed, evolved filters are tested
using 12 different test images (Gonzalez et al., 2009) containing the same type of noise.

6.3 Experimental Setup: Coevolution

The coevolution setup is used according to our previous experiments in the image filter
design (Sikulova and Sekanina, 2012a). Our solution exploits the assumption that by
using a proper predictor evolution setup, the interaction between populations (each of

Figure 6: Candidate filter in CGP, where l = 1, nc = 8, nr = 4, ni = 9, no = 1, na = 2, Γ
is according to Table 3.

18 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

them running in its own thread in our implementation) will occur at a desired time.
Our experiments with different settings of the predictor evolution have revealed that
16 fitness trainers (in the archive) and 32 fitness predictors (in the predictor population)
are enough to produce satisfactory predictors. This setup produces approximately one
generation in the predictor evolution after 64 generations of the program evolution.
Both populations are thus naturally and indirectly synchronized.

The evolution of fitness predictors is conducted using a simple GA. A new gen-
eration of predictors consists of 8 top-ranked predictors from the previous generation,
8 randomly generated predictors and 16 offspring (created using a 2-tournament selec-
tion and a single-point crossover).

For CGP with CSP a proper number of fitness cases have been investigated and
discussed for a particular task (see Section 6.5). In the case of ASP, the readLength value
is initialized with 3 % of all fitness cases. The role of the initial value is discussed in Sec-
tion 6.6. Decision conditions for establishing the new readLength value are summarized
in Table 4. The remaining setup was reused from Case study 1.

All considered algorithms are compared in terms of the filtering quality of evolved
filters and the execution time. Statistics are calculated from 100 independent runs for
each approach and setup. The experiments were performed on a cluster equipped with
Intel Xeon E5-2665 (2.4 GHz) CPUs.

6.4 Ability to Find a Satisfactory Solution

Firstly, we compare four approaches to the image filter design in terms of the quality of
filtering. Figure 7 shows the average and best PSNR values for 12 test images obtained
by filters evolved (in 3 · 104 generations) using standard CGP (CGPSTD), CGP with CSP
(10% pixels), CGP with ASP, and a conventionally designed median filter. Coevolution-
ary approaches provide filters with a comparable quality of filtering with the standard
CGP. Furthermore, all CGP approaches are able to provide filters with better PSNR than
the conventional median filter.

6.5 Constant-Size and Adaptive-Size Predictor

This section deals with a proper predictor size selection for a particular task in terms of
balancing the ability to find the filter with satisfactory quality and evolutionary design
cost. Figures 8 and 9 compare the quality of filters (PSNR) and the total CPU time (the
user time) spent by the considered approaches.

Figure 8 summarizes the results obtained for salt-and-pepper noise filters (noise
intensity 5 %, 15 % and 50%). For example, in the case of 5 % noise intensity, the qual-
ity of filtering provided by the standard CGP, CGP with CSP (using 5% pixels) and
CGP with ASP is almost identical. CGP with CSP is 6.4 times faster than the standard
CGP while CGP with ASP is only 2.4 times faster. In the case of 15 % noise intensity,

Table 4: Rules used to adapt the readLength parameter in image filter design.

Priority Condition Coefficient C
1. I > Ithr ; Ithr = 1.2 2.00
2. |v| ≤ 0.001 0.90
3. v < 0 0.96
4. 0 < v ≤ 0.1 1.07
5. v > 0.1 1.00

Evolutionary Computation Volume x, Number x 19

M. Drahosova, L. Sekanina, M. Wiglasz

the proper size of the predictor is only 2 % of all fitness cases and CGP with this setting
of the predictor is 8.5 times faster than the standard CGP. CGP with ASP is 5.4 times
faster. Finally, for 50 % noise intensity, CGP with CSP (1 % pixels) and CGP with ASP
provide a very similar speedup.

Figure 9 shows the same type of results, but only for random-valued shot noise
(with intensities 5 %, 15 % and 50%) and edge detectors. For example, in the case of 5 %
noise intensity, the proper predictor size is 20 % of all fitness cases and CGP employing
this predictor size is 2.1 times faster than the standard CGP. CGP with ASP accelerates
the evolution 4.5 times. In the case of edge detection, CGP with CSP (using 3 % of all fit-
ness cases) provides the same quality as the standard CGP, while the time of evolution
is reduced 6.4 times. CGP with ASP is 10.6 times faster than the standard CGP.

CGP with RP is the fastest method if a given number of generations have to be
produced. However, the obtained filters provide lower quality compared to the coevo-
lutionary approaches with the same predictor size.

It can be concluded that the standard CGP shows the worst performance under the
conditions of our experiments. In the case of coevolutionary CGP, the proper size of
the predictor differs from task to task. Many independent runs of CGP with a different
setting of CSP have to be performed in order to find the most suitable predictor size
for a particular task. CGP with ASP eliminates the need to perform these multiple
experiments.

6.6 Examining Behaviour of Adaptive-size Predictor

In order to confirm that the proposed approach is able to adapt the predictor size to a
given task, we plot the progress of the average number (out of 100 independent runs) of
fitness cases in the top-ranked predictor during the course of evolution with respect to
the initial predictor size. It can be seen in Figure 10 that the average size of the predictor
converges to a specific value independent of its initial size. Furthermore, the converged
average predictor size differs for each benchmark.

In general, it is advantageous to begin with a lower number of fitness cases in
the predictor, which in some cases leads to a lower number of fitness cases evaluations,
thus shortening the design time. On the other hand, if the initial size is too small to find
an acceptable solution, it will be automatically increased without a significant impact
on the run time.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

P
S

N
R

 [d
B

]

Noise intensity [%]

Median
CGPSTD

CSP
ASP

(a) Average quality.

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

P
S

N
R

 [d
B

]

Noise intensity [%]

Median
CGPSTD

CSP
ASP

(b) Best-evolved filter quality.

Figure 7: Quality of filtering (salt-and-pepper noise) using 12 test images

20 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

The number of fitness cases addressed by predictors is developing in response to
the course of program evolution. Figure 11 shows the progress of the best (objective
and subjective) fitness values during a typical run of the 15% salt-and-pepper filter
design using CGP with CSP and ASP. It can be seen that the coevolutionary algorithms
produce dynamic changes of the objective fitness while evolving a solution. Aside from
the program evolution progress, the changes of the best-of-population subjective fitness
value are caused by updating the current best-evolved fitness predictor. Moreover, the
best-evolved program may not be present in the last population – the best-evolved
program is always preserved as a part of the trainers archive.

As the average size of the adaptive-size predictor converges to a specific value for
each particular task, the actual size of the predictor in a single run is developing in
reaction to the program evolution progress (Fig. 11b).

 10

 15

 20

 25

 30

 35

 40

 45

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(a) Salt-and-pepper noise 5 %.

 0

 5

 10

 15

 20

 25

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(b) Salt-and-pepper noise 5 %.

 10

 15

 20

 25

 30

 35

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(c) Salt-and-pepper noise 15 %.

 0

 5

 10

 15

 20

 25

 30

 35

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(d) Salt-and-pepper noise 15 %.

 10

 12

 14

 16

 18

 20

 22

 24

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(e) Salt-and-pepper noise 50 %.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(f) Salt-and-pepper noise 50 %.

Figure 8: Salt-and-pepper noise: the quality of filtering (PSNR) and the time of evolution for
filters evolved using the standard CGP, CGP with CSP, CGP with ASP, and CGP with RP – the
boxplots created from 100 runs with 3 · 104 generations each.

Evolutionary Computation Volume x, Number x 21

M. Drahosova, L. Sekanina, M. Wiglasz

 10

 15

 20

 25

 30

 35

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(a) Random-valued shot noise 5 %.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(b) Random-valued shot noise 5 %.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(c) Random-valued shot noise 15 %.

 0

 5

 10

 15

 20

 25

 30

 35

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(d) Random-valued shot noise 15 %.

 10

 12

 14

 16

 18

 20

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(e) Random-valued shot noise 50 %.

 0

 5

 10

 15

 20

 25

 30

 35

 40

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(f) Random-valued shot noise 50 %.

 10

 12

 14

 16

 18

 20

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

P
S
N

R
 [

d
B

]

Size of predictor [%]

(g) The edge detector.

 0

 20

 40

 60

 80

 100

 120

CGP0.5 1 2 3 4 5 10 15 20 25 ASP RP

U
se

rt
im

e
 [

m
in

u
te

s]

Size of predictor [%]

(h) The edge detector.

Figure 9: Random-valued shot noise and edge detectors: the quality of filtering (PSNR) and the
time of evolution for filters evolved using the standard CGP, CGP with CSP, CGP with ASP, and
CGP with RP – the boxplots created from 100 runs with 3 · 104 generations each.

22 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

In order to understand the behaviour of predictor data samples, we plot a 2D bar
graph (Figure 12) portraying the frequency of fitness cases addressed by predictors,
which were used during the course of evolution for program fitness prediction (100
independent runs considered). A brighter pixel means that this pixel was selected with
a higher frequency to the predictor. A white point denotes a situation where the fitness
case represented by this pixel has been used in all fitness predictions during the course
of coevolution. A black point denotes that the fitness case has never been selected.

It is interesting in Figure 12b that selected points do not focus entirely on noisy
pixels (or the edges) in the training images, but they are well distributed over the im-
age during the coevolution. If all fitness cases addressed by the predictor were focused
on the interesting regions of the training image, the predictor would represent a very
high error rate. However, some differences in the sample points selection have been ob-
served between different tasks (Fig. 12a and 12c). It has to be noted that the fitness cases
addressed by the fitness predictors are variable in response to the program evolution.

7 Conclusions

We introduced the coevolution of fitness predictors and Cartesian programs in order
to accelerate CGP running on a common processor. A new method which enables us
(besides useful fitness cases selection) to automatically adapt the predictor size for a
given problem, and thus reduce the time required by CGP search, was proposed and
evaluated.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30

P
re

d
ic

to
r

si
ze

 [
%

]

CGP generation (103)

3%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

(a) Salt-and-pepper noise 5 %.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30

P
re

d
ic

to
r

si
ze

 [
%

]

CGP generation (103)

3%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

(b) Salt-and-pepper noise 15 %.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

P
re

d
ic

to
r

si
ze

 [
%

]

CGP generation (103)

3%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

(c) Salt-and-pepper noise 50 %.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

P
re

d
ic

to
r

si
ze

 [
%

]

CGP generation (103)

3%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

(d) The edge detector.

Figure 10: Convergence curves for various initial predictor sizes averaged from 100
independent runs.

Evolutionary Computation Volume x, Number x 23

M. Drahosova, L. Sekanina, M. Wiglasz

0 10 20 30 40 50 60 70 80 90 100
0

PS
N

R
 [

d
B
]

S
iz

e
of

 p
re

d
ic

to
r

[%
]

Generation (×105

)

20

40

60

80

100

20

30

15

25

35

fobjectivefsubjective size of predictor

(a) The constant-size predictor containing 5% pixels.

0 10 20 30 40 50 60 70 80 90 100
0

PS
N

R
 [

d
B
]

S
iz

e
of

 p
re

d
ic

to
r

[%
]

Generation (×105)

20

40

60

80

100

20

30

15

25

35

fobjectivefsubjective size of predictor

(b) The adaptive-size predictor.

Figure 11: The progress of one run of coevolution.

The method was applied to five different symbolic regression tasks. Our approach
outperformed the original constant-size predictors in terms of success rate and com-
putational cost. The coevolution was able to adapt the predictor size with respect to a
given problem in response to the development in the candidate program evolution.

Then, the proposed method was evaluated in the task of evolutionary design of
image filters of various types. It was shown that the predictor size can automatically
be adapted to a given type of noise in such a way that the total evolution time is sig-
nificantly reduced with respect to the standard CGP. In the case of coevolutionary CGP
with the constant-size predictor, many independent runs of CGP have to be performed
in order to find the most suitable predictor size for a particular task. CGP with the
adaptive-size predictor eliminates the need to perform these multiple experiments. De-
tailed experimental analysis of the proposed method was performed. The method led
to a suitable size of the predictor independent of its initial size. It was also observed
that the fitness cases included in the predictor well represent the input data.

The results presented for symbolic regression problems and image filter evolution
confirmed that the coevolutionary CGP, based on the adaptive-size predictor, is appli-
cable across several domains. It enables us to significantly accelerate the search for the
most suitable parameters of coevolutionary CGP.

In our future work, we plan to combine the proposed method with a hardware ac-
celerator of filter evaluation in an embedded HW/SW system implementing adaptive
video filtering.

24 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

(a) Salt-and-pepper noise 15%. (b) Partial salt-and-pepper noise 25%.

(c) Salt-and-pepper noise 50%. (d) The edge detector.

Figure 12: The frequency of fitness cases used for the fitness prediction. (The left side
shows the image and the right side shows the 2D histogram.)

Acknowledgments

This work was supported by The Ministry of Education, Youth and Sports of the
Czech Republic from the National Programme of Sustainability (NPU II); project
IT4Innovations excellence in science - LQ1602.

References

Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354):441–
451.

De Jong, E. D. and Bucci, A. (2008). Objective set compression. In Multiobjective Problem
Solving from Nature, pages 357–376. Springer.

De Jong, E. D. and Pollack, J. B. (2004). Ideal evaluation from coevolution. Evolutionary
Computation, 12(2):159–192.

Dobai, R. (2014). Evolutionary on-line synthesis of hardware accelerators for software
modules in reconfigurable embedded systems. In Proc. of the 24th International Con-
ference on Field Programmable Logic and Applications (FPL), pages 1–6. IEEE.

Dolin, B., Bennett-III, F. H., and Reiffel, G. (2002). Co-evolving an effective fitness sam-
ple: Experiments in symbolic regression and distributed robot control. In Proc. of the
2002 ACM symposium on Applied computing, pages 553–559. ACM New York.

Dolinsky, J. U., Jenkinson, I. D., and Colquhoun, G. J. (2007). Aplication of genetic
programming to the calibration of industrial robots. Computers in industry, 58(3):255–
264.

Evolutionary Computation Volume x, Number x 25

M. Drahosova, L. Sekanina, M. Wiglasz

Gagné, C. and Parizeau, M. (2007). Co-evolution of nearest neighbor classifiers. Inter-
national Journal of Pattern Recognition and Artificial Inteligence, 21(5):921–946.

Gathercole, C. and Ross, P. (1994). Dynamic training subset selection for supervised
learning in genetic programming. In Parallel Problem Solving from Nature (PPSN III),
pages 312–321. Springer.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. (2009). Standard test images. ImagePro-
cessingPlace.com. [online].
http://www.imageprocessingplace.com/.

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. Physica D, 42(1):228–234.

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing Journal, 9(1):3–12.

Jin, Y. and Sendhoff, B. (2004). Reducing fitness evaluations using clustering techniques
and neural network ensembles. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2004), pages 688–699. Springer.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of
natural selection, volume 1. MIT press.

Lasarczyk, C. W., Dittrich, P., and Banzhaf, W. (2004). Dynamic subset selection based
on a fitness case topology. Evolutionary Computation, 12(2):223–242.

Mendes, R., de Voznika, F., Freitas, A., and Nievola, J. (2001). Discovering fuzzy classifi-
cation rules with genetic programming and co-evolution. In Principles of Data Mining
and Knowledge Discovery, volume 2168 of LNCS, pages 314–325. Springer.

Miller, J. and Turner, A. (2015). Cartesian genetic programming. In Proc. of the Compan-
ion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
pages 179–198. ACM.

Miller, J. F. and Thomson, P. (2000). Cartesian Genetic Programming. In Genetic Pro-
gramming (EuroGP), volume 1802 of LNCS, pages 121–132. Springer.

Monroy, G. A., Stanley, K. O., and Miikkulainen, R. (2006). Coevolution of neural net-
works using a layered Pareto archive. In Proc. of the 8th Annual Conference on Genetic
and Evolutionary Computation, pages 329–336. ACM.

Nordin, P. and Banzhaf, W. (1997). An on-line method to evolve behavior and to control
a miniature robot in real time with genetic programming. Adaptive Behavior, 5(2):107–
140.

Pagie, L. and Hogeweg, P. (1997). Evolutionary consequences of coevolving targets.
Evolutionary Computation, 5(4):401–418.

Panait, L., Luke, S., and Harrison, J. F. (2006). Archive-based cooperative coevolution-
ary algorithms. In Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 345–352. ACM.

Popovici, E., Bucci, A., Wiegand, R. P., and De Jong, E. D. (2012). Handbook of Natural
Computing, chapter Coevolutionary Principles, pages 987–1033. Springer.

26 Evolutionary Computation Volume x, Number x

Adaptive Fitness Predictors in Coevolutionary CGP

Potter, M. A. and De Jong, K. A. (2000). Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary computation, 8(1):1–29.

Salvador, R., Otero, A., Mora, J., De La Torre, E., Riesgo, T., and Sekanina, L. (2013).
Self-reconfigurable evolvable hardware system for adaptive image processing. IEEE
Transactions on Computers, 62(8):1481–1493.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85.

Schmidt, M. D. and Lipson, H. (2006). Co-evolving fitness predictors for accelerating
and reducing evaluations. In Genetic Programming Theory and Practice IV, volume 5,
pages 113–130. Springer.

Schmidt, M. D. and Lipson, H. (2008). Coevolution of Fitness Predictors. IEEE Transac-
tions on Evolutionary Computation, 12(6):736–749.

Sekanina, L., Harding, S. L., Banzhaf, W., and Kowaliw, T. (2011). Cartesian Genetic
Programming, chapter Image Processing and CGP, pages 181–215. Springer.

Shi, M. (2011). Empirical analysis of cooperative coevolution using blind decompo-
sition. In Proc. of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’11, pages 141–142, New York, NY, USA. ACM.

Shi, M. and Wu, H. (2009). Pareto cooperative coevolutionary genetic algorithm using
reference sharing collaboration. In Proc. of the 11th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’09, pages 867–874, New York, NY, USA. ACM.

Sikulova, M., Hulva, J., and Sekanina, L. (2015). Indirectly encoded fitness predictors
coevolved with cartesian programs. In Genetic Programming (EuroGP), volume 9025
of LNCS, pages 113–125. Springer.

Sikulova, M. and Sekanina, L. (2012a). Acceleration of evolutionary image filter design
using coevolution in cartesian gp. In Parallel Problem Solving from Nature-PPSN XII,
volume 7491 of LNCS, pages 163–172. Springer.

Sikulova, M. and Sekanina, L. (2012b). Coevolution in cartesian genetic program-
ming. In Genetic Programming (EuroGP), volume 7244 of LNCS 7244, pages 182–193.
Springer.

Stanley, K. O. and Miikkulainen, R. P. (2004). Efficient evolution of neural networks through
complexification. Citeseer.

Wiglasz, M. and Drahosova, M. (2016). Plastic fitness predictors coevolved with carte-
sian programs. In Genetic Programming (EuroGP), volume 9594 of LNCS, pages 1–16.
Springer.

Yang, Z., Tang, K., and Yao, X. (2008). Large scale evolutionary optimization using
cooperative coevolution. Inf. Sci., 178(15):2985–2999.

Evolutionary Computation Volume x, Number x 27

