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Abstract—Estimation of distribution algorithms (EDAs) are
stochastic optimization techniques that are based on building and
sampling a probability model. Copula theory provides methods
that simplify the estimation of the probability model. To improve
the efficiency of current copula based EDAs (CEDAs) new modi-
fications of parallel CEDA were proposed. We investigated eight
variants of island-based algorithms utilizing the capability of
promising copula families, inter-island migration and additional
adaptation of marginal parameters using CT-AVS technique.
The proposed algorithms were tested on two sets of well-known
standard optimization benchmarks in the continuous domain.
The results of the experiments validate the efficiency of our
algorithms.

I. INTRODUCTION

Estimation of distribution algorithms (EDAs) belong to a
new class of evolutionary optimization methods that explore
the search space by estimating and sampling an explicit
probabilistic model of promising solutions. EDAs applied to
discrete problems are described in the well-known papers
UMDA [1], BMDA [2], MIMIC [3], and BOA [4]. Solutions
of the optimization problems in the real value domain can
be found in [5]. A very modern and accessible survey of the
EDAs algorithm is presented in [6].

The main advantage of EDAs is their capacity to discover
those variable linkages that yield a solution to a complex
optimization problem. On the one hand this probability model-
based approach has allowed EDAs to be applied to large and
complex problems. On the other hand, explicit probabilistic
models are very time consuming. That was the reason for
implementing various advanced EDAs to solve this problem.

In the last ten years a new approach to building an efficient
probabilistic model based on copula theory has appeared [7].
Copulas are special probability distribution functions. Due to
their properties it is possible to use them effectively to model
correlations within multivariate problems – the joint distribu-
tion is separated into the univariate marginal distributions and
into the correlation structure that is expressed by the copula
function. Copula theory has very often been used in finance
and statistics works [8], [9], [10].

Recently copulas have been utilized in the field of the
machine learning [11], [12]. More recently the copula theory
has been applied to EDA probability models. The simplest
case is the application with bivariate (2D) copulas, e.g.: [13]
– 2D Gaussian copula EDA, [14] – 2D Clayton copula EDA,
[15] – 2D Gumbel copula EDA.

In the case of multivariate models bivariate copulas are
used as local building blocks in various graph dependence
structures: [16] – MIMIC with Frank and Gaussian copula),
[17] – Bayesian network with Archimedean copulas, [18] –
D-vine copulas, [19] – C-vine, D-vine copulas.

Detailed overview of different copula-based EDAs is pro-
vided in [20].

This paper deals with an extension of the original concept
of copula based EDA with the probability model migration
[21]. The enhancement includes the additional migration of
individuals and the adaptation of the margins parameters using
CT-AVS technique [22] preventing the premature convergence.

The paper is organized as follows. In Section II, the basics
of copula theory is given. In Section III, the utilization of
copulas in EDA is described. Two variants of the island-based
EDAs are described in Section IV – EDA with the migration of
probability model and EDA with the migration of individuals.
Next, CT-AVS adaptation of margins is briefly described in
Section V. Experimental results are discussed in Section VI.
The conclusions are given in Section VII.

II. COPULA THEORY

The copula concept was introduced by [23] in order to
separate the effect of dependence of variables from the effect
of marginal distributions in a joint distribution. A copula is
a function which joins the univariate distribution function
and creates multivariate distribution functions. This approach
allows us to transform multivariate statistic problems into the
univariate problems with the relation represented by just the
copula.

A copula C is a multivariate probability distribution func-
tion for which the marginal probability distribution of each
variable is uniform in [0; 1].

Sklar’s theorem: Let F be a d-dimensional distribution
function with margins F1, . . . , Fd. Then there exists a d-
dimensional copula C such that for all (x1, . . . , xd) ∈ Rd
it holds that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (1)

If F1, . . . , Fd are continuous, then C is unique. Conversely,
if C is a d-dimensional copula and F1, . . . , Fd are univariate
distribution functions, then the function F defined via (1) is a
d-dimensional distribution function.



We investigated two copula families – Archimedean and
elliptic:

Archimedean copulas are quite popular because they model
different patterns of dependence and have a relatively sim-
ple functional form C(u1, . . . , ud) = ϕθ(ϕ

−1
θ (u1) + . . . +

ϕ−1
θ (ud)). Their definition is based on the generator function

ϕ with typically one dependency parameter θ.
The elliptical copulas are derived from the related el-

liptical distribution, e.g. Gaussian copula C(u1, . . . , ud) =
ΦR
(
Φ−1(u1), . . . ,Φ−1(ud)

)
where ΦR(x1, . . . , xd) is the

joint normal distribution with a positive-semidefinite correla-
tion matrix R, Φ is standard normal distribution, Φ−1 is its
quantile function.

III. COPULA-BASED ESTIMATION OF DISTRIBUTION
ALGORITHM

Estimation of distribution algorithms belongs to the ad-
vanced evolutionary algorithms. Solving the numerical opti-
mization problem, vector x = (x1, . . . , xd) of the optimal
solution is searched out.

The core of the canonical EDA consists of three main steps:

1) Select promising solutions into subpopulation from the
current population.

2) Create the probability model from the selected subpop-
ulation.

3) Sample the probability model and generate the new
population.

In the case of copula-based EDA it is necessary to choose
the proper type of copula and derive the copula parameters
and the marginal distribution parameters.

The principle of sampling schema for generating the new
individuals using the copula model is described in two steps:

1) Obtain the random copula sample (u1, . . . , ud) ∼ C,
where ui ∈ [0; 1].

2) Derive the vector x of the searched solution using
inverse marginal distributions, xi = F−1

i (ui).

A. Identification of copula probability model

The copula-based probability model includes two parts:
univariate marginal distributions and the copula function. The
marginal distributions can be identified separately for each
variable and the copula includes the correlation between
variables.

For the marginal distribution in each dimension i = 1, . . . , d
we used normal distribution, which is parameterized by the
mean value µi and standard deviation σi.

For assessing the parameter of Archimedean copulas we
used the Kendall τ correlation coefficient (in the case of d-
variate copulas, d ≥ 3, we use average τ̄ ; for d = 2 the
standard pairwise τ is used). The following relation hold for
the parameter θ for Clayton copula θClayton = 2τ

1−τ [7].
Elliptical copulas are parameterized by correlation matrix

R. Elements Rij are calculated as Spearman’s ρS for each
pair of dimensions.

1) Generate initial populations.
2) FOR each island DO IN PARALLEL:
3) WHILE (termination criteria is false):
4) IF (sending condition):
5) Send best replace count individuals
6) WHILE (immigrant individuals received):
7) Replace worst replace count individuals in resi-

dent population
8) Select promising individuals
9) Create probability model

10) Sample new population from probability model

Fig. 1. The pseudocode of EDA with migration of individuals.

1) Generate initial populations.
2) FOR each island DO IN PARALLEL:
3) WHILE (termination criteria is false):
4) Select promising individuals
5) Create probability model
6) IF (sending condition):
7) Send model
8) WHILE (immigrant model received):
9) Combine models

10) Sample new population from probability model

Fig. 2. The pseudocode of EDA with model migration.

IV. ISLAND-BASED COPULA EDA

We implemented the parallel copula based EDA on the
island based platform. This concept allows to study the ef-
ficiency of the migration of individuals and our new concept
of migration of probabilistic models.

The evolution process on every island runs independently.
When a sending condition is met the communication (transfer
of individuals or transfer of model parameters) is activated.

A. EDA with migration of individuals

Migration of individuals is well-known approach used in the
island-based algorithm [24], [25]. In comparison to the prob-
abilistic model migration the transfer of individuals does not
cause any troubles with the mixture of the various probability
model of each island population.

The effect of migration is influenced by coefficient replace
count – the number of individuals which are sent to neigh-
boring island. When the sent individuals are received, the
promising solution are selected and the new model is built,
see Fig. 1.

B. EDA with migration of probability models

In the case of EDAs only a few papers deal with the
probability model migration [26], [27], [28]. On the field of
copula-based EDA we refer to [21] in which we tested first
version of model migration.

According to the island-based topology we have decom-
posed the migration process into pairwise interactions of two
islands, see Fig. 2 – one of them is the resident island specified



by resident probabilistic model MR and the other one is the
immigrant island whose probabilistic model MI is transferred
to the new resident model.

The combination of the immigrant model with the model of
the resident island is described in more details. In general, the
modification of the resident model by the immigrant model
can be formalized by [27]:

Mnew
R = (1− β)MR + βMI (2)

where the coefficient β ∈ [0; 1] specifies the influence of the
immigrant model.

We have proposed the following model combination rules
according to [29]:

• Learning the mean value µi of each univariate marginal
distribution Fi(xi)

µnewi = (1− β)µRi + βµIi (3)

• Learning the standard deviation σi of each univariate
marginal distribution Fi(xi)

σnewi =

√
(1− β)

((
µnewi − µRi

)2
+
(
σRi
)2)

+

+β
((
µnewi − µIi

)2
+
(
σIi
)2)

(4)

• Learning the correlation matrix value Rij

Rnewij = (1− β)RRij + βRIij (5)

We have chosen the coefficient β as

β =

{
fitR

fitR+fitI
fitI ≤ fitR

0.1 otherwise
(6)

where fitR or fitI represents the fitness value of the resident
or the immigrant model.

V. IMPROVED CORRELATION-TRIGGERED ADAPTIVE
VARIANCE SCALING

The Correlation-Triggered Adaptive Variance Scaling (CT-
AVS) [22] is a technique which is supposed to have the
capability of preventing premature convergence. It allows
to distinguish between peak and slopes regions of fitness
landscape. At the peak regions, the normal marginal pdf can
match contour-lines of the fitness landscape appropriately as it
always concentrates the search around its mean and therefore
can contract around a peak.

At the slope-like regions, contour-lines of slopes cannot
be matched with the normal pdf. Thus, the probabilistic
representation of the structure based on mean and variance is
different from the true structure, so estimates from the normal
pdf are a much less reliable source of information for guiding
the search compared to exploring a single peak.

This problem can be partially solved using variance scaling
with parameter cAVS. When the fitness landscape in actually
searched region is identified to be a slope-like region, the
variance is increased beyond its maximum-likelihood estimate,
to move out of this region. To identify the type of region,

i-CT-AVS initialization:
1) Assign cAVS−MIN = 1/cAVS−MAX.
2) Assign ηINC = 1/ηDEC.
3) Assign cAVS[d] = 1 ∀d = 1, . . . , D.

i-CT-AVS in generation t for each dimension d:
1) Store best fitness found in bt.
2) If bt = bt−1 then

(a) Assign cAVS[d] = cAVS[d] · ηDEC.
else
(b) Assign cAVS[d] = cAVS[d] · ηINC.

3) If cAVS[d] < cAVS−MIN or cAVS[d] > cAVS−MAX then
(a) assign cAVS[d] = cAVS−MAX.

4) Compute ranked correlation coefficient r[d].
5) If r[d] > θcorr then

(a) Assign σ[d] = cAVS[d] · σ[d].

Fig. 3. Principle of iCTAVS.

correlation between fitness and the density of modelled normal
distribution is used. There is a strong correlation in the peak
regions (positive correlation for maximization tasks, negative
for minimization ones). Rank correlation Spearman’s ρS is
used. Variance scaling factor cAVS is adaptive, it is increased
if the best fitness value bt improves in one generation, and
decreased in the opposite case via coefficients ηINC, ηDEC.

In [22], the variance scaling is executed in all dimensions
by the same factor cAVS. We designed an improved version
of this technique (iCTAVS): we use factors cAVS[d] calculated
independently in each dimension d, see Fig. 3.

VI. RESULTS OF EXPERIMENTS

For the experimental testing we used two sets of bench-
marks, all these functions have been modified to get the
minimization task with optimal fitness value 0:

1) the popular classical set of benchmarks (Sphere, Schwe-
fel’s, Ackley’s, Rastrigin’s, Rosenbrock’s, Griewank’s).

2) the complex set CEC 2013 [30] with rotated and com-
position function, including 28 test functions.

We have proposed eight variants of copula based algorithms,
see Fig. 4, labeled by the abbreviations as a composition of
the following variant of components:

• two different copulas: Gaussian copula (GC-) or Clayton
copula (CC-)

• two types of migration: migration of individuals (-mi-)
or migration of probability model (-mm-)

• two types of marginal distributions: normal pdf (-) and
normal pdf modified by iCTAVS (-avs).

All proposed algorithms used the following parameters
setting:

• Number of islands: 4.
• Topology: bi-directional ring.
• Population size of each island: 250.
• Selection: truncation selection, with a selection propor-

tion of 0.2, i.e. 50 individuals.
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CC-EDA-mi          =  Clayton---individuals
CC-EDA-mm        =  Clayton---model
GC-EDA-mi          =  Gauss-----individuals
GC-EDA-mm        =  Gauss-----model
CC-EDA-mi-avs    =  Clayton---individuals--iCTAVS
CC-EDA-mm-avs  =  Clayton---model--------iCTAVS
GC-EDA-mi-avs    =  Gauss-----individuals--iCTAVS
GC-EDA-mm-avs  =  Gauss-----model--------iCTAVS

Fig. 4. The list of the proposed variants of our algorithm and their shortcuts
and graphical key valid for Fig. 5 and Fig. 6.

• Replace count (for the migration of individuals): 40.
• Migration rate: after every 10 generations.
• Number of independent runs: 51.

A. Mutual comparison of the proposed algorithms

In the case of classical benchmarks optimization curves are
drawn in Fig. 5.

For the Spheric problem, all eight variants are able to reach
optima with satisfactory precision (10−8), the best is CC-EDA-
mi, the variants using iCTAVS adaptation are the worst.

In the case of Schwefel’s function, the performance of all
variants is unsatisfactory. The only GC-EDA-mm and GC-
EDA-mi are relatively good.

In the case of Ackley’s, Griewank’s and Rastrigin’s func-
tions: CC-EDA-mm-avs and GC-EDA-mm-avs get stuck in
local optima, while other algorithm variants (GC-EDA-mi,
CC-EDA-mi, GC-EDA-mm, CC-EDA-mm, GC-EDA-mi-avs,
CC-EDA-mi-avs) are able to reach global optima. The variants
without iCTAVS component converge faster.

The most interesting results were obtained for Rosenbrock’s
problem. On this well-known benchmark, many algorithms get
stuck in local optima near to 100. Only GC-EDA-mi-avs and
GC-EDA-mm-avs are capable to reach global optima.

In the case of CEC 2013 benchmarks the optimization
curves are drawn in Fig. 6. It can be recognized that the
variants with Gaussian copula have the best performance on
the most of the test functions.

Generally, GC-EDA-mm can be recognized as the best
variant. To confirm this conclusion we executed statistical tests
comparing GC-EDA-mm with other seven variants. Results of
Mann–Whitney U test (Wilcoxon rank-sum test) are listed in
Tab. I.

Results for GC-EDA-mm on benchmark set CEC 2013 for
10, 30, 50 dimensions are arranged in Tab. III, IV and V
according to rules provided in [30] (values smaller than 10−8

are taken as zero).

B. Comparison with recently published algorithms

Two variants of our proposed algorithm are selected for
an extra comparison with algorithms of other researchers:

TABLE I
U-VALUE OF MANN–WHITNEY U TEST (WILCOXON RANK-SUM TEST)

BETWEEN GC-EDA-MM AND THE OTHER VARIANTS ON 10
DIMENSIONAL BENCHMARKS. UCrit

n1=n2=51,p=0.05 = 1054, THE MARK
“H” DENOTES THE CASES WHERE GC-EDA-MM PERFORMS

SIGNIFICANTLY BETTER (U ≤ UCrit), THE MARK “M” DENOTES THE
CASES WHERE OTHER VARIANT IS SIGNIFICANTLY BETTER AND NO

SIGNIFICANT DIFFERENCE IS DENOTED BY THE MARK “◦”.

CC-mi CC-mm GC-mi CC-mi CC-mm GC-mi GC-mm
Fun. -avs -avs -avs -avs

Sphere 2601 M 757 H 1997 M 0 H 0 H 0 H 0 H
Ackley 2601 M 751 H 2187 M 0 H 0 H 1 H 0 H

Schwefel 551 H 854 H 928 H 111 H 35 H 13 H 3 H
Rastrigin 1080 ◦ 509 H 979 H 220 H 169 H 207 H 165 H

Rosenbrock 110 H 525 H 922 H 1020 H 636 H 2601 M 2276 M
Griewank 1300 ◦ 1300 ◦ 1045 H 25 H 0 H 0 H 0 H

No. 1 2375 M 2046 M 907 H 384 H 377 H 385 H 369 H
No. 2 0 H 0 H 1019 H 0 H 0 H 258 H 394 H
No. 3 53 H 121 H 523 H 2017 M 1793 M 2502 M 1284 ◦
No. 4 0 H 0 H 2058 M 3 H 4 H 52 H 30 H
No. 5 2544 M 2529 M 638 H 1112 ◦ 963 H 1146 ◦ 944 H
No. 6 0 H 0 H 862 H 0 H 0 H 2225 M 1884 M
No. 7 0 H 0 H 540 H 4 H 0 H 1043 H 270 H
No. 8 922 H 712 H 1385 ◦ 1152 ◦ 945 H 1367 ◦ 1283 ◦
No. 9 14 H 54 H 1072 ◦ 1 H 0 H 507 H 186 H
No. 10 2 H 3 H 1080 ◦ 2 H 4 H 441 H 385 H
No. 11 1116 ◦ 1292 ◦ 935 H 1165 ◦ 1074 ◦ 713 H 985 H
No. 12 107 H 111 H 1294 ◦ 359 H 138 H 1113 ◦ 1050 H
No. 13 174 H 346 H 1256 ◦ 670 H 696 H 1588 M 1668 M
No. 14 176 H 188 H 1455 ◦ 39 H 38 H 1 H 0 H
No. 15 157 H 239 H 1468 ◦ 32 H 0 H 172 H 39 H
No. 16 1054 H 854 H 1267 ◦ 1162 ◦ 984 H 1614 M 1304 ◦
No. 17 2282 M 2218 M 1759 M 2093 M 1032 H 1587 M 1204 ◦
No. 18 2459 M 2516 M 1269 ◦ 1857 M 1064 ◦ 1975 M 1246 ◦
No. 19 2137 M 2584 M 1221 ◦ 1837 M 1676 M 825 H 723 H
No. 20 0 H 0 H 1804 M 1 H 0 H 0 H 0 H
No. 21 1326 ◦ 1326 ◦ 1248 ◦ 1326 ◦ 1326 ◦ 1376 ◦ 1351 ◦
No. 22 1150 ◦ 1019 H 1522 ◦ 275 H 110 H 181 H 86 H
No. 23 167 H 169 H 1748 M 0 H 0 H 10 H 0 H
No. 24 1 H 128 H 145 H 0 H 0 H 0 H 51 H
No. 25 16 H 129 H 202 H 51 H 153 H 0 H 0 H
No. 26 99 H 148 H 1282 ◦ 6 H 15 H 22 H 6 H
No. 27 1010 H 2016 M 240 H 0 H 0 H 0 H 0 H
No. 28 2575 M 2575 M 1096 ◦ 2563 M 2550 M 2568 M 2550 M

primarily the GC-EDA-mm is the our best variant; the GC-
EDA-mi-avs shows remarkably good performance but on a
few functions only.

In Tab. II we arranged a comparison of our prime variant
with other algorithms on CEC 2013 benchmarks (unfortu-
nately we did not found any Copula EDA tested on these
benchmarks). We performed unpaired two-sample t-test at the
significance level 0.05 to show statistical significance of our
comparison, see Tab. II. It can be seen that GC-EDA-mm
is significantly better especially for the complex composition
functions (No. 21–28).

In Tables VI, VII and VIII we arranged a comparison (mean
fitness values) of both variants, GC-EDA-mm and GC-EDA-
mi-avs, with the algorithms that used different versions of
copulas. The comparison is done with the same subset of
classical benchmarks with 10 dimensions for the same number
of fitness evaluations. GC-EDA-mm is better in most cases. In
the case of Rosenbrock’s function GC-EDA-mi-avs is the best.
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Fig. 5. Result for classical benchmarks. For key, please see Fig. 4
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Fig. 6. Result for benchmark set CEC 2013 in 10 dimensions. For key, please see Fig. 4



TABLE II
COMPARISON (MEDIANS) OF GC-EDA-MM WITH OTHER PUBLISHED ALGORITHMS ON CEC 2013 BENCHMARK SET IN 10 DIMENSIONS AFTER 100000

FITNESS EVALUATION, BEST PERFORMING ALGORITHM IS INDICATED BY BOLDFACE FONT. RESULTS OF T-TEST, THE MARK “H” DENOTES THE CASES
WHERE GC-EDA-MM PERFORMS SIGNIFICANTLY BETTER, THE MARK “M” DENOTES THE CASES WHERE OTHER ALGORITHM IS SIGNIFICANTLY BETTER

AND NO SIGNIFICANT DIFFERENCE IS DENOTED BY THE MARK “◦”.

No. GC-mm IPOP-CMA-ES iCMAES-ILS CMA-ES-RIS SPSO2011 PSO GA-TPC LaF SPAM-AOS
[31] [32] [33] [34] [35] [36] [37] [38]

1 0.00e+00 0.00e+00 ◦ 1.00e-08 ◦ 0.00e+00 ◦ 0.00e+00 ◦ 0.00e+00 ◦ 0.00e+00 ◦ 0.00e+00 ◦ 0.00e+00 ◦
2 3.84e+03 0.00e+00 M 1.00e-08 M 0.00e+00 M 1.59e+04 H 3.63e+04 H 0.00e+00 M 9.65e+04 H 0.00e+00 M
3 3.42e+06 0.00e+00 M 1.00e-08 M 0.00e+00 M 2.31e+03 M 2.68e+05 M 0.00e+00 M 2.60e+05 ◦ 1.31e+00 M
4 1.41e+03 0.00e+00 M 1.00e-08 M 0.00e+00 M 1.29e+03 M 8.87e+03 H 0.00e+00 M 5.57e+02 M 0.00e+00 M
5 0.00e+00 0.00e+00 M 1.00e-08 M 0.00e+00 M 0.00e+00 M 0.00e+00 M 0.00e+00 M 0.00e+00 M 1.14e-13 M
6 3.18e-01 0.00e+00 M 6.57e-05 H 2.42e-03 ◦ 9.80e+00 H 9.80e+00 H 0.00e+00 M 9.81e+00 H 4.11e+00 H
7 2.27e-02 0.00e+00 M 3.56e-07 M 4.01e+01 H 4.00e-01 ◦ 2.11e+01 H 1.42e-03 ◦ 1.11e+01 H 6.04e+01 H
8 2.04e+01 2.04e+01 M 2.04e+01 ◦ 2.03e+01 M 2.03e+01 M 2.03e+01 M 2.04e+01 ◦ 2.04e+01 ◦ 2.04e+01 ◦
9 9.73e-01 1.99e-01 ◦ 4.18e-05 M 3.63e+00 H 2.10e+00 H 4.80e+00 H 2.60e+00 H 3.79e+00 H 6.73e+00 H

10 0.00e+00 0.00e+00 ◦ 1.00e-08 ◦ 9.86e-03 H 1.00e-01 H 3.00e-01 H 3.69e-02 H 3.25e-01 H 1.48e-02 H
11 1.99e-04 0.00e+00 ◦ 1.30e-07 ◦ 2.98e+00 H 4.80e+00 H 1.09e+01 H 0.00e+00 M 9.95e-01 H 6.30e+00 H
12 9.95e-01 0.00e+00 M 1.00e-08 M 1.29e+01 H 4.40e+00 H 1.39e+01 H 5.97e+00 H 1.19e+01 H 1.80e+01 H
13 1.99e+00 0.00e+00 M 1.00e-08 M 2.64e+01 H 5.50e+00 H 2.08e+01 H 8.52e+00 H 2.31e+01 H 3.55e+01 H
14 8.30e+00 1.85e+01 ◦ 1.19e+01 H 1.13e+02 H 6.38e+02 H 8.34e+02 H 1.86e+01 ◦ 2.06e+02 H 2.18e+02 H
15 1.32e+02 1.85e+01 M 1.20e+01 M 6.33e+02 H 5.20e+02 H 7.74e+02 H 8.51e+02 H 5.48e+02 H 1.00e+03 H
16 1.19e+00 1.12e+00 ◦ 2.36e-01 M 1.76e-01 M 7.00e-01 M 5.00e-01 M 1.34e+00 H 1.13e+00 ◦ 2.92e-01 M
17 1.78e+01 1.10e+01 M 1.12e+01 M 1.18e+01 M 1.73e+01 ◦ 1.89e+01 ◦ 1.11e+01 M 1.13e+01 M 1.58e+01 M
18 2.56e+01 1.10e+01 M 1.12e+01 M 2.95e+01 H 1.83e+01 M 1.78e+01 M 1.74e+01 M 1.95e+01 M 4.17e+01 H
19 8.26e-01 6.46e-01 M 7.09e-01 M 7.61e-01 ◦ 8.00e-01 ◦ 9.00e-01 ◦ 5.11e-01 M 5.81e-01 M 7.33e-01 M
20 2.30e+00 3.02e+00 H 2.84e+00 H 4.25e+00 H 2.50e+00 ◦ 3.40e+00 H 3.21e+00 H 2.96e+00 H 4.11e+00 H
21 4.00e+02 4.00e+02 M 2.01e+02 M 2.00e+02 M 4.00e+02 ◦ 4.00e+02 ◦ 3.00e+02 M 3.00e+02 M 2.86e+02 M
22 4.45e+01 5.65e+01 M 1.46e+02 ◦ 2.68e+02 H 4.68e+02 H 9.06e+02 H 7.51e+01 M 2.44e+02 H 3.34e+02 H
23 4.43e+01 5.92e+01 H 3.66e+01 M 8.34e+02 H 3.45e+02 H 9.10e+02 H 9.09e+02 H 6.67e+02 H 1.52e+03 H
24 2.00e+02 2.09e+02 H 1.19e+02 M 1.18e+02 M 2.01e+02 ◦ 2.14e+02 H 2.14e+02 H 2.11e+02 H 1.93e+02 ◦
25 2.00e+02 2.04e+02 H 2.00e+02 M 2.07e+02 ◦ 2.01e+02 H 2.09e+02 H 2.19e+02 H 2.04e+02 H 2.15e+02 H
26 1.00e+02 2.06e+02 H 1.16e+02 H 2.00e+02 H 1.08e+02 ◦ 2.00e+02 H 2.00e+02 H 1.15e+02 H 1.67e+02 H
27 3.00e+02 4.47e+02 H 3.00e+02 H 3.08e+02 H 3.01e+02 ◦ 3.36e+02 H 4.15e+02 H 3.35e+02 H 3.81e+02 H
28 3.24e+02 3.00e+02 M 3.00e+02 M 3.00e+02 M 3.00e+02 M 3.00e+02 M 3.00e+02 M 3.00e+02 ◦ 2.92e+02 M

VII. CONCLUSIONS

In this paper we deal with parallel copula EDA (Estimation
of Distribution Algorithm) for optimization in continuous
domain. We proposed eight variants of copula EDA using
the concept of island-based algorithm. We examined the
influence of two variants of migration (migration of model or
migration of individuals) and two variant of copulas (Gaussian
or Clayton) and two marginal distributions (normal pdf or
normal pdf modified by iCTAVS component). To discover
the strong points and weaknesses of them we used the tradi-
tional benchmarks (Ackley’s, Rastrigin’s, Sphere, Schwefel’s,
Rosenbrock’s, Griewank’s) and the new hard set CEC 2013
benchmarks.

The most important parameter is the selection of proper
copula. From the mutual comparison of the proposed variants
of our algorithm it follows that the utilization of Gaussian cop-
ula provides significantly better results compared to Clayton
copula.

The effect of iCTAVS variance adaptation is ambiguous.
Especially in combination with Gaussian copula and migration
of individuals this component provides good results for some
benchmarks (in the case of Rosenbrock’s problem GC-EDA-
mi-avs is significantly better than the other algorithms). But
in many cases iCTAVS is distinctly less satisfactory.

In generally, the best performance is evident in the case of
Gaussian copula EDA with the migration of model (GC-EDA-

mm). This algorithm was compared with other algorithms
on the complex benchmarks CEC 2013 and the statistical
significance of the comparison was confirmed utilizing two-
sample t-test.

The future research will be focused on increasing the
efficiency of the model migration and incorporating more
efficient techniques preventing the premature convergence.
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TABLE III
RESULTS OF GC-EDA-MM FOR CEC 2013 BENCHMARK PROBLEMS IN

10 DIMENSIONS AFTER 100000 FITNESS EVALUATION.

No. Best Median Worst Average Std.dev
1 0.00e+00 0.00e+00 3.03e-01 9.58e-03 4.43e-02
2 5.29e+02 3.84e+03 3.10e+04 5.70e+03 5.28e+03
3 9.73e+01 3.42e+06 1.12e+08 1.04e+07 1.99e+07
4 3.33e+02 1.41e+03 4.50e+03 1.78e+03 9.97e+02
5 0.00e+00 0.00e+00 2.11e+00 1.14e-01 3.74e-01
6 0.00e+00 3.18e-01 7.94e+00 5.41e-01 1.11e+00
7 7.65e-04 2.27e-02 2.60e-01 4.67e-02 5.26e-02
8 2.02e+01 2.04e+01 2.05e+01 2.04e+01 6.72e-02
9 1.19e-03 9.73e-01 2.44e+00 7.48e-01 6.05e-01

10 0.00e+00 0.00e+00 5.67e-02 2.49e-03 9.30e-03
11 0.00e+00 1.99e-04 2.98e+00 5.49e-01 7.41e-01
12 0.00e+00 9.95e-01 2.98e+00 8.80e-01 7.80e-01
13 0.00e+00 1.99e+00 5.32e+00 1.62e+00 1.04e+00
14 3.12e-01 8.30e+00 1.18e+02 1.80e+01 2.52e+01
15 6.00e-01 1.32e+02 3.90e+02 1.30e+02 8.95e+01
16 5.69e-01 1.19e+00 1.41e+00 1.14e+00 1.79e-01
17 1.28e+01 1.78e+01 2.38e+01 1.79e+01 2.69e+00
18 2.06e+01 2.56e+01 3.27e+01 2.60e+01 2.82e+00
19 6.51e-01 8.26e-01 1.25e+00 8.51e-01 1.33e-01
20 1.84e+00 2.30e+00 3.11e+00 2.35e+00 2.62e-01
21 4.00e+02 4.00e+02 4.00e+02 4.00e+02 1.39e-04
22 1.41e+01 4.45e+01 7.80e+02 1.59e+02 1.90e+02
23 1.69e+01 4.43e+01 1.70e+02 5.17e+01 2.86e+01
24 2.00e+02 2.00e+02 2.00e+02 2.00e+02 4.30e-02
25 2.00e+02 2.00e+02 2.00e+02 2.00e+02 2.10e-02
26 1.00e+02 1.00e+02 2.00e+02 1.05e+02 1.52e+01
27 3.00e+02 3.00e+02 3.01e+02 3.00e+02 1.71e-01
28 3.00e+02 3.24e+02 3.76e+02 3.28e+02 1.96e+01

TABLE IV
RESULTS OF GC-EDA-MM FOR CEC 2013 BENCHMARK PROBLEMS IN

30 DIMENSIONS AFTER 300000 FITNESS EVALUATION.

No. Best Median Worst Average Std.dev
1 1.13e+03 1.98e+03 0.00e+00 1.98e+03 4.96e+02
2 1.62e+06 4.68e+06 1.01e+07 4.97e+06 2.02e+06
3 5.67e+08 3.13e+09 1.00e+10 3.65e+09 2.23e+09
4 3.28e+04 5.58e+04 7.29e+04 5.56e+04 7.22e+03
5 1.51e+02 4.66e+02 9.13e+02 4.64e+02 1.62e+02
6 8.11e+01 1.34e+02 2.40e+02 1.36e+02 3.64e+01
7 8.43e+00 2.56e+01 5.19e+01 2.71e+01 8.92e+00
8 2.10e+01 2.12e+01 2.13e+01 2.12e+01 6.34e-02
9 7.81e+00 1.15e+01 1.45e+01 1.16e+01 1.57e+00

10 9.55e+01 1.63e+02 3.21e+02 1.75e+02 5.06e+01
11 3.31e+01 5.03e+01 7.70e+01 5.12e+01 9.42e+00
12 3.55e+01 6.58e+01 9.33e+01 6.75e+01 1.27e+01
13 5.87e+01 1.15e+02 1.63e+02 1.13e+02 1.94e+01
14 5.75e+01 4.56e+02 1.11e+03 4.56e+02 2.32e+02
15 5.65e+02 1.15e+03 1.76e+03 1.17e+03 3.13e+02
16 2.50e+00 4.59e+00 5.91e+00 4.56e+00 6.97e-01
17 3.68e+01 4.53e+01 5.46e+01 4.52e+01 4.11e+00
18 4.05e+01 4.68e+01 6.36e+01 4.79e+01 5.89e+00
19 1.98e+01 7.23e+01 3.43e+02 1.01e+02 6.99e+01
20 7.89e+00 1.13e+01 1.24e+01 1.08e+01 1.20e+00
21 4.19e+02 6.30e+02 1.03e+03 6.75e+02 1.59e+02
22 1.81e+02 3.97e+02 1.09e+03 4.21e+02 1.96e+02
23 6.39e+02 1.27e+03 2.35e+03 1.36e+03 3.67e+02
24 2.12e+02 2.28e+02 2.40e+02 2.28e+02 6.01e+00
25 2.17e+02 2.40e+02 2.76e+02 2.45e+02 1.83e+01
26 2.00e+02 3.19e+02 3.25e+02 3.05e+02 3.84e+01
27 4.32e+02 5.04e+02 6.19e+02 5.11e+02 4.39e+01
28 4.15e+02 1.04e+03 1.54e+03 9.92e+02 2.78e+02

TABLE V
RESULTS OF GC-EDA-MM FOR CEC 2013 BENCHMARK PROBLEMS IN

50 DIMENSIONS AFTER 500000 FITNESS EVALUATION.

No. Best Median Worst Average Std.dev
1 4.06e+03 6.48e+03 0.00e+00 6.39e+03 1.22e+03
2 6.58e+06 1.78e+07 3.29e+07 1.80e+07 5.29e+06
3 4.27e+09 1.23e+10 2.11e+10 1.22e+10 3.79e+09
4 5.85e+04 7.36e+04 8.99e+04 7.42e+04 7.37e+03
5 4.76e+02 9.51e+02 1.55e+03 9.52e+02 2.17e+02
6 2.17e+02 3.07e+02 3.84e+02 3.03e+02 3.01e+01
7 2.73e+01 4.30e+01 5.80e+01 4.37e+01 6.72e+00
8 2.12e+01 2.13e+01 2.14e+01 2.13e+01 5.55e-02
9 2.56e+01 3.04e+01 3.59e+01 3.06e+01 2.30e+00

10 4.38e+02 6.06e+02 9.03e+02 6.05e+02 9.68e+01
11 8.99e+01 1.38e+02 1.74e+02 1.37e+02 1.98e+01
12 1.08e+02 1.81e+02 2.23e+02 1.81e+02 2.09e+01
13 1.88e+02 2.74e+02 3.66e+02 2.76e+02 3.75e+01
14 4.84e+02 1.30e+03 2.72e+03 1.43e+03 5.21e+02
15 2.50e+03 4.08e+03 5.42e+03 4.03e+03 6.28e+02
16 3.94e+00 5.49e+00 6.88e+00 5.46e+00 5.62e-01
17 1.03e+02 1.25e+02 1.60e+02 1.25e+02 1.36e+01
18 1.09e+02 1.39e+02 1.71e+02 1.41e+02 1.36e+01
19 4.18e+02 1.47e+03 5.00e+03 1.62e+03 9.37e+02
20 1.50e+01 1.76e+01 2.10e+01 1.74e+01 9.65e-01
21 1.40e+03 2.02e+03 3.13e+03 2.16e+03 4.55e+02
22 4.86e+02 1.51e+03 3.00e+03 1.55e+03 5.71e+02
23 2.71e+03 4.47e+03 7.15e+03 4.71e+03 1.07e+03
24 2.71e+02 2.93e+02 3.12e+02 2.93e+02 8.17e+00
25 3.19e+02 3.39e+02 3.75e+02 3.41e+02 9.84e+00
26 3.53e+02 3.67e+02 3.88e+02 3.66e+02 6.83e+00
27 9.24e+02 1.04e+03 1.36e+03 1.07e+03 9.41e+01
28 9.50e+02 1.73e+03 2.79e+03 1.74e+03 3.26e+02

TABLE VI
COMPARISON (AVERAGE) WITH COPULA BAYESIAN NETWORK (CBN)

[17], 100000 FITNESS EVALUATIONS.

Rastrigin’s Ackley’s Rosenbrock’s
CBN 2.39e+00 3.71e-02 1.05e+01

GC-EDA-mm 1.37e-01 8.17e-12 6.22e+00
GC-EDA-mi-avs 5.21e-01 1.06e-05 7.63e-01

TABLE VII
COMPARISON (AVERAGE) WITH: COPULA EDA (CEDA), COPULA EDA

OF DYNAMIC K-S TEST (CEDA-KS) [39]; CLAYTON, GUMBEL,
SN-EDA [40], 300000 FITNESS EVALUATIONS.

Sphere Rastrigin’s Rosenbrock’s
cEDA 4.62e-08 6.45e-08 6.52e+00

cEDA-KS 1.16e-08 2.60e-08 7.05e+00
Clayton 1.45e-07 7.00e-08 8.36e+00
Gumbel 3.59e-09 5.49e-09 6.62e+00
Sn-EDA 1.22e-09 9.52e-09 6.54e+00

GC-EDA-mm 7.59e-65 1.37e-01 6.07e+00
GC-EDA-mi-avs 2.16e-33 5.10e-01 3.84e-24

TABLE VIII
COMPARISON (AVERAGE) WITH [41], 300000 FITNESS EVALUATIONS.

Sphere Rosenbr. Schwefel’s Griewank’s
UMDAc 2.54e-23 7.56e+00 1.81e-02 4.26e-03
MIMICc 6.88e-24 6.54e+00 1.88e-03 1.90e-02

cEDA(empirical) 2.12e-10 6.78e+00 1.14e-04 3.41e-02
cEDA(normal) 1.17e-14 6.09e+00 1.14e-07 1.69e-10

cEDA(adaptive) 8.01e-13 4.24e+00 4.40e-07 4.25e-13
GC-EDA-mm 7.59e-65 6.07e+00 2.40e+02 0.00e+00

GC-EDA-mi-avs 2.16e-33 3.84e-24 1.53e+03 0.00e+00
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