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ABSTRACT
Network monitoring is an important part of network management
that collects valuable metadata describing active communication
protocols, network transmissions, bandwidth utilization, and the
most communicating nodes. Traditional IP network monitoring
techniques include the SNMP system, flow monitoring, or system
logging. The environment of the Internet of Things (IoT) networks,
however, shows that these approaches do not provide sufficient
visibility of IoT communication which would allow network ad-
ministrators to identify possible attacks on IoT nodes. The reason
is obvious: IoT devices lack sufficient computational resources to
fully implement monitoring agents, LAN IoT data communication
is often directly over data link layers rather than IP, and IoT sensors
produce an endless flow of small packets which can be difficult to
process in real-time. To tackle these limitations we propose a new
IoT monitoring model based on extended IPFIX records. The model
employs a passive monitoring probe that observes IoT traffic and
collects metadata from IoT protocols. Using extended IPFIX proto-
col, flow records with IoT metadata are sent to the collector where
they are analyzed and used to provide a global view on the whole
IoT network and its communication. We also present two statistical
approaches that analyze IoT flows data in order to detect security
incidents or malfunctioning of a device. The proof-of-concept im-
plementation is demonstrated for Constrained Application Protocol
(CoAP) traffic in the smart home environment.

CCS CONCEPTS
• Networks → Network security; • Security and privacy →
Intrusion/anomaly detection and malware mitigation; • Computer
systems organization → Embedded and cyber-physical systems;
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1 INTRODUCTION
Growing deployment of smart homes and buildings with tens or
hundreds of small sensors producing an endless flow of monitoring
data brings a new challenge for network monitoring. Traditional
approaches of IPmonitoring based on Simple NetworkManagement
Protocol (SNMP) [9], flow monitoring [10] or system logging [19]
do not provide sufficient visibility of IoT traffic transmitted among
IoT devices and the gateway, or between the gateway and the cloud,
see Figure 1.
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Abstract—Network monitoring is an important part of net-
work management that collects valuable meta data describing
network transmissions, bandwidth utilization, the most commu-
nicating nodes and active communication protocols. Traditional
IP network monitoring techniques include SNMP system, flow
monitoring, of system logging. Recent rise of Internet of Things
(IoT) networks however shows that these approaches do not
provide sufficient visibility of IoT communication which would
allow network administrators to identify possible attacks on
the network. The reason is obvious: IoT devices lack sufficient
computational resources to fully implement SNMP agents or
Syslog client, IoT data in LANs are mostly transmitted over
physical and data link layer rather than IP, IoT sensors produce
endless flow of small packets transmitting sensor status which is
not easy to process in real-time, etc. To tackle these limitations
we propose a new IoT monitoring model based on extended
IPFIX records. The model employs passive monitoring probe that
observes IoT traffic and collects meta data from IoT protocols.
Using extended IPFIX protocol, flow records with IoT meta data
are sent to the collector where are analyzed and used to provide
a global view on the whole IoT network and its communication.
We present two statistical approaches how to evaluate IoT flows
in order to detect security incidents or malfunctioning of the
devices. The proof-of-concept is demonstrated on monitoring
Constrained Application Protocol (CoAP) traffic in the smart
home environment.

Index Terms—Internet of Things, security, monitoring, statis-
tical anomaly detection, IPFIX, CoAP

I. INTRODUCTION

Growing deployment of smart homes and buildings with
tens or hundreds of small sensors producing an endless
flow of monitoring data brings a new challenge for network
monitoring. Traditional approaches of IP monitoring based
on Simple Network Management Protocol (SNMP) [Case
et al., 1990], flow monitoring [Claise, 2004] or system logging
[Gerhards, 2009] do not provide sufficient visibility of IoT
traffic transmitted among IoT devices and the gateway, or
between the gateway and the cloud, see Fig. 1. This limits
ability of detecting attacks on the IoT network or unusual
behavior of connected devices caused by malfunctioning or
misconfiguration.

The main reason for inadequate monitoring of IoT networks
is the fact that IoT end nodes (sensors, actuators, smart appli-
ances) lack sufficient computational resources that are required
to implement an SNMP agent or Syslog client. Moreover,
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Fig. 1. Topology of IoT ecosystem.

IoT nodes often communicate directly over Layer 1 and 2
(physical and data link) technologies such as Z-Wave, ZigBee,
6LoWPAN, IEEE 802.15.4 (wireless PAN) or IEEE 802.11
WiFi [Hanes et al., 2017] while traditional network monitoring
is based on IP protocol and requires the full TCP/IP stack.

Another features of IoT communication is an ceaseless se-
quence of packets that transmit status and measured quantities
of IoT nodes to the IoT control center that is mostly located in
the cloud outside the local network. Sensors like a thermome-
ter or PIR sensor generate tens of packets which causes high
requirements on traffic monitoring and data processing.

Due to IoT node’s hardware limitation IoT communication
is mostly transmitted unencrypted and without authentication
which makes it vulnerable to different kinds of attacks in-
cluding IoT resource scanning, command injection, unautho-
rized access or DDoS attack [Maggi and Vosseler, 2018],
[Sivaraman et al., 2015], [Bertino and Islam, 2017]. In 2016,
thousands of IP cameras were infected by Mirai malware and
became an involuntary source of DDoS attack against DNS
provider Dyn [Antonakakis et al., 2017], [Bertino and Islam,
2017]. Flaws in IoT devices can be misused by attackers
as documented by case of Comcast’s Xfinity Home Security
system1 where IoT sensors falsely reported that windows and
doors are closed and if they have been opened by the attacker.

To identify such security incidents on the IoT network,
enhanced IoT monitoring providing IoT visibility is needed.

1See https://www.wired.com/2016/01/xfinitys-security-system-flaws-open\
-homes-to-thieves/ [March 2019]
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This limits ability of detecting attacks on the IoT network and
unusual behavior of connected devices caused by malfunctioning
or misconfiguration.

The main reason for inadequate monitoring of IoT networks is
the fact that IoT end nodes (sensors, actuators, smart appliances)
lack sufficient computational resources that are required to imple-
ment an SNMP agent or Syslog client. Moreover, IoT nodes often
communicate directly over Layer 1 and 2 (physical and data link)
technologies such as Z-Wave, ZigBee, 6LoWPAN, IEEE 802.15.4
(wireless PAN) or IEEE 802.11 WiFi [24] while traditional network
monitoring is based on IP protocol and requires the full TCP/IP
stack.

Another features of IoT communication is an ceaseless sequence
of packets that transmit status and measured quantities of IoT
nodes to the IoT control center that is mostly located in the cloud
outside the local network. Sensors like a thermometer or PIR sensor
generate tens of packets which causes high requirements on traffic
monitoring and data processing.

Due to IoT node’s hardware limitation IoT communication is
mostly transmitted unencrypted and without authentication which
makes it vulnerable to different kinds of attacks including IoT re-
source scanning, command injection, unauthorized access or DDoS
attack [8, 31, 37]. In 2016, thousands of IP cameras were infected by

https://doi.org/https://doi.org/10.1145/3352700.3352718
https://doi.org/https://doi.org/10.1145/3352700.3352718


ECBS19, Sep 02–03, 2019, Bucharest, RO Matousek, et al.

Mirai malware and became an involuntary source of DDoS attack
against DNS provider Dyn [3, 8]. Flaws in IoT devices can be mis-
used by attackers as documented on the case of Comcast’s Xfinity
Home Security system1 where IoT sensors falsely reported that
windows and doors are closed while they have been opened by the
attacker.

To identify such security incidents on the IoT network, enhanced
IoT monitoring providing IoT visibility is needed. This includes ex-
tracting meta data of IoT communication that describe types of
transmitted IoT packets (monitoring data, control commands, keep-
alive message), detect active IoT nodes and their resources, and
observe typical size and frequency of sent packets and probability
of their occurrence. Such meta data cannot be obtained using tradi-
tional network monitoring that mostly operates on Layer 3 and 4
(network and transport layers) but requires processing of Layer 7
IoT protocols.

Our proposed approach is based on extended IPFIX monitoring
[12, 39] which offers flexible definition of a network flow. In our
case, IPFIX records are extended by L7 meta data obtained by the
probe that monitors IoT communication on L7. Besides L3 and L4
information (e.g., src/dst IP addresses, src/dst ports), the probe also
collects IoT meta data (e.g., IoT protocol, packet type, identification
of requested IoT object, etc.). Such data are then analyzed and
visualized on the IPFIX collector.

Enriched IPFIX monitoring significantly increases visibility of
IoT communication and enables detection of common security in-
cidents such as IoT network scanning, detection of rogue devices,
spoofed message injection, unauthorized access or DDoS attack
on the IoT network. In combination with anomaly detection (AD)
techniques it helps to determine if a given IoT traffic is normal
(expected) or if it is an attempt of an intruder to attack the network.
Moreover, L7 visibility of IoT communication enables early detec-
tion of failures and misconfiguration of IoT devices communicating
in the network.

Great advantage of the proposed IoT monitoring model is that it
fully complies with traditional IPFIX monitoring and can be easily
integrated into current network management systems.

1.1 Structure of the text
The paper is structured as follows. Section 2 gives an overview of
current approaches related to IoT monitoring, discusses security
issues of IoT communication and statistical methods for anomaly
detection. Section 3 presents the proposed IoT monitoring model
based on extended IPFIX records and its deployment in LAN envi-
ronment where IoT data are transmitted directly over L1/L2, and
on the edge where TCP/IP is available. Section 4 deals with IoT
data analysis, namely with statistical-based flow analysis and sta-
tistical anomaly detection. We show how current methods can be
extended and applied on IoT flows. The section presents results of
our proof-of-concept implementation of CoAP monitoring [35] and
data analysis using communication profiles. Last section summa-
rizes benefits and limitations of our approach and shows how IoT
monitoring can be deployed.

1See https://www.wired.com/2016/01/xfinitys-security-system-flaws-open- homes-to-
thieves/ [March 2019]

1.2 Contribution
One contribution of the paper is an IoT monitoring model which
includes redefinition of flows for the IoT context, parsing of IoT
communication and extension of IPFIX flows by IoT header data.
Using IoT-enabled IPFIX monitoring we increase IoT visibility that
can be used for detecting security incidents. The second contribu-
tion includes two techniques for processing and analyzing IoT flow
records: one is based on querying IoT flow record database and
visualization of active IoT communication to the network adminis-
trator, the second approach presents statistical anomaly detection
that creates communication profiles of IoT resources based on IoT
flow data. These profiles are able to detect common cyber attacks
against IoT networks and identify unusual behavior of connected
devices. Feasibility of the presented approach is demonstrated on
CoAP traffic.

2 STATE-OF-THE-ART
Traditional network monitoring system usually employ SNMP pro-
tocol [9] that proactively polls monitoring objects and gathers
monitoring data. Flow-based network monitoring observes active
communication and extract monitoring data from passing packets
using Netflow [10] or IPFIX [12] probes. Flowmeta data in the form
of IPFIX records are later stored at the IPFIX collector. The third
common approach uses event logging. A network device locally
saves system events into a log file that is transmitted and processed
by the Syslog server [19].

The above mentioned techniques are well-established for IP-
based networks and Internet services, e.g., e-mail monitoring, file
transfer, HTTP communication, or VoIP. However, these techniques
do not usually provide sufficient application visibility for IoT com-
munication, e.g., CoAP [35] or MQTT [28] protocols.

Network monitoring tools like Scrutinizer2 or PRTG monitor3
support IoT management only on Layer 3 and 4 without real visibil-
ity of IoT communication. IoT visibility is incorporated in NetScout
TruView4 to a certain extent. Cisco Application Visibility and
Control (AVC) solution5 also supports IoT data processing using
Network-Based Application Recognition (NBAR) engine and Flex-
ible Netflow [33], however, security processing and cyber attack
detection is left on third party applications. Our work focuses on
both visibility of IoT communication and security analysis of IoT
flows.

Benefits of flow monitoring for network attack detection were
presented in [16, 27]. Netflowmonitoring data can be used for DDoS
detection [25], botnet detection [2, 21], intrusion detection [40],
or for even for application-aware monitoring [7]. As we show in
this study, flow monitoring can be also applied to IoT networks but
requires redefinition of flow and analysis of IoT protocols’ headers.

Maggi and Vosseler [31] present common attacks against IoT
communication and discuss the impact on functionality of both
home IoT and industrial IoT networks. They show amplification
attack on CoAP, invalid character insertion into MQTT messages,
scanning attack on CoAP and MQTT, etc. Such attacks cannot be
2See www.plixer.com/products/scrutinizer [May 2019].
3See www.paessler.com/prtg [May 2019].
4See www.netscout.com/product/truview [May 2019]
5See www.cisco.com/c/en/us/td/docs/ios/solutions_docs/avc/guide/avc-user-guide.
html [May 2019].

www.plixer.com/products/scrutinizer
www.paessler.com/prtg
www.netscout.com/product/truview
www.cisco.com/c/en/us/td/docs/ios/solutions_docs/avc/guide/avc-user-guide.html
www.cisco.com/c/en/us/td/docs/ios/solutions_docs/avc/guide/avc-user-guide.html
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detected using traditional monitoring on Layer 3 since they require
increased visibility of active IoT communication on Layer 7 which
is addressed by this paper.

Statistical based anomaly detection is one of the widely used
techniques [1]. The basic idea of statistical methods is to detect
significant deviations of observed behavior from the normal one
and mark it as anomalous or intrusions. Alpha-stable first-order
model and statistical hypothesis testing were used to detect anom-
alies in network traffic by [36]. Manikopoulos and Papaavssiliou
[32] developed a method that uses statistical models and multivari-
ate classifiers in order to detect anomalous network conditions.
Eskin in [17] proposes a mixture model enabling to detect anom-
alies from noisy data. His mixture model considers two probability
distributions representing normal and anomalous events. Network
monitoring and anomaly detection systems designed specifically
for IoT environment commonly exploits characteristics of the IoT
protocols. Granjal et al. [22] invented an IDS framework for the
detection and prevention of attacks in the context of CoAP envi-
ronments. Goldenberg and Wood [20] studied communication in
industrial IoT and proposed DFA-based intrusion detection system
that by observing the regular communication creates a detailed
traffic model which is very sensitive to anomalies. In our work, we
combine statistical fingerprinting approach proposed by [14] with
multivariate classification of [32].

3 IOT MONITORING MODEL
First, we introduce the proposed IoT monitoring model that is
based on IoT flows. Network monitoring usually includes three
basic parts: (i) obtaining monitoring data, (ii) data processing and
storage, and (iii) data analysis and presentation. The proposed IoT
monitoring model covers all three parts, namely (i) observing IoT
communication using an IoT-enabled IPFIX probe that creates IoT
flow records, (ii) transmitting and storing IoT flow records in the
IPFIX collector, and (iii) analyzing IoT flow records using statistical
flow analysis and statistical anomaly detection methods.

3.1 IoT Flow Monitoring
The proposed model composes of an IoT-enabled IPFIX probe that
monitors IoT traffic, parses headers of IoT protocols and extracts
meta data from the headers that are useful for IoT network moni-
toring. In case of IoT traffic being transmitted directly over Layer 2,
the probe should monitor this layer and add Layer 3 items into IoT
flow records, see probe A at Figure 2. More typical deployment is
to place the probe between the IoT hub and the edge router where
the probe operates over TCP/IP, see probe B in Figure 2.

The IPFIX probe observes passing IoT packets, extracts selected
data from IoT headers and inserts them into IoT-enabled IPFIX
records. For each IoT protocol we define a specific set of headers
useful for monitoring. Figure 3 shows an example of an IPFIX record
enriched by CoAP header field values.

Traditional IP flow monitoring creates a flow record for a unidi-
rectional IP flow having the same key header values, namely source
and destination IP address, source and destination port, IP protocol,
ToS and the incoming interface [33]. For IoT monitoring we define
an IoT flow as a set of packets passing a probe in both directions and
having the same IoT property, e.g., an IoT resource identifier, IoT

IoT nodes

IoT hub Cloud

IPFIX 
collector

IoT data over L2 IoT data 
over TCP/IP

IPFIX data

IPFIX data

Probe B
Probe A

Figure 2: IoT monitoring using extended IPFIX.
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CoAP 
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Figure 3: Extended IPFIX record for CoAP monitoring.

message type, etc. This enables us to aggregate sequences of same
IoT packets that are exchange between two nodes. Packets with the
same type and resource identifier form a single flow record which
significantly reduces space for storing IoT monitoring data while
providing sufficient visibility of IoT communication.

Figure 3 shows an example of three CoAP-enabled IPFIX records
extended by CoAP message type (GET, Content, or PUT), message
ID, token ID (TKN), and resource identifier in the form of URI. IoT
packets having the same key properties create one IoT-extended
IPFIX record that represents these packets.

Great advantage of the proposed monitoring model is that it
can be easily integrated with the current IPFIX monitoring infras-
tructure. It requires only changes on the IPFIX monitoring probe
which has to be extended by an protocol module that parses given
IoT protocol, extracts packet headers and creates IoT flow records.
IPFIX standard [12] supports flexible definition of IPFIX records
which means that extracted IoT flow data can be incorporated into
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a generic IPFIX flow record. Such extension is described using an
IPFIX template that is sent from the probe to the collector together
with IoT-extended IPFIX flow records. Thus, there is no need to
make any changes on the collector. The collector interprets incom-
ing IoT flow records using the template. The flow records are then
stored at the collector for further analysis.

3.2 Using IoT Visibility for Security Monitoring
The main requirements for efficient management of IoT networks
is visibility of IoT communication. IoT flow records provide such
visibility. These records can be further used for detecting common
security incidents as follows:

• Resource scanning. IoT protocols usually offer the possibility
to list all available resources implemented on an IoT node
(e.g., temperature, light, or humidity sensors) by one request.
For example, if an MQTT client sends "subscribe #" re-
quest to the broker, the broker starts sending all MQTT
messages received by the broker from all active nodes to
that client. This legitimate feature, however, can be misused
by an attacker to get a list of all active MQTT devices con-
nected to the broker and all available resources. Similarly,
a CoAP client can request available resources by sending
coap://address/.well-known/core URI. With IoT mon-
itoring, such requests can be detected and filtered out for
specific stations.

• DDoS attack. Distributed Denial of Service (DDoS) attack
means that an attacker frequently requests data from a legiti-
mate IoT node in order to exhaust its resources by processing
the received requests. When an attacker sends the requests
with a spoofed IP address of existing IoT node, the answers
to such requests may cause amplification attack on the tar-
get. For example, if an attacker sends CoAP PUT requests
from a spoofed IP address and with the block-wise transfer
mode set, an IoT node which IP address has been spoofed
will be overloaded by big IoT packets with the answer. Such
behavior can be detected by monitoring IoT commands.

• Detection of a rogue device. By long-term monitoring of IoT
communication, a network administrator can create a list of
legitimate IoT objects and resources. Based on the list, he
can easily discover a new unauthorized IoT device that tries
to communicate over the IoT network.

• Unauthorized commands.Most IoT protocols in LAN operate
without authentication. By sending unauthorized commands,
an attacker can manipulate with an IoT sensor, reconfigure
IoT device, or switch off the devices or sensor. IoT monitor-
ing makes transmitted IoT commands visible which helps
detecting unauthorized commands.

• Misusing IoT vulnerability. Attackers often misuse software
vulnerabilities of IoT devices for the attack. For example,
by sending a disallowed UTF-8 encoded MQTT request, an
attacker can disconnect the other MQTT clients from the
broker6. By IoT monitoring, a network administrator can
detect such behavior and reconfigure or update the device
to prevent the attack.

6See vulnerability CVE-2017-7653 at cve.mitre.org [May 2019].

The above mentioned attacks on IoT communication show why IoT
monitoring is important for network management. IoT visibility
helps identifying active nodes, discovering attacks or detecting
unauthorized behavior. Besides, historical IoT monitoring data are
valuable for post-mortem analysis of past incidents.

4 IOT DATA ANALYSIS
Obtaining IoT flow records is the first phase of security monitoring.
Next phase includes analysis of IoT flows with focus on visibility
of IoT data transfers and detection of security threats [27]. In this
section we present two approaches that work with IoT flows and
give information about the IoT network: (i) statistical-based flow
analysis that provides statistics of past IoT transfers, reveals ac-
tive IoT resources on the network, and can be used as a source for
building whitelists [34], and (ii) statistical anomaly detection that
creates communication profiles for each of IoT resources during
a learning phase and uses these profiles to determine if a current
traffic corresponds to a known communication profile, i.e., it can be
marked as normal, or if it significantly differs from known profiles
and thus it will be marked as abnormal. We show how these tech-
niques employ IoT flow records and can be used to detect security
incidents and unusual behavior.

The above mentioned techniques will be demonstrated on an-
alyzing CoAP traffic. In our implementation, CoAP flow records
include the following L7 header data: CoAP Version, CoAP Message
ID, CoAP Code (type of the packet), CoAP Options Count (number
of options in the header), CoAP Content Format, CoAP Token, CoAP
URI Host, CoAP URI Path, and CoAP URI Query.

4.1 Statistical-Based Flow Analysis and
Reporting

IoT flow records comprise a valuable source of statistics that de-
scribe IoT communication during a given period. Table 1 shows an
example of CoAP flow records stored at the collector7. Each flow
includes IP source and destination addresses, CoAP packet type
(Code), message ID and an identifier of an IoT resource using URI
host and URI path as defined by CoAP standard [35].

Table 1: Example of CoAP flows.

By analyzing IoT flow records we can see what CoAP requests
were sent to which IoT resource, what CoAP nodes where involved
in communication, when a given IoT resource was updated, etc. This
data can be used to build a baseline that describes typical behavior

7For space restriction, we show only selected fields. IP statistics, timestamps and other
fields are not displayed.

cve.mitre.org
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of the network. IoT network baseline includes a list of available IoT
resources, stations that regularly communicate with these resources,
a list of transmitted requests to IoT resources within a given period,
peak and average network utilization, etc. By observing ongoing IoT
flow, we can identify significant deviations from the baseline which
may indicate misbehavior or a security incident on the network.
Since IoT communication is stable in terms of connected resources
and regularity of the traffic, application of baseline monitoring is
very useful.

Due to the compact representation of flow records, the IPFIX
collector keeps statistics of IoT communication for past few months.
Using IoT flow records, we can get, for example, a list of the most
requested IoT nodes, see Table 2.

Table 2: Flow Statistics: Top Talkers.

The table shows what IoT resources identified by UriHost and
UriPath values were requested during the observation period. We
can see, that a light sensor identified by UriPath /floor_1_light
and running on host 192.168.10.107 received 4.020 CoAP packets
with 179.879 bytes within the given period.

By querying the flow database we can learn what stations have
been sending data to that IoT node and what types of commands
were used, see Table 3. We see that majority of requests were PUT
commands sent by node 192.168.10.105.

Table 3: CoAP commands received by IoT node
/floor_1_light.

As seen above, flow records can be queried by the network admin-
istrator and presented at theDashboard of the networkmanagement
system where they provide on-line visibility of IoT communication
in the network.

4.1.1 Whitelisting. Various studies of IoT networks and Ma-
chine to Machine (M2M) communication [4, 29] show that these
networks are relatively stable in terms of number of connected
devices and available resources. Thus, by running IoT flow moni-
toring for a certain period, e.g., one week, we can obtain a list of
all available IoT resources and legitimate active nodes in the LAN.
The list can be used as a source for whitelisting which is a filtering
technique where only explicitly defined entities may access certain
resources. The technique is largely used in industrial IoT networks
to protect their resources [5, 30], and it is also recommended for
application systems, e.g., software libraries, configuration files, etc.
[34].

In case of IoT monitoring data, following items learnt during the
baseline observation can be whitelisted:

• IoT nodes authorized to send/receive monitoring data.
• IoT resources authorized to be requested, updated or deleted.
• Remote hosts with permission to access IoT nodes.

IoT whitelists can be implemented using a stateful firewall where
access to CoAP nodes is authorized only for previously learnt sta-
tions. Figure 4 shows an example of the Access Control List (ACL)
that permits only CoAP traffic initiated by hosts that were identified
during baseline observation and are listed in Table 3.

Router(conf)# access-list 101 remark Whitelisting CoAP traffic
Router(conf)# access-list 101 permit udp host 192.168.10.105 host 192.168.10.107 eq 5683
Router(conf)# access-list 101 permit udp host 192.168.10.106 host 192.168.10.107 eq 5683
Router(conf)# access-list 101 deny udp any host 192.168.10.107 eq 5683
Router(conf)# access-list 101 permit ip any any

Figure 4: Implementation of the whitelist using the ACL.

Whitelisting is a powerful technique to protect IoT resources
against attackers. However, whitelists require manual updates in
case of changed topology or adding new IoT nodes.

4.2 Statistical Anomaly Detection
Up to now we queried IoT flow database to get statistics about IoT
communication in the network. This approach is useful for analyz-
ing a specific security issue, e.g., observing behavior of a specific IoT
node in the given time. For long-term security monitoring, we need
another technique that detects anomalies in the network without
manual intervention of the network administrator.

The statistical approach represents one of the possible methods
for anomaly detection. In this section, we demonstrate a simple
statistical method for discrimination of CoAP traffic and show that
it gives promising results. This is mainly because of regularity of IoT
communication. The method employs CoAP specific information
obtained from CoAP-enabled IPFIX records. The presented method
combines the ideas used in [32] and [14] for IP traffic fingeprinting
and classification.

Assume that regular IoT traffic have some characteristics in terms
of a number of packets sent, timing and amount of data exchanged.
Barbosa et al. [6] even consider the traffic periodicity as the only
source of information to build the traffic model. Our method cre-
ates a statistical traffic model for CoAP operation identified in the
network. The model was demonstrated for two input parameters,
the number of messages and the amount of data, within a fixed
time period. Though the model is quite simple, it can reliably de-
scribe normal behavior and detect significant deviations. To hide
his activities, the attacker would need to perform communication
which does not violate the characteristics of normal communication.
The model can be further refined to include other statistical pa-
rameters, such as maximum and minimum packet size, interpacket
delay distribution, etc. Because the model is created for each CoAP
resource and the operation that uses the resource, it is possible
to identify specific patterns related to resource usage. Thus it is
possible to identify situations when an attacker uses patterns that
are considered normal but they were not seen before for the specific
resource. On the other hand, the method relies on the possibility to
inspect CoAP header fields, thus it cannot be applied to encrypted
communication provided by DTLS.
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4.2.1 Modeling CoAP Traffic. The proposed method monitors
CoAP communication and learns patterns of usage of CoAP re-
source. The patterns create a system-wide profile. When a client
wants to operate the resource, it sends a resource operationmessage
to the server specifying its resource address. The resource usage
model M thus relates an operation rop on the resource rur i to a sta-
tistical representation of the underlying network communication.
The statistical information of modelM is characterized by random
variables X1, . . . ,Xk . Each random variable Xi represents an as-
sumption on the value of the corresponding feature. Currently, we
use only two random variables: X1 expresses a number of packets
and X2 expresses a number of octets associated with the resource
operation messages8. The model characterizes usage of a monitored
resource within the specific period of observation, which is given
by a fixed size time window.

The usage profile P is created during a learning phase. It consists
of a collection of resource usage models. The learner builds usage
models for all observed resources using the following steps:

(1) Regular network communication is captured during the fixed
interval of time. To create a model we consider a set of time
windows (w1, . . . ,wt ).

(2) In each time windowwi , CoAP flows are grouped according
to resource usage label r = (rop , rur i ).

(3) From a set of (aggregated) flows {e1, . . . , em } belonging to
the same resource usage r a set of feature vectors L =

{ ®x1, . . . , ®xm } is extracted. Each feature vector ®xi statistically
characterize flow ei .

(4) The set of samples is fed to a distribution fitting procedure
that applies expectation-maximization (EM) algorithm[15]
to produce a mixture of normal distributions describing the
sample values. The model is given as a joint probability
function and a computed threshold value:

Mi = (fX1, ...,Xk (x1, . . . ,xk ), t).

The threshold value helps to distinguish whether an observed pat-
tern is significantly different from the model of normal behavior.
Let P = {pi |pi = fX1, ...,Xk ( ®xi ), ( ®xi ) ∈ L} is a set of probabili-
ties of occurrences of individuals from the set of features L used
to build the model. The threshold value of model Mi is given as
t = µ(P) + x · σ (P) where µ(P) is mean value of set P and σ (P) is
standard deviation. Multiplier x is used to tune the sensitivity of
the model. Intuitively, threshold represents the least probability for
a sample to be considered as normal behavior.

Fig. 5 shows an example of the model represented by its joint
probability function. The model was created for resource usage
r = (Put, /floor_1_light) where Put is resource operation, and
/floor_1_type is resource URI. For creating the model in Fig. 5,
40 samples (time windows) were used to fit a mixture of normal
distributions during learning phase.

4.2.2 CoAP Traffic Discrimination. Traffic flow discrimination is
based on computing the similarity of currently observed behavior to
the known behavior represented by corresponding resource usage
model M. In the operational phase, the network communication is
analyzed as follows:

8It is possible to consider other features that can be extracted from IPFIX records, such
as bitrate, duration, etc.

Figure 5: An example of joint probability function of sample
resource usage model

(1) The traffic is captured and collected in the time window
which size corresponds to that used in the learning phase.

(2) For each flow e occurred within the actual time window its
resource usage label r is determined.

(3) The expected resource usage model

M = (fX1, ...,Xk (x1, . . . ,xk ), t)

is retrieved from the usage profile P.
(4) Flow features are extracted from flow e to form a vector of

observations ®y.
(5) Finally, the joint probability function of model M is used

to compute the probability for the observed behavior, p =
fX1, ...,Xk (®y). If the probability is greater than threshold
value t , the flow is marked as normal. Otherwise it is labeled
as abnormal.

This simple procedure labels observed flows as normal or abnormal.
Note that other cases not considered in the described approach
can occur. It is possible that we observe a new resource usage r ′
not included in the profile. Such flow can be either considered as
abnormal as it does not correspond to any known profile. Possibly,
it can also be classified as unknown indicating that our usage profile
P is incomplete not covering all available resources within the
network.

4.2.3 Preliminary Evaluation. For the preliminary evaluation,
we used four datasets of CoAP communication stored in four files,
see Table 4. Files denoted as idle, regular and observe contain
network communication reflecting regular network operations. A
file denoted as attack contains a flooding attack executing against
CoAP resources. We use all files for creating four profiles. To create
a profile, we take first 20% of the source data as the training set.
The testing set thus consists of remaining 80% of communication
from the same file and all data from the other three files. For each
executed test, the following quantities were measured:
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Table 4: Datasets used for experiments

File Packets Flows Resources Normal
idle 25 096 716 5 yes

regular 54 634 1 307 12 yes
observe 17 480 415 8 yes
attack 38 474 870 8 no

Table 5: Performance measures of basic profiles

Profile Hr Fp
idle 39.91% 2.31 %
regular 75.98% 7.23 %
observe 84.82% 8.17 %
idle+regular 88.72% 6.36 %
idle+regular+observe 90.85% 6.46 %

• N - a number of all normal flows in the testing dataset
• N+ - flows correctly classified as normal (true positives)
• N− - flows incorrectly classified as normal (false positives)

The presented quantities are used to compute two metrics. Hit ratio
Hr (aka recall) gives the proportion of correctly identified normal
flows to all normal flows in the testing set [23]:

Hr =
N+
N

Hit ratio thus evaluates how good the classifier is in recognizing
normal flows. The second metric is the false-positive ratio Fp (aka
false discovery rate) that represents the fraction of flows incorrectly
considered as normal to the total number of flows classified as
normal:

Fp =
N−

N− + N+

The false-positive ratio is an important measure that tells us the
degree of mistakes produced by the classifier. For experiments, it
is assumed that flows in idle, regular, and observe data files
represent normal behavior as they were all obtained by monitoring
the regular operations of the CoAP system. Samples with abnormal
behavior were picked up from file attack.

Table 5 presents results of flow classification using different
profiles. The profile computed from idle has poor hit ratio. It is
because that dataset does not contain enough patterns to represent
behavior of the system adequately. We also tested profiles based
on the samples drawn from multiple data files achieving hit ratio
around 90%. The false-positive ratio is around 8% for the worst case.
Preliminary experimental analysis shows that statistical modeling
is a promising technique for profiling regular communication in
IoT-based networks. The technique presented above uses an uncom-
plicated fully automated procedure to fit the model to regular CoAP
communication and use it for discriminating unknown traffic.

5 IMPLEMENTATION
Implementation of the proposed monitoring model includes IoT
protocol parsers and plugins to the IPFIX probe. Developed parsers
for CoAP and LwM2M IoT protocols are available at the project web

site9. The parsers were integrated into Flowmon Probe10 and tested
on datasets obtained from smart home testbeds at Hallym Univer-
sity, Chuncheon, South Korea and at Brno University of Technology,
Czech Republic. Some of the datasets are available at GitHub11. IoT
data were analyzed using a proof-of-concept implementation of
anomaly detector developed by the authors.

5.1 Privacy and Security
The proposedmonitoringmodel follows acknowledged principles of
network monitoring that preserve user privacy as required by Data
Retention legislation and EU General Data Protection Regulation.
Monitoring data that are retrieved from IoT packets headers does
not contain any personal information. On the other hand, long
term monitoring of IoT devices in the smart home can disclose
daily habits of the inhabitants as noticed in [13]. For this reason,
users of IoT networks should be aware of monitoring and express
their agreement with monitoring. For public and commercial smart
buildings, privacy issues of IoT monitoring are subject to internal
security regulations that must comply with the local legislation.
In case of smart home monitored by an ISP, the customer should
be informed about the collected data and asked to give explicit
permission for IoT monitoring.

IoT flow records should be transmitted between the probe and
the collector over dedicated links and encrypted in order to prevent
interception or spoofing. This can be implemented by a VLAN
reserved for transmitting monitoring data.

Some IoT protocols provides encryption and authentication. In
case of encryption using SSL/TLS, IPSEC or Layer 7 encryption,
the proposed monitoring model will not be working properly since
interesting IoT headers will not be accessible by the monitoring
probe any more. In this case, IoT flow monitoring is limited to
detection of communicating nodes, observation of transmitted data
volumes and frequency analysis of IoT transmissions as discussed
in [18] and [41].

5.2 Scalability
The proposed monitoring model is focused on IoT communication
that is stable, limited in computational resources and vulnerable
to interception, resource scanning and command injection. It can
be apply to any IoT protocols like CoAP, MQTT, LwM2M or pro-
prietary protocols. Each IoT protocol demands a parser that will
extract interesting data from IoT packet headers and build IoT flow
records in the monitoring probe. No changes are required on the col-
lector side since IPFIX provides flexible definition of IPFIX records
using templates.

For IoT protocols encapsulated directly over Layer 1 and Layer 2
as mentioned in Section 3.1, a special probe with access to Layer 1
and 2 has to be implemented. In order to create full IoT flow records
with L3 header data, specific-purpose IP addresses shell be selected
and added to the IoT records.

This paper presents a simple IoT topology with only one IoT-
enabled IPFIX probe. However, in large IoT networks, multiple

9See http://www.fit.vutbr.cz/research/grants/index.php.en?id=1101 [May 2019]
10See article https://www.flowmon.com/en/blog/flowmon-10-0-where-the-revolution-
begins [May 2019]
11See https://github.com/matousp/IoT-related-datasets [May 2019]

http://www.fit.vutbr.cz/research/grants/index.php.en?id=1101
https://github.com/matousp/IoT-related-datasets
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probes can be deployed both in LAN segments or on the edge of
the network. Each probe creates IoT flow records that are sent to
the central IPFIX collector. As the IPFIX probe greatly reduces the
amount of information that needs to be preserved it is suitable for
monitoring of high-speed networks. It was shown that a number of
flows generated are around 1/2000 of packets for campus networks
[26]. Although IoT networks exhibit a different characteristic of
network traffic, still the reduction ratio is significantly large to
enable scalability of IPFIX monitoring system.

6 CONCLUSIONS
This paper proposes a new model for security monitoring of IoT
networks. The aim of this model is to incorporate IoT flow mon-
itoring into the current network management systems in order
to increase visibility of IoT networks and to detect attacks on IoT
devices. The proposed monitoring model is based on IPFIX frame-
work as defined by RFC 7011–7013 [11, 12, 38] where the moni-
toring probe processes ongoing IoT packets and creates IoT flow
records that are then analyzed on the IPFIX collector. We see the
following advantages of this approach: IoT flow monitoring can
be easily integrated into current network management systems,
IoT flow records provide requested visibility of IoT communication
in the network, aggregation of same IoT packets into one flow re-
duces number of monitored items. Unlike traditional monitoring
approaches, proposed IoT flow monitoring reveals details about
transmitted commands, resources, etc.

Obtained monitoring data becomes the subject to further analy-
sis. We introduced two analysis techniques that employ IoT flow
records: (i) statistical-based flow analysis and reporting that retrieves
various statistics from IoT flow database and present them to the
network administrator in the form of dashboard charts describing
a big picture of active IoT communication on the network, and
(ii) statistical anomaly detection that creates for each available IoT
resource so called resource usage model that represents communica-
tion of this resource in terms of number of transmitted packets and
octets related to the resource. Based on the previously learnt usage
profiles, the method computes similarity of the ongoing traffic with
the known profiles. If the probability is greater than threshold, the
flow is classified as normal, otherwise it is marked as abnormal.
Preliminary experiments with CoAP traffic show that the method
gives promising results for discriminating irregular (abnormal) com-
munication in the network traffic in IoT networks.

6.1 Future Work
Next workwill focus on three directions. The first is implementation
of IoT monitoring probe for Layer 1 and Layer 2 environment where
TCP/IP stack is not implemented. This can be useful not only for
smart building IoT installations but also for wide-spread global IoT
networks like LoRa12 or Sigfox13 where network monitoring is
missing.

The second direction of our research aims at development and
testing of additional anomaly detection techniques in the IoT con-
text. We plan to explore well-established approaches for anomaly
detection as used in traditional IP networks and apply them to the

12See https://lora-alliance.org/ [May 2019]
13See https://www.sigfox.com/en [May 2019]

IoT environment. This includes not only home IoT networks but
also industrial IoT networks (aka SCADA systems).

The third direction is towards detailed evaluation and compari-
son of the IPFIX-based monitoring with other existing techniques.
The direct comparison will be made to solutions that perform on-
line packet level analysis using deep packet inspection techniques.
These methods have been traditionally implemented by Intrusion
Detection Systems (Snort, Bro). Also, novel approaches that use
the machine learning-based methods for anomaly detection will be
considered.
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