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Abstract—In the digital landscape, phishing attacks have
rapidly evolved into a major cybersecurity challenge, posing sig-
nificant risks to individuals and organizations. This short paper
presents our preliminary research on detecting phishing domains.
Our approach amalgamates intelligence from multiple sources:
DNS servers, WHOIS/RDAP, TLS certificates, and GeoIP data.
We created a rich 15.8 GB dataset of information about benign
and phishing domains, from which we derived a comprehensive
80-feature vector for training and testing machine learning
classifiers. We propose preliminary results with a fine-tuned
XGBoost model, achieving 0.9716 precision rate, 0.9540 F-1 score,
and false positive rate of 0.23%.

Index Terms—Phishing, Domain, Detection, Machine learning,
XGBoost, Features, DNS, RDAP, TLS, GeoIP

I. INTRODUCTION

In today’s digital era, phishing has become a significant
cybersecurity concern. The widespread use of e-mail and
social media has created a vast arena for phishers, allowing
them to target masses of unsuspected users easily. Many
individuals and organizations underestimate the sophistica-
tion of modern phishing campaigns, leading to catastrophic
consequences. Those include data breaches, identity theft,
substantial financial loss, or data damage due to frequent
ransomware attacks.

Various countermeasures have been studied and deployed
over the years. Educating users helps, but it is not
a panacea [1]–[3]. Even a knowledgeable user might be caught
off guard and tricked by a sophisticated campaign. Hence,
additional systematic techniques based on allow/deny lists [4]–
[7] and heuristics [8], [9] are deployed. Specialized crafted
blocklists or heuristics might effectively cover known already
reported suspicious websites but are weak against zero-hour
attacks [10]. Therefore, researchers utilize machine learning
to propose solutions capable of uncovering new potentially

suspicious assets based on the known data patterns from the
past [11]–[13].

Works proposing solutions to fight phishing analyze differ-
ent data sources, including e-mail, instant messaging, social
networks, advertisements, websites, or domain names. Domain
names are an indispensable part of user interaction on the
Internet, and they usually represent the first action triggered by
the user willing to visit any website. A wide range of publicly
available information is obtainable from the DNS system,
WHOIS/RDAP, IP geolocation databases, or information about
deployed TLS certificates. Therefore, our research focuses
on utilizing the information from all listed data sources to
train a machine-learning classifier capable of distinguishing
benign and suspicious phishing domains. This paper presents
the preliminary results of the proposed solution.

Our contribution is threefold. At first, we created and
published a dataset containing 15.8 GB of domain-related
data. Secondly, we designed a feature vector for accurate
classification. And thirdly, we propose a classifier and present
preliminary achieved results. The novelty of this study lies in
combining five information sources, that as far as we know
were not used together in any previous study, unique crafted
feature vector and proposing highly accurate phishing domain
detection method.

II. RELATED WORK

Throughout time, network administrators and cybersecurity
experts have sought various methods to combat phishing.
Sheng et al. [1] demonstrated that anti-phishing training re-
duced phishing susceptibility by 40%, yet participants still
succumbed to 28% of phishing attempts. Görling [2] noted
users often bypass security models that interfere with their
tasks, and the Anonymous attack on HBGary [3] underscores



that even experts are not immune. Unsurprisingly, there is
a high demand for network forensics and incident response
professionals to address such incidents [14]. Countermeasures
like allow/deny lists [10] or DNSBL [6] are limited to ex-
act match scenarios with the domain name or URL. Even
predictive solutions like PhishNet [7] cannot withstand zero-
hour attacks. Heuristic-based solutions like the AntiPhish [9],
Phishwish [8], and IceShield [15] browser extensions face
challenges of high false positive rates and require periodic
updates [10]. Alternative visual similarity-based anti-phishing
schemes, like those proposed by Chen et al. [16] and Hara et
al. [17], provide satisfactory results but are computationally
demanding and unusable on a larger scale [10].

To combat zero-hour attacks, machine learning models can
be trained to detect phishing e-mails [11]–[13], domains [18]–
[25], URLs [26]–[28], or webpage contents [12], [29]–[31].

Chandrasekaran et al. [11] detected phishing e-mails with
SVM using 25 features, including keyword search for terms
like ”account” or ”security”, resulting in 95% detection rate.
Fette et al. [12] introduced the PILFER algorithm for detecting
both phishing e-mails and websites with a 0.96 accuracy using
Random Forest. Abu-Nimeh et al. [13] compared multiple
classification methods, achieving precision up to to 0.9511.

While HTML/DOM analysis can identify phishing web
pages [29]–[31], this method requires computationally inten-
sive full-page scraping and processing.

To detect malicious domains, lexical features can be derived
from the domain name itself. Drichel et al. [18] validated
this method by examining 136 unique lexical features to
identify C&C domains. Counting characters of the given
type, analyzing length and subdomain level is also usable for
detecting malicious URLs, as shown by Do et al. [27] and
Patgiri et al. [28] who also utilized IP reputation data.

DNS is vital for domain credibility assessment. Bilge et
al. [19] identified phishing and botnet domains through passive
DNS traffic analysis. While we do not analyze network traffic
directly, we adopted several features like the count of IP
addresses, countries, and numerical characters. Perdisci et al.
[32] similarly used passive DNS analysis with unique IP-based
features. Antonakakis et al. [20] used statistical features from
BGP prefixes, AS numbers, and more, incorporating requester
IP distributions and malware-related reputation scores.

Potential indicators of domain maliciousness are also ev-
ident in TLS certificates. Research by Hageman et al. [21]
highlighted that in Q4 2020, 84% of detected phishing attacks
occurred over HTTPS, relying on a relatively small group
of certificate issuers. Torroledo et al. [22] achieved 0.8963
precision rate in detecting phishing and malware domains
through 30 TLS-based features.

Lexical, DNS, and TLS-based features have proven effec-
tive, and we believe combining these sources might yield
even better results. Kuyama et al. [23] detected malicious
domains using 9 WHOIS and 8 DNS-based features. Shi et al.
[24] extended this by adding three lexical and two IP-based
features. Nevertheless, the two approaches focused mainly on
malware/C&C domains. Hason et al. [33] identified phishing

and C&C domains using 9 features categorized as non-robust,
semi-robust, and robust. Consecutive characters were seen as
a robust feature, while attributes like domain entropy, lifetime,
activity, and the number of distinct IP addresses were deemed
semi-robust. Chatterjee et al. [34] achieved 0.867 precision
using 14 features, such as the HTTPS presence and domain
age. Sadique et al. [25] blended lexical, host-based, WHOIS,
and GeoIP features, reaching 0.87 accuracy, with lexical
features dominating the top 10 list according to importance.
However, they did not utilize DNS or TLS data.

With the exception of Sadique et al. [25], the majority of
existing ML-based phishing detection techniques used data
from one or two sources (e.g., WHOIS and DNS). To see
how detection works across a broader spectrum, we focused
our research on combining lexical attributes and five different
external information sources. Additionally, many ML-driven
malicious domain detection efforts have barely achieved preci-
sion over 0.90, indicating a significant room for improvements.
We also noted most phishing-detection attempts aim at mali-
cious web contents, URLs, or e-mails. In contrast, domain-
centric analyses were primarily used for malware and botnet
domains. Inspired by this observation, we directed our efforts
into exclusively domain-based phishing detection.

III. PHISHING DOMAIN DETECTION METHODOLOGY

Figure 1 outlines the whole methodology for creating our
phishing domain classifier. The process is split into three core
steps: A) creating a suitable dataset with domain-related data,
B) extracting convenient features for phishing detection, and
C) training the classifier.

Fig. 1. A holistic overview of the classifier creation.

A. Data Collection

Training effective classifiers require a sufficiently large
dataset of high quality and granularity. We started by creating
lists of benign (trusted) domains and phishing domains.

To obtain benign domains, we chose the Cisco Umbrella
[35] platform that protects organizations on the DNS level



and provides vast allow/deny lists of Internet domains. To
collect only the most likely benign domains and thereby ensure
the dataset’s quality, we performed a filtering process on the
available lists similar to Rahbarinia et al. [36]. First, we took
monthly data for the top one million domains across the past
year. We then collected only the domains that consistently
appeared in these top results. We gathered a list of 432,572
benign domains from Cisco Umbrella using this technique.

The phishing domains were collected from OpenPhish [37],
a fully automated platform for phishing intelligence that keeps
track of live malicious hostnames and URLs, and PhishTank
[38], operated by Cisco Talos Intelligence Group. Both ser-
vices verify the reported domains, minimizing the ocurrence
of false positives, which is essential for a quality dataset. From
these two sources, accessed via the MISP platform [39], we
obtained a list of 36,993 verified phishing domains.

For each domain, we collected DNS records, as they provide
valuable information for malicious domain detection, such as
the domain’s name servers, mail servers [23], and related IP
addresses [19], [24]. For each IP address, we also measured
the Route-trip time (RTT) with ICMP Echo. Our next source,
RDAP, a WHOIS replacement, provides domain registration
information that may be linked to known phishing activity
[24], [33]. Further, we downloaded the domains’ TLS certifi-
cate chains to search for discrepancies and suspicious infor-
mation [22]. Additionally, we collected domain-related GeoIP
data to identify whether a domain’s IP addresses are located in
high-risk regions or linked to recognized phishing activities.
Finally, we published the complete dataset on Zenodo [40].

B. Feature Extraction and Processing

In related work, we identified 183 unique domain-related
features. We then excluded those unsuitable for our scope (e.g.,
not extractable from our data) and those deemed irrelevant for
phishing detection in prior research. Conversely, we crafted
manually a number of novel, potentially helpful features, for
instance, related to TLS certificate extensions and policies.
This approach resulted in 106 features for manual examination.

Through result analysis and examining feature importance
and correlation, we further refined our list. We then eliminated
features that did not contribute meaningfully to identifying
phishing domains or those duplicating information to prevent
computational strain or result distortion. Our final feature
vector comprised 80 features divided into several categories.
The entire feature vector is also described on Zenodo [40].

The first group comprises 22 lexical features (prefixed with
lex ) extracted from the sole domain name. Those included
the length and normalized entropy of the domain name, ratios
of digits, vowels, and consonants. Such features have effec-
tively detected C&C DGA domains in previous works [18],
[24]. Observing possible algorithmically generated examples
in our phishing list, like “help-center267.crabdance.com”, we
assessed similar lexical features for phishing detection. We
also counted the presence of 47 common clickbait words like
“account” or “free” which we discovered in phishing domain
names. Finally, we created statistics of the most frequent

{2-5}-grams amongst phishing domain names and calculated
their occurrence within the domain name.

Another group of 25 DNS-related (prefixed with dns )
features included counts for specific record types, as Kuyama
et al. proved their usability for malicious domain detection
[23]. As lexical approaches showed success [18], [24], [25],
we applied these to DNS-derived strings. We thus measure the
length, subdomain level, digit count, and mean entropy of the
primary nameserver and the administrator’s e-mail address. We
also assessed the entropy and average length of MX names and
TXT record values. Furthermore, we flagged SPF and DKIM
presence as potential domain credibility indicators.

From DNS records, we also extracted information about re-
lated IP addresses and crafted five additional IP-based features
(prefixed with ip ) like the total counts of IP, IPv4, and IPv6
addresses, usable in previous detection attempts [19], [20],
[24]. We also included the average entropy of IP prefixes,
as Perdisci et al. [32] suggested low IP diversity is often an
indicator of high-flux malicious domains. Lastly, we included
the average RTT for all domain-related IP addresses, as we
suppose credible services might exhibit reduced latencies,
particularly when regionally aligned.

Examining TLS certificate chains resulted in 17 TLS-related
features (prefixed with tls ). As the classifiers of Torolledo et
al. [22] showed a high precision rate, we adopted some of the
features, for instance, extension count or the validity length of
certificates. Additional features like root certificate validity or
numbers of certificates fulfilling ISO/Joint ISO-ITU policies
were identified through manual examination.

We derived seven features from WHOIS/RDAP data for
the domain and related IP addresses. (prefixed with rdap ),
including the domain’s age, underpinned by our hypothesis
that longer-standing domains are generally more trustworthy.
We also incorporated the time since the last change, positing
that the nature and timing of updates might signal a domain’s
legitimacy. Additionally, we included a flag indicating the
support for DNSSEC as a potential marker for a domain’s
credibility. The domain registration period and the domain
active time were also included, as previous studies have
underscored their usability [24], [33], [41]. Other features
cover information about the registrar and the average length
of the admin contact name for IP addresses.

Finally, we added three features associated with geolocation
information for domain-related IP addresses (prefixed with
geo ). We included the total number of distinct countries,
a metric previously highlighted for its utility in malicious
domain detection [19], [20], [24], [33]. Recognizing that
specific phishing campaigns might be orchestrated by blackhat
groups operating within distinct sets of countries or continents,
we further enriched our feature vector with: a unique hash for
each combination of countries, and a unique hash for each
combination of continents where the countries were situated.

C. Model Training and Tuning

For preliminary verification of the feature vector’s usability,
we employed the XGBoost classifier [42] due to its fast



training capabilities, easy interpretability of results, general
well performance on imbalanced data and remarkable perfor-
mance on tabular data, further confirmed in several Kaggle
competitions [43].

We conducted the Train-Test split with 70% of data reserved
for training and 30% for model validation. On the training
part, we applied additional stratified 5-fold cross-validation for
grid search-based model tuning. We ended with 998 decision
trees with a maximum depth of 11, training rate of 0.10
to reach the “binary:logistic” objective with GPU histogram
algorithm and gradient-based sampling method. We also set
min child weight to 1.1, subsample to 0.9 and max bin to
2048. The scale pos weight was 4.0 to compensate the im-
balance of the benign and phishing classes. Other hyperpa-
rameters remained on default values.

IV. PRELIMINARY RESULTS

Following the proposed methodology, we achieved 0.9716
precision rate, 0.9370 recall, and 0.9540 F-1 score. The latter
we consider the most important due to the imbalance between
the benign and phishing classes. The false positive rate was
0.23%. Table I shows the confusion matrix, illustrating the
classification results in detail.

Figure 2 shows the SHAP [44] summary plot for the TOP 10
most important features. The plot indicates the distribution of
domains assigned to benign (to the left of the vertical line) and
phishing (to the right) classes. The chart’s height corresponds
to the number of samples, while the color indicates the
feature value. The classification of samples situated around the
middle is highly dependent on other attributes. The detailed
description of all 80 features is provided on Zenodo [40].

The top feature in the list is domain age, which confirms our
assumptions that long-running services are statistically more
credible. Big Internet players distribute their services across
numerous nodes, often spanning multiple countries, which
likely explains the importance of the IPv4 count. The results
confirm that lexical properties like the number of subdomains,
TLD, or malicious domain n-grams, usable for detecting C&C
DGA domains, are also instrumental in identifying phishing.
The importance of DNS TTL further confirms the findings
of Bilge et al. [19]. TLS and geolocation features were also
contributive but did not reach the top 10 list. From the TLS-
based features, the most important were the length of the
certificate chain and the number of TLS extensions. The most
crucial geolocation feature was the combination of countries
where the servers of domain-related IPs were located.

Overall, the results validate the usability of the examined
data sources for phishing domain detection. While there is
still space for further improvements, our current feature vector
performed well in the given classification task and successfully
identified most of the phishing domains, keeping the false
positive rate on a low level.

V. CONCLUSION

In the paper, we presented our approach to phishing domain
detection, including early experiments on a large dataset of

TABLE I
CONFUSION MATRIX FOR THE PHISHING DOMAIN CLASSIFIER.

Predicted
Phishing Benign

Actual Phishing 10 399 699
Benign 304 129 468
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Fig. 2. SHAP summary plot with TOP 10 most important features

domain-related information. Preliminary results indicate that
our methodology, which leverages intelligence from multiple
data sources, is effective in identifying phishing domains.
The achieved scores of standard metrics are promising and
comparable to related studies. While we believe we are on
the right track towards effective phishing detection, additional
effort is required to deeper analyze the effects individual
features and draw more detailed conclusions.

In the upcoming research, we aim to compare the distinct
data sources according to their information value and contri-
butions to the decision-making process. Additionally, we plan
to expand our feature vector with more RDAP-based features
that we have not analyzed yet, and explore the usability of our
approach with other clasification methods, such as AdaBoost,
LightGBM, SVM, and Deep Neural Networks.
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