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Abstract This chapter addresses the computation-memorization trade-offs in the
context of genetic programming (GP). We introduce genetic programming with
memory (GPM) in which GP evolves not only the expression but also the content of
a small local memory to better approximate the original data set. In particular, we
evolved expression-memory pairs that can serve as weight generators and thus ap-
proximate the weights associated with convolutional layers of some convolutional
neural networks (CNNs). This is potentially interesting for the efficient implemen-
tations of hardware accelerators of CNNs in which memory access is significantly
more energy-demanding than arithmetic operations. In our approach, most of the
weights are approximated using an evolved expression; only some fraction of them
must be read from memory. For example, if memory contains 10% of the original
weights, the weight generator evolved for a convolutional layer can approximate
the original weights such that the CNN utilizing the generated weights shows less
than a 1% drop in the classification accuracy on the MNIST data set. The memory
requirements are reduced 3.1× or 12.6× for 8-bit or 32-bit weights, respectively.
Additional experiments conducted for more complex CNNs and challenging im-
age classification benchmarks show various impacts of weights’ approximation on
classification accuracy.
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1 Introduction

Genetic programming (GP) is typically used to evolve an expression implementing
an approximate mapping between two sets. Such an expression consists of input
variables, operators, and constants. Since the constant values can be evolved, they
can be seen as application-specific memory content needed to implement the map-
ping effectively. The concept of memory has been introduced into GP in different
ways [8, 9, 17, 18] but it has never been dominating in major applications of GP.
Considering not only symbolic regression but computing in general, there are many
cases in which it is more beneficial to memorize some knowledge rather than to
compute it. For example, in hardware dividers or CORDIC algorithm [19], introduc-
ing a lookup table enables the development of fast and low-power implementations.
This research addresses the computation-memorization trade-offs in the context
of GP.

In our previous paper [7], we introduced genetic programming with associative
memory (GPAM) in which GP evolves not only the expression but also the content of
a small local memory to better approximate the original data set. Particularly, GPAM
evolves an expression G(x) and content of associative memory (content addressable
memory) AM(x) with the goal of minimizing the approximation error w.r.t a chosen
error metric. The resulting pair (G, AM) then produces the regression output y′ such
that if x is in AM then y′ = AM(x), otherwise y′ = G(x). GPAM was evaluated in
two case studies.

Firstly, we considered symbolic regression for data sets containing many outliers.
The goal is to memorize some of these outliers, as they could sometimes be useful.
Unfortunately, they are almost always inexactly reproduced by any evolved expres-
sion in the standard GP approach. For this experiment, relevant synthetic data sets
were obtained by sampling standard benchmark functions for symbolic regression
in which some fraction of data points was replaced by randomly generated values.

Secondly, GPAM evolved an expression-memory pair to approximate a set of
weights belonging to one layer of a convolutional neural network (CNN). The mo-
tivation was to replace energy-demanding reads of external weight memory (which
a CNN hardware accelerator must conduct to perform every inference) with a cheap
on-chip weight generator utilizing a small local memory. Promising results were
obtained in a simplified setup that has not addressed some important aspects of the
method, such as memory cost.

This work further analyzes and extends the GPAM approach in several direc-
tions. Since associative memory is sometimes unnecessary, we refer to the updated
approach as genetic programming with memory (GPM). GPAM and GPM can em-
ploy any variant of GP. Like in [7], we will use Cartesian genetic programming
(CGP) [12].

In the case of symbolic regression, we extend the number of benchmark prob-
lems to nine and evaluate them in a different setup. The original approach did not
distinguish training and test data. Hence, we adopt a standard methodology of GP
and perform the evolution with training data and the evaluation with test data; how-
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ever, the randomly generated values (in the benchmark functions) remain identical
in both sets.

In the case of the weight generator application, we propose CGP to work with 8-
bit functions (in fixed-point representation) rather than 32-bit (floating-point) func-
tions to allow for smaller hardware implementation of evolved expressions. Further-
more, we propose a new memory addressing scheme based on standard memory,
enabling us to avoid expensive content-addressable memory. The newly proposed
weight generator replaces the original set of weights of a CNN layer. On selected
CNN layers, we analyze to what extent the proposed weight generator can produce
such weights whose utilization during inference leads to an acceptable accuracy
drop of CNN while memory content transferred from external memory is signifi-
cantly reduced.

The rest of this chapter is organized as follows. Section 2 introduces the concept
of symbolic regression utilizing genetic programming with memory. The idea of an
on-chip weight generator as a replacement of weight reading from external memory
is presented in Section 3. Both approaches are experimentally evaluated – the results
are summarized in Section 4. Finally, conclusions are given in Section 5.

2 Symbolic Regression with GPAM

The concept of memory has been connected with GP in numerous ways, includ-
ing individually named storage elements [8], a linear array of indexed memory el-
ements [17], and associative memories similar to neural networks [18]. GP also
automatically evolved simple abstract data structures such as stacks, queues, and
lists [9].

In our previous approach, GPAM, we simultaneously evolved an expression and
content of associative memory for purposes of symbolic regression. In particular,
GP evolves expression G and content of a small associative memory (AM), which
stores a subset DAM of data points from the training data set D, where (xi,yi) ∈ D,
|D|= n, |DAM|= kAM , and kAM ≪ n. The resulting value y′ is computed using Eq. 1:

y′(x) =

{
AM(x) if x is in AM
G(x) otherwise

(1)

Fig. 1 shows the overall scheme of the method. The Agg block aggregates the in-
put data to form a key, which addresses a given value in AM. It is assumed that
the condition “x is in AM” can be evaluated quickly. G is evolved with standard
CGP [12] whose chromosome is extended with kAM items referring to stored data
points (xi,yi). An example of encoding used in CGP is given in Fig. 2.

The fitness function, evaluating a given (G,AM) pair on training data set D is
based on minimizing a given error metric:
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Fig. 1 GPAM: The regression output is obtained from either the expression evolved with CGP or
associative memory.

Fitness(G,AM,D) =
n

∑
i=1

(yi − y′(xi))
2. (2)

The standard CGP, with a common mutation operator, modifies cm integers of the
chromosome representing expression G. Another mutation operator was introduced
to replace a data point (xi,yi) randomly picked in AM with another data point ran-
domly taken from D. The replacement is applied with the probability pmutmem.
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Fig. 2 Example of CGP representation for expression f = x1+x1/x2. CGP is defined using param-
eters: the number of primary inputs (ni = 2, in our example), primary outputs (no = 1), columns
(nc = 3), and rows (nr = 3). The function set contains 7 functions: + (encoded 0), − (1), . . . , Tan
(6). In the chromosome, a triplet (source1, source2, function) is devoted to encoding one node. The
last integer specifies the output node. GPAM extends the chromosome with kAM data points stored
in AM. The resulting chromosome is (0, 0, 6)(0, 1, 3)(1, 1, 0)(2, 3, 2)(3, 3, 5)(0, 3, 0)(5, 6, 0)(6, 6,
4)(6, 7, 1):(7):(3, 0.1)(6, 2.1) for kAM = 2.

Contrasted to [7], we will evaluate GPAM on a more comprehensive set of bench-
mark problems. In the experimental evaluation, we will employ test data points dif-
ferent from those used during the evolution. However, the random modifications of
the data set (i.e., the introduced outliers) will remain preserved in the test data set.
The reason for distinguishing between training and test data is to get GPAM closer
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to the standard GP practice. We will investigate the impact of memory sizing on the
regression error when data with many outliers are present. We will deal with nei-
ther alternative aggregation functions nor utilization of constants in CGP as these
techniques were already discussed in [7].

3 Weight Generator with GPM

The second application is motivated by the current progressive development of
energy-efficient hardware accelerators of convolutional neural networks. This chap-
ter provides motivation for our work, introduces the GPAM-based approach [7],
and proposes its improvement, the GPM-based approach eliminating the need for
associative memory.

3.1 Efficient Processing of CNNs

Hardware accelerators of CNNs are often used for inference in mobile and other
embedded devices and are heavily optimized for low energy, area on a chip, and
latency. Their implementations employ many processing elements performing ele-
mentary operations such as “multiply and accumulate” (MAC) in a systolic parallel
architecture. CNN is usually executed layer by layer in the accelerator. Even a sin-
gle layer can not usually be executed on processing elements at once due to its size.
The execution has to be scheduled in many steps. Since a common CNN can have
millions of weights, keeping them in local memory is impossible. Hence, they are
stored in external DRAM memory. Their subsets are moved to the accelerator’s local
memory buffer when scheduled by a controller. Many authors reported that memory
accesses significantly contribute to the overall energy consumption of the acceler-
ator [2, 16]. For example, while a single 8-bit multiplication only requires 0.2 pJ,
reading 32 bits from local memory needs 5 pJ, and reading 32 bits from external
DRAM memory consumes 640 pJ (for 45 nm technology [16]).

CNNs are highly error-resilient, so their implementation can be simplified with-
out significantly dropping accuracy. The simplification (approximation) techniques
include pruning, utilizing approximate implementations of arithmetic operations,
and weight compression [1, 5]. For example, in the weight sharing method (also
known as the weight compression), a group of similar weights is replaced by a single
value determined using a clustering algorithm like K-means to reduce the number of
weights in memory. NSGA-II was employed to find the best trade-off between the
number of shared weights for each layer and the classification accuracy drop. The
method introduces an error because not all weights are reconstructed perfectly. The
authors reported 5× compression rate for some CNN models with 32 bit weights
when evaluated on the ImageNet image classification benchmark [3].
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3.2 GPAM-based Method

In our previous work [7], we evolved expression-memory pairs to generate weights
for selected layers of CNNs. We aimed at minimizing access to external memory
and, thus energy needed for one inference. The method starts with a fully trained
CNN-based classifier with the classification accuracy Ac on a test data set. Let S and
S j be the original set of weights and a subset of weights (S j ⊂ S) belonging to layer
j, respectively.

The objective is to evolve a weight generator (consisting of the expression G j and
associative memory AM j) that can sequentially approximate S j, one weight in one
step. The generated weights and incoming activations are used as the inputs to the
systolic array computing output feature maps. An open question is how to generate
the input sequence for CGP. In [7], we utilized the following indexes and informa-
tion relevant for the j-th CNN layer to create the sequence of inputs to CGP: input
channel index, output channel index, weight window coordinate wx, weight window
coordinate wy, and the average of the weights in the kernel (wavg). These items were
aggregated by means of concatenation to form a 5×32-bit input vector (a key) to as-
sociative memory. Fig. 3 shows that the output produced by (G j,AM j) was then
added to the average wavg and interpreted as the weight at position (wx,wy) in the
corresponding channels. The fitness of (G j,AM j) was obtained using Eq. 2; i.e., the
objective was to minimize the error between the original weights and approximate
weights because it is much faster than measuring the classification accuracy (for a
CNN utilizing the generated weights) directly on test data.

This approach, in fact, minimizes the number of accesses to external weight
memory by reducing the number of weights that have to be stored in memory. Most
of the weights can be generated using the evolved expression due to weigh similarity
and redundancy of CNNs in general. It is assumed that the expression can be repre-
sented by a small configuration bitstream stored in external memory, which is sent
into a reconfigurable weight-generating circuit when a given layer is processed by
the accelerator. Note that genetic algorithms (GA) were utilized for data compres-
sion in the past [4, 14]. For example, GA determined positions of pixels serving as
input to a human-created pixel predictor used in lossless image compression in [14].

In this use case, training and test data sets are not distinguished during the evolu-
tion of the expression-memory pair because GPAM always works with one particu-
lar subset of weights (S j). The resulting expression-memory pair has to be optimized
for this subset and, in fact, performs compression of this subset. Hence, the method
will be evaluated as a data compression method in Chapter 4.2.2 and could be help-
ful when analyzing properties of statistical modeling of data, e.g., in the context of
the minimum description length [13].
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Fig. 3 GPAM-based weight generator for a single layer of a CNN according to [7].

3.3 GPM-based Method

The proposed GPM-based method improves the original GPAM-based approach to
weight generation in the following aspects.

(i) The 32-bit floating-point operations used by CGP are replaced with 8-bit
fixed-point operations. The simplified operations of the CGP’s function set could
negatively affect the accuracy of symbolic regression. However, they significantly
contribute to reducing the complexity of the potential implementation of the method
in the CNN accelerator. Note that, for example, an 8-bit fixed-point multiply con-
sumes 15.5× less energy (12.4× less area) than a 32-bit fixed-point multiply, and
18.5× less energy (27.5× less area) than a 32-bit floating-point multiply [16]. An-
other benefit is the reduced bit width of all the connections on a chip.

(ii) Associative memory is replaced with standard memory, and a new addressing
scheme is introduced. Associative memory is expensive because it has to store a key
(obtained by the aggregation function) and the corresponding weight. Furthermore,
its implementation is resource-demanding as the input key has to be compared in
parallel with all the stored keys. Recall that associative memory holds a subset of h
weights of the entire set of weights belonging to one layer.

The proposed solution exploits the fact that we can sort the subset of weights
according to the weight’s order and pre-calculate the distance d j between any two
neighboring weights. The distance and weight are stored at the same address in
Memory. Note that Memory is addressed with addresses 0,1, . . . ,h−1. Fig. 4 shows
a new addressing scheme utilizing standard memory, where the data is selected
based on the address (i.e., no content addressing is employed). The number Genera-
tor sequentially generates numbers p = 0,1, . . . . The current distance d j and weight
w j are prepared in two registers. If p = d j, then the weight stored in the register rep-
resents the output of GPM, and the following steps are carried out: the address of
Memory is increased by 1, a new distance-weight pair is read from Memory, stored
in the registers, and the number Generator is reset. If p ̸= d j, the evolved expression
generates the output weight. As the number of bits needed to represent a distance
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is very small, significant memory savings are obtained compared with associative
memory. The proposed solution utilizes neither the weight average as the CGP’s
input nor the output adder.

(iii) Memory requirements are determined. The memory requirements of the
GPAM method can be determined as:

Mb = h∗ (kb +wb)+Gb, (3)

where h,kb, wb, and Gb are the number of weights in memory, the number of bits of
the key (i.e., the resulting bit width after the aggregation), the number of bits needed
for one weight, and the number of bits to encode the G expression, respectively. If
the GPM-based approach is considered, the key’s bit width is replaced in Equation 3
by the number of bits needed to store the longest distance d between two weights.
The compression rate (CR) delivered by the proposed method is

CR =
n∗wb

Mb
, (4)

where n is the total number of weights of one layer.
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Fig. 4 Proposed weight generator for a single layer of a CNN. Associative memory is replaced
with a common memory and a simple address-generating scheme.
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4 Results

The experimental results are discussed in two sections – the symbolic regression on
synthetic data sets and the weight generation in CNN accelerators.

4.1 Symbolic Regression

The goal is to show that GPAM can approximate data sets containing many random
values (outliers) much better than a standard GP. We will first describe how the
synthetic benchmark problems are created and then evaluate GPAM on them.

4.1.1 Creating Synthetic Benchmark Problems

We consider nine well-known benchmark functions that are typically utilized to
evaluate the GP-based symbolic regression methods [11]. Table 1 defines these
benchmark functions, the intervals used for sampling, and the number of sampled
points. We created training sets for GPAM by sampling these functions. In each
data set, we replaced some percentage of data points (controlled by the parameter
τ) with randomly generated values from interval [−10,10] to generate a benchmark
problem with “outliers”. Then, we created test sets by (1) reusing the randomly gen-
erated data points from the training sets and (2) adding new data points by sampling
the original functions again. It holds that training and test sets have the same size
and contain the same randomly generated data points (“outliers”). It has to be em-
phasized that GPAM does not know where the randomly generated data points are
located.

Table 1 Baseline functions used to generate synthetic benchmark problems for GPAM.

Name Function Size Interval Step
Koza-1 f (x) = x4 + x3 + x2 + x 40 [−1,1] 0.05
Nguyen-7 f (x) = ln(x+1)+ ln(x2 +1) 20 [0,2] random
Nguyen-10 f (x0,x1) = 2∗ sin(x0)∗ cos(x1) 100 [−1,1] random
Korns-4 f (x0,x1,x2,x3,x4) =−2.3+0.13∗ sin(x2) 10 000 [−50,50] random
Keijzer-1 f (x) = 0.3∗ x∗ sin(2πx) 20 [−1,1] 0.1
Keijzer-8 f (x) =

√
x 100 [0,100] 1

Vladislavleva-1 f (x0,x1) =
e−(x0−1)2

1.2+(x1−2.5)2 100 [0.3,4] random
Vladislavleva-2 f (x) = e−xx3(cos(x)sin(x))(cos(x)sin2(x)−1) 100 [0.05,10] 0.1

Vladislavleva-5 f (x0,x1,x2) = 30 (x0−1)(x2−1)
x2

1(x0−10)
300

x0,x2 : [0.05,2]
x1 : [1,2] random
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4.1.2 Setup

Based on some trial runs and with respect to results of [7], the CGP parameters are
defined as summarized in Table 2. CGP employs different function sets for differ-
ent benchmarks; see Table 3. According to [12], CGP employs the (1+λ ) search
strategy, where λ offspring individuals are generated from one parent. The fitness
function is as defined by Eq. 2.

Table 2 Parameters of CGP when used in GPAM.
Parameter Value
ni function dimension
no 1
nc ×nr (columns × rows) 20×2
L-back maximum
Search method 1+λ , λ = 4
Generations 5000
cm 2 integers per chromosome
pmutmem 0.2 (the mutation probability for memory)
Float constant probability 0.05 (0.10 if memory size = 0)
AM constant probability 0.05 (0.00 if memory size = 0)

Table 3 Function sets used by CGP for different benchmarks.

Function name Function set
Koza, Nguyen +, −, ∗, %, sin, cos, ex, log(|x|)

Korns
+, −, ∗, %, sin, cos, ex, log(|x|),
x2, x3, sqrt, tan, tanh

Keijzer +, ∗, 1
x , −x, sqrt

Vladislavleva-5 +, −, ∗, %, x2

Vladislavleva-1 +, −, ∗, %, x2, ex, e−x

Vladislavleva-2 +, −, ∗, %, x2, ex, e−x, sin, cos

4.1.3 Example Result

To illustrate the behavior of the proposed approach, let us first analyze an example
result evolved by GPAM – the approximation of the Nguyen-7 benchmark (with τ =
50%, i.e., 10 modified values) when GPAM has no memory (kAM = 0%) and when
it can use memory whose size is 60% of original data points. For kAM = 0%, Fig. 5
shows that CGP evolved a very complex expression (Eq. 5) trying to fit as many
data points as possible.

f (x) =
1
x
(x(−2xcos(x)− ln(

| (2xcos(x)−cos(2x)) ln(2|xcos(x)|)
xcos(x) |

2
)+ ln(|cos(2x)|)−
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sin(
ln(|cos(2x)|)

x
)+ cos(2x))− (ecos(x) ∗ x− ln(|cos(2x)|))sin(ln(|cos(2x)|)x))

(5)

However, in the case that associative memory is available, the evolved expression
(Eq. 6) is simple:

f (x) = ln(|ex + x3|) (6)

and most “outliers” are correctly stored in memory (see the green points in Fig 5).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X
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2.5

0.0

2.5

5.0

7.5

10.0

Y

Function generated by GPM
Points from memory

Function generated by GP (no memory) Random points (outliers) in the original data
Original data

Fig. 5 The Nguyen-7 benchmark problem: original data points (blue ×) and randomly generated
points (purple ×). One of the evolved solutions with kAM = 60% is depicted in blue; green points
(circles) are taken from AM. One of the evolved solutions with kAM = 0% is depicted in purple.

4.1.4 The Role of Memory Sizing

We performed 30 independent runs of GPAM with various settings of kAM and τ

for all benchmark data sets. Figure 6 shows in detail on the Keijzer-8 benchmark
that the fitness values (i.e., the approximation error on training as well as test data)
decrease with lowering the number of randomly generated data points (τ) in the data
set and adding more memory (kAM). If τ = 0 and kAM = 0, then GPAM becomes a
standard CGP, which almost always delivers a solution showing a close to zero error.
Note that the fitness values are normalized with respect to the number of data points
in all figures showing box plots in this paper.

Fig. 7 shows the same plot for the remaining benchmark problems. Contrasted
to [7], all these results are presented for test sets, i.e., the data unseen during the
evolution (except the randomly generated data points). The exact obtained values are
less important because they can slightly differ when another GP version is utilized.
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Fig. 6 Fitness values obtained by GPAM on Keijzer-8 benchmark problem for various associative
memory sizes (kAM) and numbers of randomly modified data points in data sets (τ). Box plots are
constructed using training data (top) and test data (bottom); for the latter case, outliers in the box
plots are omitted.

However, the following trend is significant: GPAM almost always provides better
solutions for less contaminated data, and when the size of AM is increasing. We can
conclude that GPAM can evolve a suitable expression and choose appropriate data
points to be stored in associative memory to approximate non-trivial data sets.

The experiments were performed on the Intel Xeon CPUs E5-2630 v4 running at
2.20 GHz. For the most demanding setup, the median execution time is 280 s on a
single core.

4.2 Weight Generation

The weight generation method based on GPM is evaluated on several layers of se-
lected CNNs trained as image classifiers. We start with a simple CNN classifying the
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Fig. 7 Fitness values obtained by GPAM on eight benchmark problems for various associative
memory sizes (kAM) and numbers of randomly modified data points in data sets (τ).
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MNIST data set, where GPAM and GPM are compared. Then, the same approach is
adopted for more complex CNNs.

4.2.1 Simple CNN 1

The first CNN, denoted Simple CNN 1, consists of six layers; see Fig. 8. This CNN
was trained using PyTorch to classify the MNIST data set (a digit classification task
from a 28×28-pixel image [10]) and achieved 97.4% accuracy on test images. When
the 8-bit precision is applied, the classification accuracy is 97.3%. We created two
data sets; S1 contains 250 weights of the first convolutional layer, and S2 contains
5000 weights of the second convolutional layer; see their values plotted in Fig. 9.
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Fig. 8 CNN used as a benchmark problem for GPAM.
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Fig. 9 Data sets created using the weights belonging to the first (S1) and second (S2) convolutional
layer of Simple CNN 1.
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Table 4 summarizes the setup of CGP parameters for the evolutionary design of
weight generators. The setup is based on the results of the previous study [7] and a
few additional test runs. GPAM utilizes floating point data representation, operates
with the following function set Γ32b = {+, −, ∗, %, sin(x), cos(x), ex, log(x), x2, x3,
sqrt(x), tan(x), tanh(x)}, and constants can randomly be generated. The eight-bit
function set used by GPM is Γ8b = {x,not(x), rshi f t1, rshi f t2, lshi f t1, lshi f t2, or,
and, xor, +, −, ∗, const00, constFF}. It includes two constants, 00 and FF. A weight
is represented on 8 bits so that 1 bit is reserved for the sign, and the remaining (7)
bits represent the interval [0; 0,5].

Table 4 Parameters of CGP when evolving the weight generator.

Parameter Value
ni 4
no 1
nc ×nr (columns × rows) 20×10
L-back maximum
Search method 1+λ , λ = 4
Generations 5000
cm 2 (the integers to mutate in CGP)
pmutmem 0.2 (mutation probability for memory)
Probability of creating a Constant 0.05 (GPAM)

Fig. 10 shows box plots with the fitness values obtained for S1 (left) and S2
(right) from 30 independent runs of GPAM (green) and GPM (yellow) utilizing var-
ious sizing of memory. We observe the same trend as in the previous experiments;
the classification accuracy is improved if a bigger memory is available. If no mem-
ory is considered, the classification accuracy is not competitive at all. For memory
containing 10% of the weights (selected by the method automatically), the classifi-
cation accuracy is close to the baseline values. The best accuracy obtained by GPM
(the 8-bit setup) is close to the 32-bit GPAM. The statistical evaluation expressed by
the box plots reveals that GPAM consistently provides higher medians of accuracy
for S2. Interestingly, GPM leads to higher medians for S1.

Eq. 7 gives one of the best-evolved 8-bit expressions for S1. Surprisingly, it uses
only two inputs (x1 and x2). For S2, GPM delivered an expression (Eq. 8), which is
a constant. It seems that for simple CNNs and classification problems, it is enough
to use a simple expression, even a constant expression, and 10%-20% weights to
approximate the original weight set with a small accuracy drop.

GS1(x0,x1,x2,x3) = ((FF ≫ 2)∗ (((((x1 xor x2)−00) or ((x1 xor x2)−00)) or
(x1 xor x2)) and ((∼ (x2 and (x1 xor x2))) or (00 ≪ 2)))) (7)

GS2(x0,x1,x2,x3) =∼ (x2 xor x2) =−0.00390625 (8)
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Fig. 10 Accuracy (on the MNIST test data) obtained from 30 runs of GPAM (green) and GPM
(yellow) utilizing various sizing of memory on S1 and S2 data sets. The numbers in rectangles
represent the best-obtained values under a given setup.

4.2.2 Memory Requirements

A common memory subsystem of a CNN accelerator would require external mem-
ory capacity wb×n bits for n weights represented on wb bits. Table 5 summarizes the
number of bits obtained with several compression methods to represent the weights
of convolutional layers captured by data sets S1 and S2. We included the lossless
Huffman code with and without the symbol table, the ZIP compression algorithm,
and the theoretical optimum computed using entropy (note that the frequency of
occurrence of the weight values is known for S1 and S2). Then, the best-evolved so-
lutions obtained by GPM and GPAM are reported. The solutions evolved by GPM
led to the smallest memory requirements; however, an accuracy drop is introduced
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as the weights are not reconstructed perfectly. For GPM and GPAM, the number of
bits was obtained using Equation 3, which considers the number of weights in local
memory, their bit width, the maximum distance between two weights (which is typ-
ically encoded on 6 or 7 bits), and the size of CGP chromosome needed to encode
the evolved expression (100-300 bits).

Table 5 The number of bits obtained with several methods to represent the weights of convolu-
tional layers captured by data sets S1 and S2.

Method / Data Set S1 (n = 250) S2 (n = 5000)
[bit] [bit]

Original size (32 bit) 8 000 160 000
Original size (8 bit) 2 000 40 000
Huffman coding 1 737 28 183
Huffman coding (incl. the table) 3 867 29 355
ZIP 3 344 39 464
Theoretical optimum (entropy) 1 732 28 067
GPM / GPAM, kAM = 10% (acc. drop 0.8%) 636 / 3 698 –
GPM / GPAM, kAM = 10% (acc. drop 1.0%) 448 / 3 484 –
GPM / GPAM, kAM = 10% (acc. drop 1.2%) – 6 765 / 68 044

Regarding the computational requirements, for the most demanding setup (30%
weights in memory), the median single-core execution time of GPM is 850 s on the
Intel Xeon CPU E5-2630 v4 running at 2.20 GHz.

4.2.3 Other CNNs

We repeated the experiments from Chapter 4.2.1 on selected convolutional layers
of some CNNs trained to classify other image data sets. Particularly, we dealt with
another simple CNN trained on Fashion MNIST (Simple CNN 2 with an accuracy
of 0.91), MobileNetV2 [15] on CIFAR-10, and ResNet-34 [6] on Imagenette. The
composed sets of weights are denoted S3 - S10. Table 6 summarizes the basic setup
and the obtained trade-offs between the accuracy drop and memory size needed
by GPM. One can observe that the weights of some layers can be compressed so
that only a small accuracy drop is present; however, if CNN is more complex, the
accuracy drop becomes unacceptable.

5 Conclusions

We proposed GPM as an extension of our previous method GPAM, both dealing
with the automated design of programs that can utilize small memory to memorize
some important information from a training data set. We showed that the method can
generalize on common data sets (infected with randomly generated values), which
has not been demonstrated in [7].
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Table 6 The basic setup of GPM and the obtained trade-offs between the accuracy drop and mem-
ory size (kAM)

Weight set CNN Data set Layer #weights bits acc. drop [%] kAM [%]
S1 Simple CNN 1 MNIST 1. 250 8 0.8 10
S1 Simple CNN 1 MNIST 1. 250 8 0.3 20
S2 Simple CNN 1 MNIST 2. 5 000 8 1.2 10
S2 Simple CNN 1 MNIST 2. 5 000 32 0.5 20
S3 Simple CNN 2 FMNIST 1. 400 32 7.4 20
S4 Simple CNN 2 FMNIST 2. 12 800 32 11.3 15
S5 MobileNetV2 CIFAR-10 1. 864 32 6.7 15
S6 MobileNetV2 CIFAR-10 3. 288 32 1.3 15
S7 MobileNetV2 CIFAR-10 5. 864 32 8.9 15
S8 ResNet–34 Imagenette 1. 9 408 32 37.5 30
S9 ResNet–34 Imagenette 2. 36 864 32 3.4 30
S10 ResNet–34 Imagenette 2. & 3. 73 728 32 19.8 10

We evolved expression-memory pairs that can serve as weight generators and
thus approximate the weights associated with convolutional layers of selected
CNNs. For example, if memory contains 10% of the original weights, the weight
generator evolved for a convolutional layer can approximate the original weights
such that the CNN utilizing the generated weights shows less than a 1% drop in
the classification accuracy on the MNIST data set. The memory requirements are
reduced 3.1× or 12.6× for 8-bit or 32-bit weights, respectively. The same approach
was adopted for more complex CNNs and challenging image data sets. However, a
detailed evaluation of the implementation on a particular hardware accelerator or its
simulator has to be performed to obtain all important hardware characteristics, such
as latency and energy of inference.

The proposed method can be extended in several directions, for example, by con-
sidering the importance of particular weights for the CNN accuracy in the fitness
function, employing different GP variants, or creating the key for associative mem-
ory in alternative ways. Its utilization in other applications (such as logic circuits for
machine learning or image filtering) is our future task.
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