
Behavioural Modeling of Services:
from Service-Oriented Architecture

to Component-Based System

Marek Rychlý
Brno University of Technology, Faculty of Information Technology

Department of Information Systems
Božetěchova 2, 612 00 Brno, CZ
http://www.fit.vutbr.cz/∼rychly/

CEE-SET 2008
October 13–15, 2008, Brno

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 1 / 12

Outline

Introduction
Service-Oriented Architecture (SOA)
Component-Based Development (CBD)
A Calculus of Mobile Processes (π-Calculus)

Behavioural Modeling of Services
Services in SOA
Services in CBD

Summary and Future Work

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 2 / 12

Service-Oriented Architecture (SOA)

Definition (Service-Oriented Architecture)

SOA represents a model in which functionality is decomposed
into small, distinct units (services), which can be distributed over
a network and can be combined together and reused to
create business applications.

[Thomas Erl, SOA: Concepts, Technology, and Design, 2005]

Services can communicate:
1 by passing data between two services,

(service contracts, services receiving the data are requesters, while
services sending the data are providers)

2 by coordinating an activity between two or more services.
(a multi-party collaboration between services that is usually known as
service choreography)

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 3 / 12

Levels of Abstraction in SOA

SOA can be described at three levels of abstraction:
1 business processes

(a system is a hierarchically composed business process, represents
sequence of steps in accordance with some business rules leading to
a business aim)

2 services
(an implementation of a business processes and their parts with
well-defined interfaces and interoperability for the benefit of the business)

3 components
(an implementation of a service as component-based systems with
well-defined structure and description of its evolution for the benefit of the
implementation)

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 4 / 12

Component-Based Development (CBD)

Definition (Software Component)

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. It can be deployed independently and is
subject to composition by third parties.

[Clemens Szyperski, Component Software: . . . , 2002]

The components can be:
1 primitive components,

(realised directly, beyond the scope of architecture description)

2 composite components.
(decomposable on systems of subcomponents at the lower level)

The interfaces can be:
1 functional interfaces,

(for business-oriented services required or provided by a component)

2 control interfaces,
(for binding of interfaces and changing of behaviour and structure)

3 reference interface.
(for passing of references to components or references to interfaces)

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 5 / 12

A Calculus of Mobile Processes (π-Calculus)

• Algebraic approach to description of a system of
concurrent and mobile processes.

• Two concepts: agents (communicating processes) and
names (communication channels, data, etc.).

x〈y〉.P output prefix
x(z).P input prefix

τ.P unobservable
prefix

(z)P restriction of
scope

P + Q sum of capabilities of
processes

P | Q composition of
processes

!P an infinite
composition of the
process

P ::= M | P | P | (z)P | !P
M ::= 0 | π.P | M + M
π ::= x〈y〉 | x(z) | τ

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 6 / 12

Reduction, Abstraction and Application

Communication defined as a reduction relation → , the least
relation closed under a set of the reduction rules.

R-INTER
(x〈y〉.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z} R-TAU τ.P + M → P

R-PAR
P1 → P′1

P1 | P2 → P′1 | P2
R-RES P → P′

(z)P → (z)P′

R-STRUCT
P1=P2 → P′2=P′1

P1 → P′1
R-CONST Kbãc → P{ã/x̃} K ∆

= (x̃).P

• An abstraction of arity n ≥ 0 is an expression of the form
(x1, . . . , xn).P, where the xi are distinct.

• A pseudo-application of an abstraction F def
= (x̃).P is an

expression of the form F〈ỹ〉, a process P {ỹ/x̃}.

• A constant application of a process constant K ∆
= (x̃).P, is

an expression of the form K bãc, reducible according rule
R-CONST. It allows recursive definitions.

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 7 / 12

Services in Service-Oriented Architecture

In the π-calculus, a general service Service with interfaces
i1, . . . , in can be described as a process abstraction

Service def
= (i1, . . . , in).(s1, . . . , sm)

(Svcinit〈i1, . . . , in, s1, . . . , sm〉.
n∏

j=1

Svcjbij , s1, . . . , smc)

• The pseudo-application of Svcinit initiates the service.

• The constant application of Svcj interacts via the service’s
interface ij and communicate via shared names s1, . . . , sm.

Svcinit and Svcj represent an implementation of the service and
describe its behaviour.

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 8 / 12

Service Broker
A service broker stores information about available service
providers for potential service requesters.

Broker def
= (a,g).

(p)(Addbp,ac | Getbp,g,ac)

Add ∆
= (t ,a).a(m,d).

(t ′)(Addbt ′,ac | t〈t ′,m,d〉)

Get ∆
= (h,g,a).h(h′,m,d).

(g〈m〉.(Getbh′,g,ac | a〈m,d〉) + d)

• Publishing a service accessible via interface x :

(d)(a〈x ,d〉)

• Requesting the service’s interface to y :

g(y)

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 9 / 12

Services in Component-Based Development

• Service as a component-based system (CBS).
• We can modify description of process constant:

Svc′j
def
= (i, sp1 , . . . , spk , sr1 , . . . , sr(m−k)

).Svcjbi, s1, . . . , smc

• Names sp1 , . . . , sp(m−k)
and name i stand for

“provided” interfaces as a selection of the service’s
provided shared names and its interface.

• Names sr1 , . . . , srk stand for “required” interfaces as the rest
of required shared names.

• The service can be described as a CBS (a component) with
provided functional interfaces i, sp1 , . . . , sp(m−k)

and required
functional interfaces sr1 , . . . , srk .

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 10 / 12

Behaviour of Component-Based System

• Now, we are ready to describe a CBS itself, which
implements a service’s behaviour and internal structure.

• The CBS is defined by its initial configuration, component
hierarchy and components’ behaviour.

• Description consists of
1 description of interface’s references and binding,

2 description of control of a component’s life-cycle,

3 description of component behaviour of primitive and
composite components.

See the conference proceedings. . .

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 11 / 12

Summary and Future Work

• behaviour of services’ interaction in SOA
can be described in π-calculus,

• behaviour of services’ implementation in CBD
can be described in π-calculus,

Current and future work
• verification of properties of services and components,
• services modelling with constraints,
• model-checking in service-oriented architecture

(compatibility of services, evolution of architecture, etc.).

Behavioural Modeling of Services: from Service-Oriented Architecture to Component-Based System 12 / 12

Thank you for your attention!

	Main Talk
	Introduction
	Service-Oriented Architecture (SOA)
	Component-Based Development (CBD)
	A Calculus of Mobile Processes (pi-Calculus)

	Behavioural Modeling of Services
	Services in SOA
	Services in CBD

	Summary and Future Work

	Appendix
	Thanks

