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ABSTRACT

With the start of the widespread use of discrete wavelet trans-

form in image processing, the need for its efficient imple-

mentation is becoming increasingly more important. This

work presents a novel SIMD vectorisation of 2-D discrete

wavelet transform through a lifting scheme. For all of the

tested platforms, this vectorisation is significantly faster than

other known methods, as shown in the results of the experi-

ments.

Index Terms— Discrete wavelet transforms, Image pro-

cessing

1. INTRODUCTION

The discrete wavelet transform (DWT) [1] is mathematical

tool which is suitable to decompose discrete signal into low-

pass and highpass frequency components. Such a decompo-

sition can even be performed at several scales. It is often used

as a basis of sophisticated compression algorithms.

Considering the number of arithmetic operations, the lift-

ing scheme [2] is currently the most efficient way for comput-

ing the discrete wavelet transform. This paper focuses on the

CDF (Cohen-Daubechies-Feauveau) 9/7 wavelet [3] which is

often used for image compression (e.g., JPEG 2000 standard).

Responses of this wavelet can be computed by a convolution

with two FIR filters, one with 7 and the other with 9 coeffi-

cients. The transform employing such a wavelet can be com-

puted with four successive lifting steps as shown in [2]. Re-

sulting coefficients are then divided into two disjoin groups –

approximate and detail coefficients, or L and H subbands. The

simple approach of lifting data flow graph evaluation directly

follows the lifting steps. This approach suffers with several

reads and writes of intermediate results. However, more effi-

cient ways of lifting evaluation [4] [5] exist.

In case of two-dimensional transform, the DWT can be

realized using separable decomposition scheme [6]. In this

scheme, the coefficients are evaluated by successive horizon-

tal and vertical 1-D filtering resulting in four disjoin groups

(LL, HL, LH and HH subbands). A naive algorithm of 2-D

DWT computation will directly follow horizontal and vertical

filtering loops. Unfortunately, this approach is encumbered

with several accesses into intermediate results. The horizon-

tal and vertical loop can be fused into single one yielding into

the single-loop approach [7].

In present personal computers, a general purpose micropro-

cessor with SIMD (single instruction, multiple data) instruc-

tion set is often found. For example, in x86 architecture, the

appropriate instruction set is SSE (Streaming SIMD Exten-

sions). This 4-fold SIMD set fits exactly the CDF 9/7 lift-

ing data flow graph when using the single precission floating-

point format.

In this paper, the diagonal vectorisation of wavelet lifting

recently published [5] is incorporated into the known single-

loop approach. This new implementation is compared to the

original one using the vertical vectorisation as well as to the

naive approach with separated horizontal and vertical loops.

For tested platforms, this new combination is consistently sig-

nificantly faster than the original approach employing vertical

vectorisation.

This paper is focused on the present computers with x86

architecture. All the methods presented in this paper are eval-

uated using ordinary PCs with Intel x86 CPUs. Intel Core2

Quad Q9000 running at 2.0 GHz was used. This CPU has

32 kiB of level 1 data cache and 3 MiB of level 2 shared cache

(two cores share one cache unit). The results were verified on

system with AMD Opteron 2380 running at 2.5 GHz. This

CPU has 64 kiB of level 1 data, 512 kiB of level 2 cache per

core and 6 MiB of level 3 shared cache (all four cores share

one unit). Another set of control measurements was done on

Intel Core2 Duo E7600 at 3.06 GHz and on AMD Athlon 64

X2 4000+ at 2.1 GHz. These are referred to as alternative plat-

forms. Due to limited space, the details will not be shown here

with the exception of a summarizing table. All algorithms be-

low were implemented in C languade using SSE compiler in-

trinsics.1 In all cases, 64-bit code compiled using GCC 4.8.1

with -O3 flag was used.

The rest of the paper is organised as follows. Related

Work section discusses the state of the art – especially lifting

scheme, vectorisations and 2-D single-loop approach. Single-

Loop Approach section focuses on this 2-D approach in more

1The code can be downloaded from

http://www.fit.vutbr.cz/research/prod/?id=211.
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Fig. 1. Complete data flow graph of CDF 9/7 transform. The

input signal on top, output at bottom. The vertical (dashed) as

well as the diagonal (dotted) vectorisation is outlined.

detail and a fusion with the diagonal vectorisation is proposed

here. Diagonal Vectorisation section proposes a combination

of the 1-D diagonal vectorisation and the 2-D single-loop ap-

proach. Finally, Conclusion section closes the paper.

2. RELATED WORK

According to the number of arithmetic operations, the lifting

scheme [2] is today’s most efficient scheme for computing

discrete wavelet transforms. Any discrete wavelet transform

with finite filters can be factored into a finite sequence of N
pairs of predict and update convolution operators Pn and Un.

Each predict operator Pn corresponds to a filter p
(n)
i and each

update operator Un to a filter u
(n)
i . These operators alternately

modify even and odd signal coefficients. The lifting factorisa-

tion is not unique. For symmetric filters, this non-uniqueness

can be exploited to maintain symmetry of lifting steps.

In their paper [2], I. Daubechies and W. Sweldens demon-

strated an example of CDF 9/7 transform factorisation which

resulted into four lifting steps (N = 2) plus scaling of co-

efficients. In this example, the individual lifting steps use

2-tap symmetric filters for the prediction as well as the update.

The calculation of the complete CDF 9/7 DWT is depicted in

Fig. 1 (coefficient scaling is ommited). The coefficients of

the four 2-tap symmetric filter are denoted α, β, γ and δ re-

spectively. During this calculation, intermediate results can

be appropriately shared between neighboring pairs of coeffi-

cients. This is an in-place implementation, which means the

DWT can be calculated without allocating auxiliary memory.

Resulting coefficients are interleaved in place of the input sig-

nal.

The problem of minimum memory implementations of lift-

ing scheme was adressed in [4] by Ch. Chrysafis and A. Or-

tega. Their approach is very general and it is not focused

on parallel processing. Anyway, this is essentially the same

method as the on-line or pipelined computation mentioned in

other papers (although not necessarily using lifting scheme

nor 1-D transform). Its variation was presented in [7] which

is specifically focused on CDF 9/7 wavelet transform. The

work was also later extended to [8] where same authors ad-

dressed a problem of minimum memory implementation of

2-D transform.

Many papers are focused on 2-D, possibly 3-D [9] trans-

forms. For instance, in [10] S. Chatterjee and Ch. D. Brooks

proposed two optimizations of 2-D transform. The first opti-

mization interleave the operations of 1-D transform on multi-

ple columns. The second optimization modifies the layout of

the image data so that each sub-band is laid out contiguously

in memory.

Furthermore, in [11] authors address the implementation

of a 2-D transform focusing on memory hierarchy and SIMD

parallelization. Here, the pipelined computation is applied

in vertical direction on subsequent rows. The above men-

tioned work was later extended to [12] where vectorisation

using Intel’s SSE instructions is proposed on several rows in

parallel. The approach they used is simillar to merging verti-

cal and horizontal filtering into single loop as in [7]. In [13],

same authors introduced new memory organization for 2-D

transforms which is trade-off between the in-place and Mallat

(with auxiliary matrix) organization. Then, the authors vec-

torised transform using approach simillar to one described in

[7] where four rows are processed in parallel. In [14] and

[15], several techniques for reducing cache misses for 2-D

transforms was proposed. Moreover, two techniques to avoid

64K aliasing were proposed in [15].

In [16], R. Kutil et al. presended SIMD vectorisation of

several frequently used wavelet filters. This vectorisation

is applicable only on those filters discussed in their paper.

Specifically, vectorisation of CDF 9/7 wavelet computed us-

ing lifting scheme is vectorised by a group of four successive

pairs of coefficients. Unlike a general aproach proposed in

[5], their 1-D transform vectorisation handles coefficients in

blocks. SIMD vectorisation in [5] processes pairs of coeffi-

cients one by one immediately when available (without pack-

ing into groups). It is especially useful on systems equipped

with small CPU cache.

In [7], R. Kutil splits lifting data flow graph into vertical

areas (see green area in Fig. 1). Due to dependencies of in-

dividual operations, computations inside these areas cannot

be parallelized. However, this approach is advantageous be-

cause of a locality of data necessary to compute output coeffi-

cients. Parallel processing using SIMD extensions is achieved

by processing four rows of 2-D transform or four adjacent co-

efficients in one row in parallel. In our paper, such a method

is called vertical vectorisation. Futher in Kutil’s paper, the

author focuses on 2-D transform by merging vertical and hor-

izontal passes into a single loop. The issue of cache efficient

implementation is also addressed here. To overcome it, the

author uses the prime stride between consequent rows of im-

age.
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Fig. 2. Comparison of the naive and the single-loop ap-

proaches on Intel CPU. Both axes are shown in logarithmic

scale.

Implementation of 2-D or 3-D DWT was also studied

on modern programmable GPUs (graphics processing units),

mostly using the lifting scheme. When implemented in

GPU’s fragment shaders, the filter bank scheme often outper-

forms lifting scheme filtering for shorter wavelets, as it was

reported in [17]. The authors of [18] compared previous ap-

proach with lifting and convolution implementation of various

integer-to-integer wavelet transform using CUDA in favor of

the lifting scheme.

3. SINGLE-LOOP APPROACH

This section focuses on the single-loop 2-D approach in more

detail and proposes a fusion with the diagonal vectorisation.

Such a combination allows SIMD vectorization of the algo-

rithm core. For some platforms, this is significantly faster

than the original single-loop approach.

A useful implementation of the vertical vectorisation of

1-D wavelet lifting was described in [7]. We have presented

the diagonal vectorisation (the blue area in Fig. 1) of this algo-

rithm in [5] which allows the use of SIMD processing with-

out grouping coefficients into blocks. These two vectorisa-

tions can be naively used for 2-D transform by both vertical

and horizontal filtering. It is called a naive approach in this

paper. Performance evaluation of these methods is depicted

in Fig. 2 and Fig. 3 (the naive curves). The performance

degradation between 100 k and 1 M pixels on Intel platform

is caused by deteriorated level 1 data cache hit/miss ratio. On

AMD, the performance degradation between 100 k and 1 M

as well as between 10 M and 100 M is caused by decreasing

level 2 cache hit/miss ratio. See [19] for more details. In order

to avoid doubts about possible caching issues in the naive im-

plementation, it should be noted that these are avoided using

the prime stride between consequent rows of image.

Fig. 3. Comparison of the naive and the single-loop ap-

proaches on AMD CPU. Both axes are shown in logarithmic

scale.

In [7], R. Kutil considered two nested loops (an outer verti-

cal and an inner horizontal loop) as a single loop over all pix-

els of the image. He called it single-loop approach. Specif-

ically, he merged two vertically vectorized loops into single

one. Since the output of horizontal filtering is the input of

vertical one, he uses the output of the first filtering immedi-

ately when it is available.

read

write

F

F

Fig. 4. A core of the single-loop approaches. Already pro-

cessed area is highlighted in gray. An outer rectangle is the

support for 2× 2 coefficients in the middle (labelled write).

One step of the vertical vectorisation requires two values

(a pair) to perform an iteration (see dataflow graph in Fig. 1).

Thus, this algorithm needs to perform two horizontal filter-

ings (on two consecutive rows) at once. For each row, a low-

pass and a high-pass coefficient is produced, which makes

2 × 2 values in total. The image processing by this core is

outlined in Fig. 4 where F indicates a lag of the core. Vertical
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vectorisation algorithm passes four values from one iteration

to the other in horizontal direction for each row (8 in total). In

vertical direction, the algorithm needs to pass four rows be-

tween iterations. The length of coresponding prolog as well

as epilog phases are F = 4 coefficients. The situation is il-

lustrated in Fig. 5.

2× 2

prolog

core

epilog

prolog core epilog

F

F

FF

Fig. 5. Simplified view of the single-loop approach showing

the prolog and epilog phases. The length F of these phases is

4 (vertical vectorisation) or 10 (diagonal one).

4. DIAGONAL VECTORISATION

We propose to combine above described approach with our

algorithm of diagonal vectorisation presented in [5]. In this

case, single-loop pass over all pixels of the image remains. In

contrast to Kutil’s work, we employed diagonal vectorisation

in the core of our algorithm. As in the previous case, the di-

agonal vectorisation uses two values to perform one iteration.

Thus, also this algorithm needs to perform two horizontal fil-

terings at once. The kernel has also size of 2× 2 values in to-

tal. In the horizontal direction, diagonal vectorisation passes

four values from one iteration to the other for each row. How-

ever, the algorithm needs to pass 12 rows between iterations

in vertical direction. The lengths of coresponding prolog and

epilog phases are F = 10 coefficients now. Unlike the verti-

cal vectorisation, the diagonal one can be SIMD-vectorised in

1-D and thus also in 2-D case. Finally, a large part of the 2×2
diagonally vectorised kernel is written using SSE instructions

which perform 4 operation in parallel. A disadvantage is the

3× more memory occupied by row buffers.

Both of the described approaches require complicated

treatment of image border areas using several different com-

binations of 1-D prolog and epilog phases. It makes their

implementation very tedious. The proposed single-loop ap-

proach using diagonal vectorisation was compared to the orig-

inal one with vertical vectorisation. The execution times are

plot in Fig. 2 and Fig. 3. They also show the naive implemen-

tations using separated horizontal and vertical filtering. All

the diagonal implementations were tuned using SSE instruc-

tions. In case of vertical implementations, there is no benefit

observed from using SSE data types.

Reference platforms

Intel AMD

algorithm time speedup time speedup

naive vertical 21.9 1.0 47.1 1.0

naive diagonal 19.8 1.1 46.9 1.0

single-loop vertical 8.4 2.6 15.3 3.1

single-loop diagonal 7.7 2.8 11.7 4.0
Alternative platforms

Intel AMD

algorithm time speedup time speedup

naive vertical 19.4 1.0 154.0 1.0

naive diagonal 17.7 1.1 152.3 1.0

single-loop vertical 6.2 3.1 20.4 7.5

single-loop diagonal 5.7 3.4 17.0 9.1

Table 1. Performance evaluation of both of the vectorisations

and both of the approaches. The time is given in nanoseconds

per one pixel.

Both of the above approaches (naive, single-loop) in com-

bination with vectorisations (vertical, diagonal) are compared

in Table 1. The naive algorithm is used as a reference one. All

the measurements was performed on 58 megapixel image.

5. CONCLUSION

We have presented a novel approach to 2-D wavelet lifting

scheme reaching speedup at least 4.0× on AMD and 2.8× on

Intel platform for large data. This approach fuses single-loop

approach and diagonal vectorisation. This proposed fusion

allows for SIMD-vectorisation of newly formed 2-D image

processing core while preserving its minimum memory re-

quirements.

Further work could explore behavior of proposed ap-

proaches on the other architectures (vector processors, many-

core systems) or with other wavelets (different lifting factori-

sations).
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[1] Stéphane Mallat, A Wavelet Tour of Signal Processing:
The Sparse Way. With contributions from Gabriel Peyré.,
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